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3 RIGOROUS TREATMENT OF SYSTEMS WITH LONG-RANGE POTENTIALS

i} Equilibrium States

Rigorous upper and lover bounds were o'n‘cainedl for the thermo=-
dynamic free-energy density a(p,'/) of a classical system of particles
with two-body interaction potential qlr) + yuqo(yz) where V is the nwuber
of space dimensions and P the density, in terms of the free-energy
density ‘.5\9(0) for the corresponding system (reference system) with
o(x) = 0. When ¢(x) pelongs to a class of functions, which includes
those which are non-positive and those whose Y-dimensional Fourier
+ransforms are non-negative, the upper and lower bounds coincide in
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the van der Waals limit 7y = O and %ﬁg alp,y) = cE{a®(p) + 20°}:
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the maximal convex function of p not exceeding a (o) +
o= ‘I}p(i}dg_c. The corresponding eugation of state is given by Maxwell's

equal-area rule applied ToO the function po(p) + -‘50:,02 wnere pO(p)

is the pressure of the reference system for which <p(3c_} 20, &




a(p) + éape is not convex the benavior of the limiting free energy

indicatves a first-order pnase transition.

. These results are easily generalized TO lattice gases and thus apply

- ! g = 5 : o
also to Ising spin systems. This was used incidently to test an idea of

Tisher 's that in comparing the specific neats of latvuice gases with continuum

#uids near the critical point it should be done on The pasis of their value

m
per unit volume per particle at close packing c*(T) = p Cgaimﬁp",x, where

C is the conrigurational specific heat r parvicle and = o
con? LiE pecit : S P = Peritical

along the critical isochore. Using then for our relerence sysved an 'ideal'

r =0 ; s = ¥ = .
9 or & coabtinuum system of nard rods, Gisds Or spneres

o
lattice gas ql\r)= =
we find the following results for the speciiic heat discontizuisy” &v tThe ‘cri-

tical point (using Pade equations of state for ¥ = 2,3)

iavtice gas Continuum
y = 1,2,3 vy=1 v=2 v=23
Po/Prpse 5 1/3 .233 176
Lo#[k 1.5 1.5 1.465 1.480
(E2), 386 376 366 359

-~

The constancy of AC¥ is remarkable and unexplained.
The generalization of our results TO quantum systems3 requires only
very mild additional assumptions. This permits% expiicit calculavions oI tae

properties and critical parameters of a oOne dimensional gquantun system
£ s
>

2

of hard rods with long range aviraction, i.e.-q(r) = {0 4 . Toe
. Fl

a
&
behavior of the critical temperature, pressure and density as a fuaction
of the quantum parameter A, the ratio of the de Broglie wave length O

the interparticle separation’ evaluated at the classical eritical point
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show surprising similarity to that found for real fluids expected 1O
obey the law of corresponding states, i.e. the critical temperature
and critical densit&' decrease rapidly with A (in almost identical
tanner) while the critical ratio is almost independent of A.

II. Metastable States

” In consldermg the equilibrium properties of these systems no
meaning at all is attached to that part of the curve ao(p) + cqo which
lies above the curve ce{a®(p) + 3op } or to the corresponding part of
the pressure curve p°(p) * —écqoa. ‘I&'aditionally however the parts of
these curves (actually of similar curves ootained from the original

van der Waals-Maxwell theory) are assumed to represent the properties
<of metaata.:ole states of uniform density corresponding to the supercooled
vapour and the superheated liquid respectively.. It is pos.si‘ole:5 to give
& rigorous meaning TO these states by_considering the properties oi owr
system when it is confined to & restricted region of the configuration
space. This is d.bne by & simple extensici of the method used to obtain

bounds on the equilibrium free energy. The cubical box of volume § to

which our system consisting of N particles is confined is divided up

into M cells of volume (. We can now |

restrict the configuration space of owr i uﬂ:

system by imposing restrictions on ‘the
densities p, = Ni/w of the various cells: N, = N, i=1,...M. The

simplest such restriction is
PS8 SR,

vwhere p_ <P S Py Ié‘b R = R(Q,a.gp_,pq_) the region in configuration
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space where these restrictions are satisfied and a'(p,y:w,R) the
corresponding free energy per unit volume (in the thermodynamic 1limit
Q- ®, p fixed). When p_=0, p, =%, R coincides with the whole
configuration space and a' = a(p,y) while letting p_ and p, approach
p corresponds o restricting the system to be complet'ely uniform on
the scale of w It is then shown’ that in the limit y = O follovea by

' the limit w= ®, i.e. the cell size wl/v << 7'1 the range of @{yz),

a'(p,0+:R) = ce{a®(p) *+ %Olpa + glp)) (2)

1im 1im a'(p,y:wR)
we Y0 Pa ’

where

0, p_Sp=sp
glgym i " ¥

o, otherwise

—
W
—

Thus if ao(p) + %apa is convex in the interval p. <P ZP, &' coincides

with a®(p) + %0402. This will be true when P and the interval (p__,p+)

surrounding it is confined to the stable and/or 'metastable’ parts of the

graph a°(p) + 1op%; €8y 0 SP_SP PSP P 2p. 20z P*’ < .in Fig.1. To
precise value of p_ and py are then not important, and the interval can

be shrunk to the point p, i.e. the system will actually be in a completely

uniform state. When P is hoﬁever , in the unstable part of the graph of

2

ad(p) - %apa; i.e. é_é, [ao(p) + %_,0402] 20,p5 <p<pin Fig.l,6then a ‘(p;R)
i © 4=

coincides with a’(p) + %ozpe only when the interval (p_,p,) is shrunk

to a point. We thus see, as expected, that the uniform state coincides
with a minimum (maximum) of the cons trained free energy in the fetastable
. . (o] . 2 < -‘
(unstable) region of & (p) + 200" . (In the stable region where
a%(p) + 300° coincides with CE{a®(p) * Jop®}, 02 p<p, or ppSp < inTFig 1,

the uniform state is, of course, the stét’e of minimum free energy)



IIT. Metastable States for ¥ #£ 0

We have seen that in the van der Waals limit, ¥ = O, when the range
of the potential becomes infinite it is possible to give a complete
physical characterization of the metastable state; This state also
coincides with the analytic continuation of the equilibrium isotherm
in the p-p plane. We could also construct a restricted grand partition
. function 2'(z,y,{tw,R), where z is the fugacity, obtaining in the

triple limit
fp' (2;8) = jim, 3ig Fim ='/Q (L)

the analytic continuation of the equilibrium pressure into the meta-
stable region. (There is & singularity of p'(z;R) at the end of the
rmetastable region.where the uniform state is no longer stable against
small perturbations).

The question arises however, of whether there is any way of
defining metastabie states for systems with realistic (non infinite-=
range) potentials, i.e., )fﬁ 0. It seems quite possible6 (on the pasis of
- the droplet model) that for such potentials the isotherm p(p) (and
p(z)) has an essential singularity at the onset of condensation o = p,.
It is however, pdssible thatv ;chere might still be some sort of &nalytic
continuation whicn will define the metastable statéT. Even if thnis
were the case there would still be the question of how to characterize
the metastable state physically, i.e. how to define & region R in
configuration space in which thélmetastable state would be a local
minimum for the free energy. :

We may gain some insight into this problem by considering the case

_of very small ¥, i.e. 7=1'>> Ty where ry is the effective range of q(r).



Making the dimensions of the cell w of 0(7'1*6), 0<§ <1, we then

have from our ineqpalities1 that

alo,y) = cB{a®(p) + dap°} + o(¥) (5)
while

a'(p,7;wk) = a’(p) + 300° + oy) : (6)
where p_ @nd p, are again chosen in such & way tnat a%(p) + %ope is
convex in tiat interval. It is thus seen that if p is in the
netastable portion of a®(g) * & 2 (for 7 = 0), then for sufficiently
'small ¥, and hence.u}/v >> E reséricting the system to a region in
configuration space where it cannot be very non-uniform on tne scale
of 7-1 leads to a free energy per unit volume very close to that of:
;an der Waals, ¥ = 0, metastable value, corresponding to the system
being uniform. The free energy for the unrestricted system a(p,y)
- will, on the other hand, be close to the Tlab portion of the curie,
corresponding ©o the system being in two phases. This is true both
in . one and higher dimensions. In the latter case, we expect the systém
to bave a first order phase trensition even Ior finite ¥ while a one
dimensional system will not have a phase BransitiOnB for v # 0. The

difference between (5) and (6) in one dimension thus indicates a tend-

c
o

ency to form clusters on the gcale of y‘l, with densities close ©
those of liquid and vapour phases (something found numerically by
Andrewss). The fact that in one dimension a(p,y) is a
differentiable functionT of p for Yy # 0 (at least for some forms of q
| and ¢) also indicates that the 'metastable' or uniform state for |

finite ¥ cannot come from simple snalytic continuation in p.of the equilibrium
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uniform state, i e. while a'(p,y;wR) is 'close' %o a(p,y) for p < p,
it is not close for p, <p < py to an analytic continuation of a(p,7)
as would be the case in the limit y = O where a'(p,0+;R) is the anaytic
continuation of a(p,0+>. This would be consistent with the conjectures’s
that in higher dimensions also (where there is & phase transition for
finite ) the metastable sltate is not a simple analytic continuation of
the equilibrium state. It is however possible, and even provable, that
a'(0,7:wR) is analytic for p < pyor P> P :

These considerations, while suggestive of the meaning of the
metastable state for Very small but,Tinite Y are not entirely
satisfactory in that a' depends somewhat on the choice of w which is
_not an intrinsic parameter of the problem (simple considerations séen
to indicate that the choice wl/v ~ 7'% gives the best bounds for a' in
(5)). There are two possible ways which ocour to me about how it might
be possible to 'uniquely' define the metastable state:
(1) Let yvtp('yr) = a v Y(yr) with [p(y)ay = 1 end P(y) independeat of
o and satisfying the conditions, P(k) > O,M%:x Plx) = P(0), where P(k) is the
Tourier transform of Y(y) e.g., w(y)=(27r)'v/2,e.'%y2. Then in the limit =0 the
metastable (and unstable) state for & < &, O is the analytic continuation af the
equilibrium state Yor & > 0&: It is-now possible that for ¥ # O there might
also be an analytic continuation in the complex G-plane from & > o, to
o < 0, fr the metastable state. (We are assuming here throughout that
ao(p) does not have & phase transition in the range of densities of
interest). This is suggested in par® by considering 'formal’ expansionslo
in powers of y of a(p,y) (or correlation functions). The coefficients

! A ' 4 L
of this expansion which are functions of p and & appear to behave well
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for the stable and metastable states, the zero order term being

a’(p) + -éa*pz, diverging however at the unset of the unstable region.

2) Another possibility which is in principle applicable also to

systems with short range potentials is tO consider regions R not in
configuration space but in the function space of poss'ible correlation
functions a la Ruellelo. The metastable state might then be character-
"ized as the state of minimum free energy in the restricted region where
the pair distribution function r‘2(£l ,;i,-rg_) approaches p2 asymptotically.

Using the results of reference 1 it is indeed possmle to show (c. f. also

-~
]

ref 11), that when the free energy of the reference syatem a (p) (where q(r)ls

v
-

'essentially' stable potential and contains a hard core or g(r) Z 0) is strongly

convex in an lnterval surrounding P (e.g. -——-£91— > 0 in (p-0,p+0)) then
7 -
llmo Qllm ﬁ’p (yr) [n2 (zy»2y w10, -p ]dz_'lch’ =0 AT
7 — -t OO .

where ¢(y) satisfies tne conditions of the last pafagraph. Bq. (7, follows
from the inequality (sec. VIII, ref. 1)
< .o A 1 2 3 v . 1 l[ (o] . - 2 =
a(o,y) <8”(0) +op® + Joy” Lim = [[Ylyr)in, (r,szp 5P =" Jor 0r
which holds for all & and ¥. Now taking the limit y = O we have, under

the above conditions on ¥ that

ca(a(o) + da®) %) + J0p° + 3 Lm i zm(wmn -p?lazyar
- (9)

However under the condition on a®(p) mentioned before ce{e®(p) +éi,oqo } =
a’(p) + 100° for sufficiently small (but finite) la|, (since a®(p) is

convex)s QeBeDe



B. OTIER TOPICS

I. Kinetic Equations and Density Expansions: Exactly Solvable

One Dimensional System

We have made & tetailed study of the time evolution of the distri-
bution function f(q,v,t) of a labelled (test) particle in a one-dimensional
system of hard rods of diameter a. The system has & density p and is in
equilibriwa at v=0. (Some properties of this system were studied earlier
by Jepsen.) Whnen the distribution function I ab £=0 corresponds to a delta
function in position and velocity, vhen £(q,v,t) is essentially the time=-
displaced self diStripution function fs. This function fs (wnich can be
found in an explicit closed form), and &ll of the system properties which
can be derived from it, depend on p '@nd & only through the combination
n = (p/(1-pa)). Tn particular, the diffusion constanv D is given by

1 &

. Tow 3
D~ = lim quf${5)i ) (2mBm)2n, where P(s) is the Iaplace transiorm of

the velocity suto-correlation function $(t) = (v(t)v). An expansion oI
Eﬁ(s)]-l in powers of n on the other hand has the form I}Bﬁnzfsz-l, leadin;
to divergence of the density coefricients for £ > 2 vwhen s ~ 0. This is
similar %o the divergences found in higher dimensional systems. Similar
'results cre Tound as well in the expansion of the collision operatvor
describing the time evolution #(q,v,t). The lowest order term in vhe
expansion is the crdinary (lineéf) Boltzmann equatibn, while nigher terus
are OQoztz—;}. Thus any attempt vo write a Bogoliwbov, Choh-Unlenbeck Type
of Markoffian kinetic equation as a power series in the density leads TO
divergence in the terms beyond the Boltzmann equation. A Markoffian

collision operator can however be constructed, without using a density

expansion, which e.g. describes the stationary distribution of a charged
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test particle in the system in the presence of a constant electric field.
The distribution of the tqst particle in the presence of an oscillating
| external field is also found. TFinally, the short and long time behavior
of the self-distribution is examined.

II. Properties of a Harmonic Crystal in a Stationary Non-Equilibrium

State

The stationary nonequiliorium Gibbsian ensemble representing & harmonic
crystal in contact with several idealizea heat reservoirs at different
temperatures is shown o have a G;ussian I'-space distributién for the case
where the atochastic interaction between the system and heat reservoirs
may be represented by Fokker-Planck type operators. The covariance matrix
q? this Gaussian is found explicitly for a linear chain with nearest
neighbor forces in contact at its ends with heat reservoirs at Tempera-

.

“tures T, and Ty, N being the number of oscillators. We also find explicitly
the covariance matrix, but not the distribution, for the case where the
interaction between the system and the reservoirs is represented by very
‘hard' collisions. This matrix differs from that for the previous case
only by a trivial factor. The heaf flux in the stationary state is found,
as expected, to be proportional to the temperature difference (”l-TN)
rather than %o the temperature gradiant (Tl-TN)/N. The kinetic tempera-
ture of the Jjth oscillator 7(j) behaves, however, in an unexpected fashion.
7(j) is essentially constant in The interior of the chain decreasing
exponentially in the direction of the hotter reservoir rising only at the
end oscillator in contact with that reservoir (with corresponding behavior

at the other end of the chain). No explanation is offered for this

paradoxical result.
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III. A Note on the Ensemble Dependence of Fluctuations with Application
to Machine Computations
The Standard theory of fluctuations in thermodynamic variables in
various ensembles is generalized to non-thermodynamic variables: €.8+,
the mean square fluctuations of the kinetic energy K in a classical
micro-canonical ensemble at fixed energy E is given for large systems by
((GK)Q)/(K) = T(1-3/2C) where T is the temperature (corresponding to the
energy E) and C is the specific heat per particle (in units of Boltzmann's
constant). The general results may be expressed in terms of the asymptotic
behavior of the Ursell functions in various ensenbles. Applications are
made to molecular dynamic computations where time averages correspond

(fia ergodicity) to phase averages in an ensenble with fixed energy and

momentum. The results are also useful for time dependent correlations.
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