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Abstract

We show that certain free energy functionals that are not convex with respect
to the usual convex structure on their domain of definition are strictly convex in the
sense of displacement convexity under a natural change of variables. We use this to
show that, in certain cases, the only critical points of these functionals are minimi-
zers. This approach based on displacement convexity permits us to treat multicom-
ponent systems as well as single component systems. The developments produce
new examples of displacement convex functionals and, in the multi-component
setting, jointly displacement convex functionals.

1. Introduction

1.1. The variational problem

We consider minimization problems for a type of functional that arises in the
study of phase segregation in statisticalmechanical systems. Let F(m) be a function
on the real line that is continuous and strictly positive except at m = a and m = b
with a < b. A good example to bear in mind is the “double well potential”

F(m) = 1
4
(m2 − 1)2,

where of course a = −1 and b = 1.
Let Ca,b be the set of measurable functions m(x) from R to R such that (for

some representative)

lim
x→−∞m(x) = a and lim

x→+∞m(x) = b.

The numbers a and b represent the values of the order parameterm in two phases of
a statistical mechanical system. For example, m = a might correspond to a vapor
phase, and m = b to a liquid phase.
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A function m(x) in Ca,b denotes a possible one-dimensional transition profile
across the boundary segregating the two different phases. The actual profile that one
would expect to see would be one that minimizes the free energy cost of making
such a transition. The free energy functional F to be minimized on Ca,b will in
some cases of interest have the form, c.f. [10],

F(m) =
∫

R

F(m(x)) dx + 1
2

∫
R

∫
R

(m(x) − m(y))2 J (x − y) dx dy, (1.1)

where J (x) is a non-negative integrable function on R.
The term

∫
R
F(m(x)) dx is due to short range interactions and entropy

effect, and is normalized so that it vanishes in the pure phases, when m(x) = a or
m(x) = b, while the term

∫
R

∫
R
(m(x)−m(y))2 J (x− y) dx dy is due to long range

interactions. This long range term in the free energy suppresses sharp transitions,
as does the gradient term in the familiar but purely phenomenological Van der
Waalsmodel [13]. For more discussion of the physical context of the problem, see
[8].

Much useful information can be deduced from the specific form of the minimi-
zing profiles. In particular, the surface tension at a two dimensional phase boundary
in physical three dimensional space is the minimum value of F(m) on Ca,b; see [3]
and Section 5 for more information. Hence we ask:

• What is the minimum value of F(m) as m ranges over Ca,b, and are the mini-
mizing profiles, if any, unique up to translation?

Actually, the existence of minimizers is relatively simple to prove using the
rearrangement inequalities to be discussed below. However, because of the trans-
lation invariance, they are never unique: Any translate of a minimizer is again a
minimizer. It is less simple to show that this is the only degeneracy.

1.2. Displacement convexity and uniqueness of fronts

For a particular choice of F in the free energy functional specified in (1.1), the
minimizing profile problem has been solved in a series of papers by De Masi et al.
[10,11], building on previous unpublished work of Dal Passo and de Mottoni
[9]. Their solution involves the construction of a dynamics that is dissipative for the
free energy functional, and then a careful analysis of limits along the time evolution
for this dynamics.

Another approach that we further develop here has been introduced byAlberti
and Bellettini [1,2]. They discovered an alternative convex structure which ren-
ders the variational problem for (1.1) convex, and used this to study the existence
problem in [2]. Later,Alberti [1] returned to the problem and proved a uniqueness
result that affirmatively answers the question raised above for this one component
model.

Our goal here is to treat certain two component systems. Motivated by this
problem, we were led to reconsider the single component problem from the point of
view of McCann’s notion of displacement convexity [12]. In fact, the minimization
problem for (1.1) is challenging largely because the functional F is not convex
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on Ca,b in the usual way: For 0 < λ < 1, and m0 and m1 in Ca,b, define mλ =
(1−λ)m0+λm1 and note thatmλ ∈ Ca,b. However, due to the non-convexity of the
potential function F , it is not true in general thatF(mλ) � (1−λ)F(m0)+λF(m0).

In [12], McCann, building on groundbreaking work of Brenier [6], introdu-
ced an alternative convex structure on the space of probability densities on R

n , and
used this to prove existence and uniqueness results for minimizers of functionals
that were not convex in the usual sense. We shall show here that the minimization
problem for (1.1), as well as for a two component model of this type, can be handled
within this framework. In the process, we provide two new examples of strictly dis-
placement convex functionals, the second of which is jointly displacement convex.
It turns out that the alternative convex structure introduced in [2] is equivalent to
the displacement convexity in this one dimensional setting, although the approach
is quite different. We shall see that developing the alternative convex structure
explicitly in terms of displacement convexity has advantages, especially for the
two component system, when one seeks to prove a uniqueness result. Moreover,
as we show in the final section, our results for the two component system may
be applied to the single component system in higher dimensions, yielding a new
uniqueness theorem for monotone solutions of the Euler–Lagrange equation.

We now describe the alternate convex structure with respect to which F is
convex. This second convex structure cannot be defined on all of Ca,b, but only on
the subset Ma,b consisting of right-continuous monotone profiles. Nothing is lost
in this restriction, as rearrangement inequalities show that minimizers of F on Ca,b
must actually be monotone, so that they have a right-continuous version belonging
Ma,b; see [1] and Theorem 6.1 below.

Any right-continuous profile m(x) in Ma,b can be written in the form

m(x) = a + (b − a)
∫

(−∞,x]
dµ(y), (1.2)

where µ is a uniquely determined probability measure on R. This identification of
Ma,b and the set of probability measures onR allows us to look atF as a functional
defined on probability measures.

This is a useful perspective since there is an alternative convex structure on the
set of probability measures onR (or more general domains) that was introduced by
McCann, andwhichwe describe below.A functional on probabilitymeasures is said
to be displacement convex if it is convex with respect to this alternative structure.
We shall show here that F , regarded as a functional on probability measures is, in
fact, displacement convex. Using this, we shall show that any solution in Ma,b of
the Euler–Lagrange equation for the variational problem concerning (1.1)

m(x) = 1
Ĵ

(∫
R

J (x − y)m(y) dy − F ′(m(x))
)

, (1.3)

where

Ĵ =
∫

R

J (x) dx, (1.4)
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is in fact a minimizer. Solutions to (1.3) can easily be constructed by iteration and
using these surface tensions may be readily computed.

This solution to the variational problem has the advantage of applying also
to free energy functionals in certain multicomponent systems, in which the deter-
mination of the minimizers has not been previously treated. Indeed, our motiva-
tion was to be able to rigorously determine the surface tension in such systems.
However, we shall first present our simple solution of the minimization problem
for the single component free energy functional F specified in (1.1), and then treat
the multicomponent case.

2. The alternative convex structure

2.1. The reduction to monotone profiles

First of all, notice that if we seek to minimizeF on Ca,b, we need only consider
profiles m for which a � m(x) � b for all x . Indeed, for any m ∈ Ca,b, define m̂
by

m̂(x) = min{b,max{a,m(x)}}.
Then F(m̂) � F(m) with equality only in case m̂ = m, since otherwise replacing
m by m̂ lowers both terms.

We now recall a notion of rearrangement due to Alberti [1]. For any Borel
measurable set A, let |A|denote its Lebesguemeasure. The rearrangement is defined
for Borel sets A ⊂ R such that |A∆(0,∞)| < ∞, where A∆B = A\B ∪ B\A is
the symmetric difference of A and B. For such a set A, define the rearranged set
A∗ by

A∗ = [α,∞) where α = |(0,∞)\A| − |A\(0,∞)|.
Any function m in Ca,b that takes values in [a, b] can be represented in “layer-

cake” form:

m(x) =
∫ b

a
1{m>z}(x) dz + a.

For each z ∈ (a, b), the set {m > z} certainly has the property that
|{m > z}∆(0,∞)| < ∞. Hence one can define the rearrangement of m itself
throughm∗(x) = ∫ b

a
(
1{m>z}

)∗
(x) dz+a. (Applying the rearrangement to amono-

tone increasing function, one simply obtains the right-continuous version.)
Alberti shows that for any two such functions m1 and m2,∫

R

|m∗
1(x) − m∗

2(x)|2 dx �
∫

R

|m1(x) − m2(x)|2 dx .

In particular, with m being any function in Ca,b that takes values in [a, b], and h
any real number, let m1(x) = m(x), and m2(x) = m(x + h). Then∫

R

|m∗(x) − m∗(x + h)|2 dx �
∫

R

|m(x) − m(x + h)|2 dx,
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so that ∫
R

(∫
R

|m∗(x) − m∗(x + h)|2 dx
)
J (h) dh

�
∫

R

(∫
R

|m(x) − m(x + h)|2 dx
)
J (h) dh.

This of course means that∫
R

∫
R

(m∗(x)−m∗(y))2 J (x − y) dx dy�
∫

R

∫
R

(m(x)−m(y))2 J (x − y) dx dy.

(2.1)

In fact, Alberti shows (see Theorem 2.11 in [1]) that there is equality in (2.1) if
and only if m = m∗.

Of course,
∫
R
F(m∗(x)) dx = ∫

R
F(m(x)) dx , and sowe haveF(m∗) � F(m)

with equality if and only ifm = m∗. Thus,wemay restrict our search forminimizers
to Ca,b, the subset of monotone increasing profiles in Ca,b.

2.2. Displacement convexity of m �→ ∫
R
F(m(x)) dx

As noted in (1.2), if m is any profile in Ma,b, then (m(x) − a)/(b − a) is the
cumulative distribution function of a uniquely determined probability measure µ:

m(x) − a
b − a

=
∫

(−∞,x]
dµ(y).

For each m in Ma,b, define x(m) to be the inverse function: For m ∈ (a, b),

x(m) = inf{ x : m(x) > m }. (2.2)

Then of course, m(x) is the inverse function of x(m), so that for x in R,

m(x) = inf{ m : x(m) > x }. (2.3)

Let dx(m) denote the Lebesgue–Stieltjes measure on [a, b] induced by the
monotone function x(m). (In the terminology introduced below, dx(m) is the push-
forward of Lebesgue measure on R under m). Then one can rewrite

∫
R

F(m(x)) dx =
∫ b

a
F(m) dx(m).

Let m0 and m1 be any two elements of Ma,b, and let x0 and x1 denote their
respective inverse functions. Then for any λ ∈ (0, 1), define xλ(m) by

xλ(m) = (1− λ)x0(m) + λx1(m). (2.4)

Note that xλ is also the inverse function of an element ofMa,b, which we shall call
mλ. That is,

mλ(x) = inf{ m : (1− λ)x0(m) + λx1(m) > x }. (2.5)
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Note that dxλ(m), the Lebesgue–Stieltjes measure on [0, 1] induced by the mono-
tone function xλ(m), satisfies dxλ(m) = (1− λ) dx0 + λ dx1. Then,

∫
R

F(mλ(x)) dx =
∫ b

a
F(m) dxλ(m)

= (1− λ)

∫ b

a
F(m) dx0(m) + λ

∫ b

a
F(m) dx1(m)

= (1− λ)

∫
R

F(m0(x)) dx + λ

∫
R

F(m1(x)) dx .

(2.6)

This tells us that along the interpolation mλ between m0 and m1 provided by
(2.5), the function λ �→ ∫

R
F(mλ(x)) dx is affine, and in particular, is convex. This

is not the case for the standard interpolation given by

m̃λ(x) = (1− λ)m0(x) + λm1(x), (2.7)

since λ �→ ∫
R
F(m̃λ(x)) dx is not, in general, convex. That is, taking convex

combinations in terms of the inverse function x(m) as in (2.5), instead ofm(x) itself
as in (2.7), has “cured” the non-convexity of the functional m �→ ∫

R
F(m(x)) dx .

Of course, this will only be useful if the functional

m �→
∫

R

∫
R

(m(x) − m(y))2 J (x − y) dx dy, (2.8)

which was convex in the usual way, is still convex with the new convex structure.
This is not at all obvious, but the main result of the next section asserts that this is
the case.

The approach of Alberti and Bellettini [2], which we discovered only after
our work was complete, was to rewrite the interaction directly in terms of xm , and
to show that it is convex.

However, it turns out that the convex structure in (2.4) is something that is by
now well-known; it is the displacement convexity structure introduced by
McCann. Making this connection will facilitate showing the strict convexity of
m �→ ∫

R

∫
R
(m(x)−m(y))2 J (x− y) dx dy under this convex structure. This point

was left open in [2], who explicitly askedwhether one could extend the ideas to give
a direct proof of uniqueness. Although Alberti [1] did later return to address the
issue, we shall see here that the strict convexity is quite clear from the perspective
of displacement convexity.

Displacement convexity is usually introduced as a convex structure in a set of
probability measures. Given a probability measure µ0 onR, and a measurable map
T : R → R, we define the push forward of µ0 under T , T #µ0, by

∫
R

φ(T (x)) dµ0(x) =
∫

R

φ(y) d(T #µ0)(y), (2.9)

for all bounded, continuous functions φ.
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Given two probability measures µ0 and µ1 on R, there is a unique mono-
tone map T such that T #µ0 = µ1. To see what it must be, fix any a ∈ R, let
φa be the step function φa(x) = 1(−∞,a](x). Then, by definition, we must have∫
R

φa(T (x)) dµ0(x) = ∫
R

φa(y) dµ1(y), and hence

∫ T−1(a)

−∞
dµ0 =

∫ a

−∞
dµ1. (2.10)

Let m0 and m1 be the cumulative distribution functions of µ0 and µ1, respectively.
Then (2.10) entails that m0(T−1(a)) = m1(a) for all a, or, what is the same thing

m0(a) = m1(T (a)) (2.11)

for all a. As long as m1 is free of “flat spots”, so that the inverse function does the
expected thing, this leads to

T (a) = x1(m0(a)). (2.12)

As long as µ0 and µ1 have strictly positive densities, (2.12) does indeed define a
monotone map T , and then it is very easy to see that with T defined by (2.12),
T #µ0 = µ1, and in fact, this is true without further technical hypotheses; see [14]
for more information.

We now interpolate the map T , and hence the corresponding probability mea-
sures µ0 and µ1 and the corresponding cumulative distribution functions m0 and
m1 as well. For all λ ∈ [0, 1], define Tλ by

Tλ(x) = (1− λ)x + λT (x). (2.13)

If we define xλ(m) by

xλ(m) = Tλ(x0(m)),

then clearly xλ is given by (2.4).
The displacement convex structure on probability measures on R is given by

µλ = Tλ#µ0, and so it is nothing other than the convex structure (2.4), expressed in
terms of probability measures instead of cumulative distribution functions. When
µ1 and µ2 have strictly positive densities, so that T is given by (2.11), we denote
the density of µλ by ρλ, and write

ρλ = Tλ#ρ1. (2.14)

We summarize the main result of this section in a theorem:

Theorem 2.1. Let λ �→ mλ be the displacement interpolation between m0 and m1
inMa,b. Then for 0 � λ � 1,

∫
R

F(mλ(x)) dx = (1− λ)

∫
R

F(m0(x)) dx + λ

∫
R

F(m1(x)) dx .
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3. Displacement convexity of the interaction energy

Let M denote the class of cumulative distribution functions on R. Making the
obvious change of variables, we will assume without loss of generality that a = 0
and b = 1 and we will set M0,1 = M.

Given any m ∈ M, let µ be the corresponding probability measure, so that
m(x) = ∫ x

−∞ dµ(y). The first step in the investigation of the interaction energy is
to rewrite it as a functional of µ instead of m. This is done in the following lemma:

Lemma 3.1. Assume that
∫
R

|s|J (s) ds < ∞. Define W in terms of J by setting

W (u) =
∫ ∞

u
(s − u)(J (s) + J (−s)) ds (3.1)

for u � 0 and W (u) = W (−u) for u < 0. Then
∫

R

∫
R

(m(x) − m(y))2 J (x − y) dx dy =
∫

R

∫
R

W (z − w) dµ(z) dµ(w).

W is a symmetric function, and is convex on (0,∞) and on (−∞, 0), though not
on all of R.

Proof. Since for x < y, m(y) − m(x) = ∫ y
x dµ(z), we have from the Fubini

Theorem that
∫

R

∫
R

(m(x) − m(y))2 J (x − y) dx dy

=
∫

R

∫
R

[∫
R

∫
R

1[x,y](z)1[x,y](w) dµ(z) dµ(w)

]
J (x − y) dx dy

=
∫

R

∫
R

[∫
R

∫
R

1[x,y](z)1[x,y](w)J (x − y) dx dy
]
dµ(z) dµ(w).

(3.2)

Thus ifwedefineV (z−w)byV (z − w) = ∫
R

∫
R
1[x,y](z)1[x,y](w)J (x − y) dx dy

we have
∫

R

∫
R

(m(x) − m(y))2 J (x − y) dx dy =
∫

R

∫
R

V (z − w) dµ(z) dµ(w).

We next show that V = W . To do this, write

J+(x) =
{
J (x) for x > 0,
0 for x � 0

and J−(x) = J (x) − J+(x).

We first consider
∫
R

∫
R
1[x,y](z)1[x,y](w)J+(x − y) dx dy. Make the change of

variables s = y − x and t = (x + y)/2. Then dx dy = ds dt , and
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1[x,y](z)1[x,y](w) = 1[t−s/2,t+s/2](z)1[t−s/2,t+s/2](w). This quantity is zero unless
|z − w| � s and |2t − (x + w)| � s − |z − w|, in which case it is one. Therefore∫

R

∫
R

1[x,y](z)1[x,y](w)J+(x − y) dx dy

=
∫ ∞

|z−w|

(∫ (z+w)/2+(s−|z−w|)/2

(z+w)/2−(s−|z−w|)/2
dt

)
J+(s) ds (3.3)

=
∫ ∞

|z−w|
(s − |z − w|)J+(s) ds .

Doing the same calculation for the part involving J−, we obtain that V = W
whereW is given by (3.1). Also, for u > 0,W ′(u) = − ∫ ∞

u (J (s)+ J (−s)) ds, and
so W ′′(u) = J (u) + J (−u), which is non-negative. Thus, W is convex on (0,∞),
and on (−∞, 0) by symmetry. However, it is not convex on the whole real line.
Notice thatW (0) = ∫ ∞

0 s(J (s)+ J (−s)) ds > 0, while limu→±∞ W (u) = 0. 	

We now prove the main result of this section:

Theorem 3.2. Let λ �→ mλ be the displacement interpolation between m0 and m1
inM, as defined in (2.5). Then, for 0 < λ < 1,∫

R

∫
R

(mλ(x) − mλ(y))2 J (x − y) dx dy

� (1− λ)

∫
R

∫
R

(m0(x) − m0(y))2 J (x − y) dx dy (3.4)

+λ

∫
R

∫
R

(m1(x) − m1(y))2 J (x − y) dx dy.

If J is strictly positive on some interval, and m0 has a strictly positive derivative
almost everywhere, there is equality if and only if m1 is a translate of m0.

Proof. IfW were convex on all ofR, the displacement convexity of the interaction
energy would be a classical result of McCann [12]. However, in one dimension,
the partial convexity of W that was established in Lemma 3.1 suffices, as observed
by Blower [5]. This is because the map Tλ is monotone for all λ. Therefore, if
z > w, Tλ(z) > Tλ(w) for all λ. Hence, as we vary λ, Tλ(z) − Tλ(w) stays in a
domain of convexity of W .

Hence from (2.4), if dµλ = Tλ# dµ0 is the displacement interpolation between
dµ0 and dµ1,∫

R

∫
R

W (z − w) dµλ(z) dµλ(w) =
∫

R

∫
R

W (Tλ(z) − Tλ(w)) dµ0(z) dµ0(w).

(3.5)

Define the map S(x) by S(x) = T (x) − x . Then, we can rewrite (3.5) as∫
R

∫
R

W (z − w) dµλ(z) dµλ(w) =
∫

R

∫
R

W ([z − w]
+ λ[S(z) − S(w)]) dµ0(z) dµ0(w).

(3.6)
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By the remarks made above, the right-hand side is clearly a convex function
of λ. In fact, under mild assumptions on µ0 or J , it is strictly convex unless T is
simply a translation.

To see this formally, let J be symmetric for simplicity of notation, and diffe-
rentiate the right-hand side of (3.6) twice in λ, finding∫

R

∫
R

2J ([z − w] + λ[S(z) − S(w)]) [S(z) − S(w)]2 dµ0(z) dµ0(w).

If this vanishes for allλ, then
∫
R

∫
R
2J (z − w)[S(z) − S(w)]2 dµ0(z) dµ0(w) = 0.

If J is strictly positive and if µ0 has a strictly positive density, then this is possible
if and only if S is constant, and that of course means that T is a translation.

To make this argument rigorous, and to relax the hypotheses, let f (λ) denote
the right-hand side of (3.4) minus the left-hand side. Then, with g(z, w, λ) defined
by

g(z, w, λ) = [λW (z − w) + (1− λ)W ((z − w) + (S(z) − S(w)))]
−W ((z − w) + λ(S(z) − S(w))),

we have f (λ) = ∫
R

∫
R

g(z, w, λ) dµ0(z) dµ0(w). Since the integrand is non-
negative, we have for any measurable subsets A and B of R,

f (λ) �
∫
A

∫
B

g(z, w, λ) dµ0(z) dµ0(w). (3.7)

Suppose that J is strictly positive on the open interval I = (y0−δ/2, y0+δ/2).
Then I is an interval of strict convexity of W , so that whenever w − z ∈ I ,
λ �→ g(z, w, λ) > 0 on (0, 1) unless S(z) = S(w). However, if S is not constant
almost everywhere, we can find an arbitrarily small interval about some z0 onwhich
it has strictly positive oscillation. In particular, we can find a z0 and an ε > 0 so
that

∫ z0+δ/2
z0−δ/2 (S(z) − c)2 dz > ε for all c. Let A = (z0 − δ/2, z0 + δ/2), and let

B = (y0 + x0 − δ/2, y0 + x0 + δ/2). Then for all z in A andw in B, z−w belongs
to I . Moreover, for everyw in B,

∫
A(S(z)− S(w))2 dw > 0, so |S(z)− S(w)| > 0

on a subset of A of positive Lebesgue measure. Since µ0 has a strictly positive
density, this ensures that the right-hand side of (3.7) is strictly positive. 	


It is clear that the conditions on J and m0 that are invoked to ensure strict
convexity can be relaxed, though they are already quite general.

We close this section with a remark. If the profile m is continuously differen-
tiable with m′(x) = ρ(x), and

∫
R
J (x) dx = 1, then

lim
h→0

∫
R

∫
R

(m(x) − m(y))2

h2
1
h
J

(
x − y
h

)
dx dy =

∫
R

ρ2(x) dx .

It is already well known that the functional ρ �→ ∫
R

ρ2(x) dx is displacement
convex, so the fact that Theorem 3.2 gives another proof of this is not of great
interest. However, the connection between the two functionals at least gives one
suggestion as towhy the interaction functionalmight be expected to bedisplacement
convex.
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4. For the functional F , critical points are minimizers

Theorem 4.1. If m0 is any critical point of F in M, and m is any other profile in
M, then F(m) � F(m0) and there is equality if and only if m is a translate of m0.

Proof. Let mλ be the displacement interpolation between m0 and m. Then λ �→
F(mλ) is convex, and the derivative is zero at λ = 0. Hence m0 is a minimizer of
F , so that F(mλ) � F(m0), and there is equality if and only if λ �→ F(mλ) is
constant. But in this case, the strict displacement convexity of F ensures that m is
a translate of m0. 	


5. Fronts in a binary fluid model

Wenow turn to the study of the analogous problem for a binary fluidmodel. The
binary fluid model has been investigated in [7,8], and we refer to those papers for
details. Although the arguments apply to that setting in full generality, we discuss
here only a special case where the non-local interaction is only between particles
of different species and the local term is purely entropic, for the sake of brevity.
For further information and a numerical investigation of the minimizing fronts, see
[4].

In what follows, m(x) and n(x) represent the particle number densities of two
different species of particles contained in some bounded domainΩ inR

n . Consider
the functional F defined by

F(m, n) =
∫

Ω

m(x) lnm(x) dx +
∫

Ω

n(x) ln n(x) dx

+β

∫
Ω

∫
Ω

J (|x − y|)m(x)n(y) dx dy. (5.1)

Here, J is a non-negative, decreasing and compactly supported function on R+
with range R. Notice that we must impose more conditions on J in the case of two
species than we did in the single component model. The reasons for this will be
made clear in Section 6.

The problem considered in [7] is to minimize F(m, n) subject to the constraint
that

1
|Ω|

∫
Ω

m(x) dx and
1

|Ω|
∫

Ω

n(x) dx (5.2)

have certain prescribed values. As shown in [7], this systemundergoes a segregating
phase transition when β is large enough for the interaction term to overcome the
entropy terms in F . These would prefer to have m and n to be uniform and this
will indeed be the minimizing state for small β, that is, high temperature β−1.
However, for large values of β, the advantages of segregation can dominate and the
fluid separates into two phases, one rich in particles of species 1 and the other rich
in particles of species 2. Our concern here is with the profiles of the densities at the
interface between the two phases.
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The nature of the two phases in the bulk is determined by considering the zero
rangemodel, in which the length scale R of the interaction J is negligible compared
to the size of Ω . Formally, this corresponds to setting J (x − y) = Ĵδ(x − y). It is
also convenient to drop the constraint (5.2) and to consider the function

fβ,λ1,λ2(m, n) = m lnm + n ln n + β Ĵmn − λ1m − λ2n (5.3)

as a local free energydensity.Here, as in theone component case, Ĵ = ∫
Rn J (|x |) dx ,

and λ1 and λ2 are Lagrange multipliers that ensure the constraint (5.2) on the total
particle numbers. One may also think of λ1 and λ2 as specified chemical potentials
and then determine m and n as functions of λ1 and λ2.

In [7] it is proved that, if λ1 �= λ2, there is an unique couple m̄, n̄ minimizing
fβ,λ1,λ2(m, n). However, if λ1 = λ2, there is a βc such that, if β � βc theminimizer
is still unique, while, if β > βc there are densities ρ− < ρ+ such that the couples
(ρ+, ρ−) and (ρ−, ρ+) are both minimizers of fβ,λ1,λ2(m, n). We focus on the last
case. Thus, in what follows λ1 = λ2 = λ. Then fβ,λ1,λ2 is the local Gibbs free
energy density.

Analysis of the zero range model suffices to determine the quantity of the fluid
that is present in each phase, but not the surface tension across the boundary. We
now turn to the variational problem that determines the density profiles across the
interface and the surface tension. We will assume that the geometry of Ω is such
that the interface is perpendicular to the first coordinate axis; for example, we take
Ω to be a very long cylinder along the x1-axis with periodic boundary conditions
along the other coordinate axes.

First, we need to introduce the one dimensional version of J . Choose coordi-
nates (s, t) on R

n with s ∈ R and t ∈ R
n−1, and define J̄ on R by

J̄ (s) =
∫

Rn−1
J (

√
s2 + |t |2) dt

and then Ĵ = ∫
R
J̄ (s) ds. Let gβ,λ = infm,n�0 fβ,λ,λ(m, n). By what has been

noted above,

gβ,λ = fβ,λ,λ(ρ
−, ρ+) = fβ,λ,λ(ρ

+, ρ−).

The functional G defined by

G(m, n)

=
∫

R

[
m(x) lnm(x) + n(x) ln n(x) + β

∫
R

J̄ (x − y)m(x)n(y) dy − gβ,λ

]
dx

is the excess free energy of a front. We look for the minimizers of this functional
for β > βc. The minimum value gives the surface tension across the planar phase
boundary. Note that we have reduced Ω to R, the line along the axis of Ω and that
minimizing G yields the free energy per unit (d − 1)-dimensional area.

Our goal in the next sections is to prove a strict displacement convexity property
of this excess free energy functional and to show, as a consequence, the uniqueness
of the minimizing fronts up to translation. As in the one component case, a rear-
rangement inequality will enable us to restrict our attention to monotone profiles.
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Let Mρ−,ρ+ be the subset of Cρ−,ρ+ consisting of monotone increasing profiles,
let Mρ+,ρ− be the subset of Cρ+,ρ− consisting of monotone decreasing profiles.

Our main goal mathematically in what follows is to show that the functional

(m, n) �→
∫

R

[∫
R

J̄ (x − y)m(x)n(y) dy − Ĵρ+ρ−
]
dx

is displacement convex on Mρ−,ρ+ × Mρ+,ρ− , where now we have both an
increasing and a decreasing density profile.

We shall prove the displacement convexity results in the next section. This time,
we shall require certain moment conditions to obtain the displacement convexity.
Hence, before we can apply these results, we need to show a priori that all mini-
mizers have good localization properties. We do this by an analysis of the Euler
Lagrange equation.

5.1. Convexity of the interaction energy for G

Define the functional I on Ma,b × Mc,d by

I(m, n) =
∫

R

dx
[∫

R
J̄ (x − y)m(x)m(y) dy − Ĵ m̂(x)n̂(x)

]
. (5.4)

We assume J to be non-negative, even and compactly supported on R with range
R. We define Ĵ to be the total mass of J , and we define

m̂(x) =
{
b for x � 0,
a for x < 0

and n̂(x) =
{
d for x � 0,
c for x < 0.

Note that in the special case a = d = ρ− and b = c = ρ+,

I(m, n) =
∫

R

[∫
R

J̄ (x − y)m(x)n(y) dy − Ĵρ+ρ−
]
dx .

Although this special case is all that is needed for our applications here, we treat
the general case because the small extra effort yields a broad new class of jointly
displacement convex functionals.

The first step in our analysis is to rewrite I as a functional on probability
densities. Let the probability densities ρ1 and ρ2 be defined by

m(x) = a + (b − a)
∫ x

−∞
ρ1(t) dt; n(x) = c + (d − c)

∫ x

−∞
ρ2(t) dt.

(5.5)

We the rewrite the functional in terms of ρ1 and ρ2, and integrate by parts. For-
mally, one moves an antiderivative from each of ρ1 and ρ2 over to J̄ . Since J̄ is
positive, integrating it twice produces a convex function,W , different from the one
constructed in the one-component case. This is indeed what happens, but one must
be careful about the boundary terms. The boundary terms do not vanish but, as
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we shall see, they depend on the densities in a very nice way and altogether, one
obtains the desired displacement convexity.

To carry out this analysis, define

W (x) =
⎧⎨
⎩

∫ x

0

(∫ t

0
J̄ (s) ds

)
dt for x > 0,

W (−x) for x < 0.
(5.6)

Then W ′′(x) = J̄ (x), W (0) = 0, and W is an even convex function. Furthermore,

lim
x→∞W ′(x) = Ĵ

2
, W (x) = α + Ĵ

2
|x | for |x | � R. (5.7)

Lemma 5.1. Let m ∈ Ma,b and n ∈ Mc,d . Let ρ1 and ρ2 be the corresponding
probability densities defined in (5.5). Then, provided ρ1 and ρ2 have finite first
moments, and with W and α defined as above,

I(m1,m2) = (a − b)(d − c)
∫

R

∫
R

W (x − y)ρ1(x)ρ2(y) dx dy

+[2(b − a)(d − c) + bc + ad]α
− Ĵ
2

∫
R

∫
R

x [(b + a)(d − c)ρ2(x) + (b − a)(c + d)ρ1(x)] dx .

(5.8)

Note that (a − b)(d − c) > 0 for b > a and c > d, which is the case when
a = d = ρ− and c = b = ρ+. Thus, (a− b)(d − c)W (z) is a convex function of z
on all ofR. It follows in the usual way that the first term on the right is displacement
convex. Since W is strictly convex on the support of J , it follows as in the proof of
Theorem 3.2 that this part of the functional (5.8) is in fact strictly convex apart from
translation. The second term on the right of (5.8) is a constant. The third term is a
linear combination of the first moments of ρ1 and ρ2. Since these first moments are
displacement affine, we see that altogether, I(m, n) is strictly displacement convex,
apart from translation.

The fact that Lemma 5.1 requires a conditions on first moments, while Theo-
rem 3.2 does not, means that it will be a little more work to apply Lemma 5.1: We
shall need an a priori estimate guaranteeing that for any critical point (m, n) of G,
the corresponding densities have finite first moments. We shall return to this after
first proving the theorem.

Proof. Westart by considering the integral in x first, on a bounded interval [−L , L].
Since J̄ (x − y) = − ∂2

∂x∂y W (x − y) we have that

−
∫ L

−L
∂2

∂x∂y
W (x − y)m(x) dx =

∫ L

−L
∂

∂y
W (x − y)(b − a)ρ1(x) dx

− ∂

∂y
W (L − y)m(L) + ∂

∂y
W (−L − y)m(−L). (5.9)
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Moreover,
∫ L

−L

∫ L

−L
J̄ (x − y)m(x)n(y) dy

=
∫ L

−L

∫ L

−L
∂

∂y
W (x − y)(b − a)ρ1(x)n(y) dx dy (5.10)

+
∫ L

−L

[
− ∂

∂y
W (L − y)m(L) + ∂

∂y
W (−L − y)m(−L)

]
n(y) dy.

Now we integrate by parts once more, this time in y:
∫ L

−L
∂

∂y
W (x − y)n(y) dy = −

∫ L

−L
W (x − y)(d − c)ρ2(y) dy

+W (x − L)n(L) −W (x + L)n(−L). (5.11)

Summarizing,
∫ L

−L

∫ L

−L
J̄ (x − y)m(x)n(y) dy

= −(b − a)(d − c)
∫ L

−L

∫ L

−L
W (x − y)ρ1(x)ρ2(y) dx dy

+
∫ L

−L

[
− ∂

∂y
W (L − y)m(L) + ∂

∂y
W (−L − y)m(−L)

]
n(y) dy

+ (b − a)
∫ L

−L
[W (x − L)n(L) −W (x + L)n(−L)] ρ1(x) dx .

(5.12)

Let us examine the boundary terms

B1 :=
∫ L

−L

[
− ∂

∂y
W (L − y)m(L) + ∂

∂y
W (−L − y)m(−L)

]
n(y) dy,

B2 := (b − a)
∫ L

−L
[W (x − L)n(L) −W (x + L)n(−L)] ρ1(x) dx .

We have

B1 = m(L)

∫ L

−L
W (L − y)(d − c)ρ2(y) dy−m(−L)

×
∫ L

−L
W (−L − y)(d − c)ρ2(y) dy

+m(L) [−W (L − y)n(y)]+L−L + m(−L) [W (−L − y)n(y)]+L−L

= (d − c)
∫ L

−L
[m(L)W (L − y) − m(−L)W (−L − y)] ρ2(y) dy

+m(L) [−W (0)n(L) +W (2L)n(−L)]+ m(−L)

× [W (2L)n(L) −W (0)n(−L)] .
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For 2L > R, where R is the range of the interaction J̄ , the last two terms give

(bc + ad)( Ĵ L + α) + O(1).

To compute the other term, we consider, for a function f rapidly decaying,∫ L
−L f (x)W (x + L) dx and

∫ L
−L f (x)W (x − L) dx . We have

∫ L

−L
f (x)W (x + L) dx =

∫ 2L

0
f (z − L)W (z) dz

=
∫ R

0
f (z − L)W (z) dz +

∫ 2L

R
f (z − L)

(
Ĵ
2
z + α

)
dz.

The first term vanishes in the limit L → ∞ because of the decay of f and of
the boundedness of W (z) for z ∈ [0, R]. The second term becomes, if

∫
R

|x | f (x)
dx < ∞,
∫ L

R−L
f (x)

(
Ĵ
2

(x + L)+α

)
dx= Ĵ

2

∫
R

x f (x) dx+
(
α+ Ĵ

2
L

)∫
R

f (x) dx+O(1).

In conclusion,
∫ L

−L
f (x)W (x ± L) dx = ± Ĵ

2

∫
R

x f (x) dx +
(

α + L
Ĵ
2

) ∫
R

f (x) dx + O(1).

Now we apply this result to B2, where the decaying function is ρ1, to get

B2 = (b − a)

[
−(c + d)

Ĵ
2

∫
R

xρ1(x) dx + α(d − c)
∫

R

ρ1(x) dx

+ Ĵ
2
L(d − c)

∫
R

ρ1(x) dx

]
+ O(1).

Now we apply it to B1:

B1 = (d − c)

[
−(b + a)

Ĵ
2

∫
R

xρ2(x) dx

+ α(b − a)
∫

R

ρ2(x) dx + Ĵ
2
L(b − a)

∫
R

ρ2(x) dx

]

+ (bc + ad)( Ĵ L + α) + O(1). (5.13)

Finally,

B1 + B2 − Ĵ
∫

R

m̂(x)n̂(x) dx

= [2(b − a)(d − c) + bc + ad]α − Ĵ
2

(b + a)(d − c)
∫

R

yρ2(y) dy

− Ĵ
2

(b − a)(c + d)
∫

R

xρ1(x) dx + O(1).
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Lemma 5.1 is the key ingredient to prove the analog of Theorem 3.2 for the
two-component model introduced in the beginning of this section. We now return
to this model, and shall apply the lemma with a = d = ρ− and b = c = ρ+. Let
(w1, w2) and (v1, v2) be in Mρ−,ρ+ × Mρ+,ρ− , with corresponding probability
densities (η1, η2) and (ζ1, ζ2), and let T1, T2 be the monotone maps such that ζi =
Ti#ηi , i = 1, 2. Moreover, let λ �→ (mλ, nλ) be the displacement interpolations
between (w1, w2) and (v1, v2) and T λ

i (x) = λx + (1− λ)Ti (x).

Theorem 5.2. Suppose that the probability densities ηi and ζi , i = 1, 2 have finite
first moments. Then for 0 < λ < 1,

G(mλ, nλ) � (1− λ)G(w1, w2) + λG(v1, v2). (5.14)

If J is strictly positive on some interval, and (w1, w2) have strictly positive deri-
vatives almost everywhere, there is equality if and only if (v1, v2) is a translate of
(w1, w2).

Proof. Lemma 5.1 is applicable by the assumption that the probability densities
have finite first moments. We set Si (x) = Ti (x) − x , so that

I(mλ, nλ) = (ρ+ − ρ−)2
∫

R

∫
R

W [(x − y) + λ(S1(x) − S2(y))]dη(x)dη(y)

+A(mλ, nλ),

with A affine. The function W is convex on all R, thus the interaction part of the G
is strictly displacement convex. The remaining term is simply a linear combination
of functions of m and n to which we can apply Theorem 2.1. The strict convexity
up to translation follows as in the proof of Theorem 3.2. 	

Remark. In the two component case we need to use two monotone maps instead
of one as in Theorem 3.2. Therefore it is crucial that W is convex on all of R and
not just on (0,+∞) and (−∞, 0) as in the one component case.

Weclose this sectionwith a corollary showing that one could alsouseLemma5.1
to prove displacement convexity of the interaction energy in the one component
model. In fact, in this application, the first moment condition drops out.

Corollary 5.3. Let J̄ satisfy the conditions below (5.4), and W defined as in the
(5.6). Let m be a function that increases monotonically from −mβ to mβ . Let ρ

denote m′, the derivative of m. Consider the functional 
(m) given by 
(m) =∫
R

∫
R
J̄ (x − y)

[
m(x)m(y) − m2

β

]
dx dy. Then


(m) = −4m2
β

∫
R

∫
R

W (x − y)ρ(x)ρ(y) dx dy − 6αm2
β.

Proof. The functional 
(m) is equal to −G(m1,m2) by putting m1(x) = m(x)
and m2(x) = −m(x). This shows that −
 is strictly displacement convex, up to
translation. 	
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6. Properties of the minimizers of G

We restrict our attention to the case a = d , b = c. We need two results on
the minimizers for G, the first of which allows us to restrict our attention to mono-
tone profiles when seeking to minimize G. The second guarantees the existence of
moments for the two densities corresponding to any minimizing pair (m, n). These
theorems are:

Theorem 6.1. Suppose that J (x) is even, non-negative and decreasing. Then any
minimizer (m1,m2) of G(m1,m2) in Cρ−,ρ+ ×Cρ+,ρ− is monotone in the sense that
m1 is increasing and m2 is decreasing.

This theorem makes it easy to establish the existence of minimizers for G. The
minimizers satisfy an Euler–Lagrange equation from which we can deduce a priori
estimates needed to apply Lemma 5.1.

Theorem 6.2. Suppose that J (x) is even non-negative and decreasing on R+. Any
minimizer w = (w1, w2) of G in Cρ−,ρ+ × Cρ+,ρ− satisfies ρ− < wi (x) < ρ+ for
any x ∈ R. It has a derivative almost everywhere which is strictly positive and with
‖w′

i‖L1(R) bounded. Furthermore, it satisfies the Euler–Lagrange equations

lnm(x) + β(J ∗ n)(x) = µ, ln n(x) + β(J ∗ m)(x) = µ, (6.1)

where µ = µ1 − 1 and ∗ denotes convolution. Its derivative w satisfies almost
everywhere the equations

w′
1(x)

w1(x)
+ β(J ∗ w′

2)(x) = 0,
w′
2(x)

w2(x)
+ β(J ∗ w′

1)(x) = 0. (6.2)

Finally, it converges to its asymptotic values exponentially fast, in the sense that
there is α > 0 such that (w1(x) − ρ∓)eα|x | → 0 as x → ∓∞ and (w2(x) − ρ±)

eα|x | → 0 as x → ∓∞.

The proof of Theorem 6.1 is adapted from a related result in [7] for functions
on the d dimensional torus. One could instead adapt the proof of Alberti’s rear-
rangement inequality in [1] and remove the requirement that J be decreasing. But
the present approach has the advantage of also working on the torus, and not only
the line. The proof of the final part of Theorem 6.2, which is important for our
application here since it provides the existence of moments, is adapted from the
proof of a similar result for the one component system in [11]. In the rest of this
section, we present these proofs.

Proof of Theorem 6.1. To show this, we use a rearrangement inequality similar to
those introduced in [7] for the analogous problem in the d-dimensional torus. For
any x0 ∈ R, let Tx0 denote the reflection about x0:

Tx0(x) = 2x0 − x .
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Then define D, as the set of functions on R having finite limits at ±∞ and the
operators R±

x0 on D by

R+
x0g(x) =

{
max{g(x), g(Tx0)} if x � x0,
min{g(x), g(Tx0)} if x � x0.

(6.3)

R−
x0h(x) =

{
max{h(x), h(Tx0)} if x � x0,
min{h(x), h(Tx0)} if x � x0.

(6.4)

Let us also define ĝ(x) =
{
limx→−∞ g(x) if x < 0
limx→+∞ g(x) if x � 0

and ĥ similarly.

For any fixed x0 and g, h ∈ D, let g� denote R+
x0g and h� = R−

x0h. We now
wish to show that∫

R

[∫
R

g(x)J (x − y)h(y) dy − Ĵ ĝ(x)ĥ(x)
]
dx

�
∫

R

[∫
R

g�(x)J (x − y)h�(y) dy − Ĵ ĝ(x)ĥ(x)
]
dx

with equality if and only if g = g� and h = h�.
To do this, letH+ denote the half line {x | x > x0}, andH− denote the half line

{x | x < x0} and observe that∫
R

∫
R

g(x)J (x − y)h(y) dx dy

=
∫

H+

∫
H+

g(x)J (x − y)h(y) dx dy +
∫

H−

∫
H−

g(x)J (x − y)h(y) dx dy

+
∫

H−

∫
H+

g(x)J (x − y)h(y) dx dy +
∫

H+

∫
H−

g(x)J (x − y)h(y) dx dy

=
∫

H+

∫
H+

g(x)J (x − y)h(y) dx dy+
∫

H+

∫
H+

g(Tx0x)J (x − y)h(Tx0 y) dx dy

+
∫

H+

∫
H+

g(Tx0x)J (Tx0x − y)h(y) dx dy

+
∫

H+

∫
H+

g(x)J (x − Tx0 y)h(Tx0 y) dx dy. (6.5)

The desired inequality is then a consequence of the following inequality for
pairs of real numbers: Let a1 and a2 and b1 and b2 be any four positive real
numbers. Rearrange a1 and a2 to decrease, and b1 and b2 to increase; that is, let
a�
1 = max{a1, a2}, a�

2 = min{a1, a2}, b�
1 = min{b1, b2} and b�

2 = max{b1, b2}.
Then

a�
1b

�
1 + a�

2b
�
2 − a1b1 − a2b2 = ∆ � 0, (6.6)

a�
1b

�
2 + a�

2b
�
1 − a1b2 − a2b1 = −∆ � 0, (6.7)

and there is equality if and only if a1 = a�
1 and b1 = b�

1 or a
�
1 = a2 and b�

1 = b2.
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We now apply the above inequalities with

a1 = g(x), a2 = g(Tx0x), b1 = h(y) and b2 = h(Tx0 y). (6.8)

Then

a�
1 = R+

x0g(x), a�
2 = R+

x0g(Tx0x), b�
1 = R−

x0h(y) and b�
2 = R−

x0h(Tx0 y).
(6.9)

Since J (Tx0x − y) = J (x − Tx0 y) < J (x − y), we get

g(x)J (x − y)h(y) + g(Tx0x)J (x − y)h(Tx0 y)
+g(Tx0x)J (Tx0x − y)h(y) + g(x)J (Tx0x − y)h(Tx0 y)
−R+

x0g(x)J (x − y)R−
x0h(Tx0 y) + R+

x0g(Tx0x)J (x − y)R−
x0h(Tx0 y)

−R+
x0g(Tx0x)J (Tx0x − y)R−

x0h(y) + R+
x0g(x)J (Tx0x − y)R−

x0h(Tx0 y)
= −∆

[
J (x − y) − J (x − Tx0 y)

]
� 0 (6.10)

for almost every x and y in H+, with equality if and only if

g(Tx0x) � g(x) and h(Tx0 y) � h(y) (6.11)

or

g(Tx0x) � g(x) and h(Tx0 y) � h(y) (6.12)

for almost every x and y in H+. Now unless g is constant, we can find x and x0
so that either g(Tx0x) < g(x) or g(Tx0x) > g(x). Suppose it is the first case. Then
(6.11) holds, and for almost every y, we must have h(Tx0 y) � g(y). Making a
similar argument for h, we see that one of (6.11) or (6.12) must hold for almost
every x and y. The only way that this can happen is if g and h are monotone. Now,
by integrating (6.10) on H+ we conclude the proof. 	

Proof of Theorem 6.2. Everything but the exponential decay is standard, and
details of the proofs of similar results can be found in [7]. To prove the exponential
decay, we once again take advantage of the finite range R of J .

Define a transformation
 : R
2 → R

2 by
(m, n) = (eµ−β Ĵ n, eµ−β Ĵm). Then
(ρ+, ρ−) and (ρ−, ρ+) are two stable fixed points of
; the Jacobian of
, D
, is
a strict contraction at either of them. Thus, there is a δ > 0 and an ε > 0 so that if

|m − ρ+| + |n − ρ−| < δ ⇒ ‖Dφ(m, n)‖ < 1− ε.

Now, consider any minimizer w = (w1, w2) with limx→∞ w1(x) = ρ+ and
limx→∞ w2(−x) = ρ−. Then there is an L < ∞ so that x � L ⇒ |w1(x) −
ρ+| + |w2(−x) − ρ−| < δ. Now for x > L + R,

J
Ĵ

∗ w1(x) � ρ+ − δ and
J
Ĵ

∗ w2(x) � ρ− + δ.

Since (w1(x), w2(x)) = 

(
J
Ĵ ∗ w1(x), JĴ ∗ w2(x)

)
, it follows that for x > L+R,

|w1(x) − ρ+| + |w2(−x) − ρ−| < (1 − ε)δ. Iterating this argument leads to the
conclusion that for x > L + kR, |w1(x) − ρ+| + |w2(−x) − ρ−| < (1− ε)kδ. A
similar argument applies as x tends to −∞. 	
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7. For the functional G, critical points are minimizers

We are now ready to prove the main theorem for G:
Theorem 7.1. If (w1, w2) and (v1, v2) are any two critical points ofG inMρ−,ρ+ ×
Mρ+,ρ− , then there is an a ∈ R so that

(v1(x), v2(x)) = (w1(x − a), w2(x − a)). (7.1)

Thus, there is exactly one critical point (w1, w2) such that w1(0) = w2(0). It is
symmetric in the sense that w1(x) = w2(−x) for all x.
Proof. We keep the notation of Section 5. Theorem 5.2 is applicable since by
Theorem 6.2, the probability densities ηi and ζi , i = 1,m, have finite moments
of every order. Now, if (mλ, nλ) is the displacement convex interpolation between
(w1, w2) and (v1, v2),G(mλ, nλ) is constant since both endpoints are critical points.
By the strict convexity up to translation, we see that (7.1) is true.

Since (w1, w2) ∈ Mρ−,ρ+ × Mρ+,ρ− , and both functions are strictly monoto-
nic, there is some b such thatw1(b) = w2(b). Because of the strict monotonicity of
w1, that is, the strict positivity of its derivative which was proved in Theorem 6.2,
this value of b is unique.

Next, by the symmetries of the functional, since (w1(x), w2(x)) is any minimi-
zer of G in Mρ−,ρ+ × Mρ+,ρ− , then so is (w2(−x), w1(−x)). Hence, by the first
part of the Theorem, there is an a ∈ R so that

(w2(−x), w1(−x)) = (w1(x − a), w2(x − a)). (7.2)

Evaluating both sides at x = 0, we see that since w1(0) = w2(0), w1(−a) =
w2(−a). By the uniqueness of the crossing point established above, a = 0, so that
(w2(−x), w1(−x)) = (w1(x), w2(x)) for all x . 	


8. Stationary monotone profiles in several dimensions

We close the paper by pointing out that our analysis of the two component case
can be adapted to yield a uniqueness theorem for the one component case in higher
dimensions.

Let Ω be a (d − 1)-dimensional cube of size L spanned by the orthogonal
vectors e1, . . . , ed−1 and Ca,b,Ω be the set of continuous functions m(x, y) from
R × R

d−1 to R such that for all y ∈ R
d−1

lim
x→−∞m(x, y) = a and lim

x→+∞m(x, y) = b,

and such that m is L-periodic on R
d−1 in the sense that m(x, y + Lek) = m(x, y)

for each k = 1, . . . , d − 1 and for each y ∈ R
d−1.

Consider the following d-dimensional free energy on C−a,a,Ω

F(m) =
∫

R×Ω

F(m(x, y)) dx dy − 1
2

∫
R×Ω

∫
R×Ω

(m(x1, y1) − m(x2, y2))2

×J (x1 − x2, y1 − y2) dx1 dx2 dy1 dy2, (8.1)
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J (x, y) = U (
√
x2 + |y|2), with U monotone decreasing, finite range smooth

function on [0,+∞) and F an even double well potential with minima in −a
and a and F(±a) = 0. (These specific conditions on F enable us to be brief, and
can easily be relaxed.)

Obviously, if m̄(x) is a minimizer for the corresponding one dimensional pro-
blem, then

m̄(x, y) := m̄(x)

is a critical point of F on C−a,a,Ω , and is an obvious candidate to be the unique
minimizer. We shall show here that not only is it the minimizer—this fact has been
proved byAlberti [1]—but that, up to translation in x , m̄(x, y) is the only solution
of the Euler–Lagrange equation for minimization ofF that is monotone in x for all
y. A related question as to whether all monotone solutions of the Euler–Lagrange
equation have this special form has been extensively investigated for the local
variant of the free energy (Allen-Cahn or van der Waals) with

∫ |∇m(x, y)|2 in
place of the non-local interaction integral above. It turns out that the non-local case
may be easily treated by regarding the one dimensional profiles x �→ m(x, y) for
different y as profiles for different components, and applying our previous results.

Define Ma,b,Ω to be the subset of Ca,b,Ω for which m(x, y) is monotone in x
for each y ∈ R

d−1. As before, there is a rearrangement inequality that allows one
to reduce the minimization problem over C−a,a,Ω to minimization over M−a,a,Ω :
Givenm ∈ C−a,a,Ω we definem∗ ∈ M−a,a,Ω as follows, by separately rearranging
m( · , y) for each y ∈ R

d−1, using the onedimensional rearrangement procedure.By
the rearrangement results cited above, F(m∗) � F(m). In [1], Alberti proceeds
with a careful study of the cases of equality here. Instead, we henceforth restrict
our attention to m ∈ M−a,a,Ω , and shall show that up to translation in x , there is
just one solution of the Euler–Lagrange equation in this set.

First, rewrite the functional in (8.1) as

F(m) =
∫

R×Ω

[F(m(x, y)) − Ĵ (m2(x, y) − a2)] dx dy

+
∫

R×Ω

[∫
R×Ω

m(x1, y1)m(x2, y2)J (x1−x2, y1−y2) dx1 dy1− Ĵ a2
]
dx2 dy2,

(8.2)

where Ĵ = ∫
Ω×R

J (x, y) dx dy. We now observe that the second term on the right
can bewritten in terms of the I functional that has been studied in Section 5. Indeed,
this term can be written as

−
∫

Ω×Ω

I(m( ·, y1),−m( ·, y2)) dy1 dy2.

This identity relates themultidimensional problem to the two species problem: here
m( ·, y1) plays the role of the profile for one species, and −m( ·, y2) plays the role
of the profile for the other species.

Now notice that for a + b = 0 (or c + d = 0), the statement of Lemma 5.1
simplifies in a significant way: The first moments drop out as in Corollary 5.3, and
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we have (using the notation from the lemma)

−I(m1,−m2) = 4a2
∫

R

∫
R

W (x1 − x2)ρ1(x1, y1)ρ2(x2, y2)) dx1 dx2 + 6a2α.

(First moments could be dealt with as before, but we avoid doing so in order to
focus on how one may regard the multidimensional problem as a multi-component
problem, which is the main point of this section.)

Given twoprofilesm0 andm1 inM−a,a,Ω , letmλ be the interpolation definedby
interpolating betweenm0( ·, y) andm1( ·, y) separately in each y. Let x �→ T (x, y)
be the corresponding optimal transportation plan, and let S(x, y) = T (x, y) − x .
Let mλ(x, y) be the induced interpolation between m0(x, y) and m1(x, y). Then

−I(mλ( ·, y1),−mλ( ·, y2)) = 4a2
∫

R

∫
R

W [x1 − x2 + λ(S(x1, y1) − S(x2, y2)]
× ρ1(x1, y1)ρ2(x2, y2) dx1 dx2 + 6a2α.

Since W is strictly convex near the origin if J is strictly positive near the origin,
it follows that if y2 and y1 are sufficiently close to one another, ρ1(x1, y1) dx1
and ρ2(x2, y2) dx2 both assign positive mass to some small interval around some
x0. Therefore, for such y1 and y2, we see that λ �→ −I(mλ( ·, y1),−mλ( ·, y2))
is strictly convex, and for any y1 and y2 it is convex. Clearly, the set of points
(y1, y2) for which we have strict convexity is a set of positive measure (containing
the diagonal) with respect to dy1 dy2, and so

λ �→ −
∫

Ω×Ω

I(mλ( ·, y1),−mλ( ·, y2)) dy1 dy2

is strictly convex, apart from translation in x . This strict convexity proves that, up
to translation in x , there is just one critical point of F in M−a,a,Ω . Since clearly
m̄(x, y) is a critical point, we have the following:

Theorem 8.1. Assume that J is bounded below by a strictly positive number on
someneighborhoodof the origin. Letm(x, y)beany solution of theEuler–Lagrange
equation for theminimization ofF that belongs toM−a,a,Ω . Then for some x0 ∈ R,
m(x, y) = m̄(x − x0) for all x and y, where m̄ the antisymmetric minimizer for
one dimension.
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