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Abstract

We investigate, via three-dimensional atomistic computer simulations, the
influence of a lattice misfit between precipitates and matrix on the precipi-
tate size distribution during phase separation in a binary alloy. The elastic
interactions are modeled by springs connect‘ing nearest neighbor atoms. The
difference in size between the two species of atoms, specified by the misfit pa-
rameter ¢, leads to effective long range interactions. Performing simulations
with five different values of § we find a broadening of the scaled precipitate size
distribution for § > 0.5% in comparison with the case of no misfit. Addition-
ally, the size of the largest precipitate in the system increases with increasing
misfit. We also observe a percolated network-like precipitate structure for
a concentration of solute atoms as low as ¢4 = 0.2 at large misfit. We in-
terpret these effects as due to an increased tendency of the precipitates to
coalesce, which is caused by their non-spherical shape, their alignment along

the (100)-directions and their regular arrangement.
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Zusammenfassung

Mittels dreidimensionaler atomistischer Coﬁputersimulationen wurde die Gréflenverteilung von
Ausscheidungen in einer biniren Legierung in Abhéngigkeit von der Gitterfehlpassung studiert. Die
elastischen Wechselwirkungen im Gitter wurden durch Federn zwischen Néchsten-Nachbaratomen
modelliert. Die Gitterfehlpassung, beschrieben durch einen Parameter J, wurde durch eine un-
terschiedliche Grofie der beiden Atomsorten berticksichtigt, was zu effektiven, langreichweitigen
Paarwechselwirkungen im Gitter fiihrt. Simulationen mit fiinf verschiedenen Werten fiir § ergaben
eine Verbreiterung der skalierten Gréflenverteilung der Ausscheidnngen fiir § > 0.5. Dariiber hin-
aus befand sich mit wachsender Fehlpassung ein immer héherer Anteil der ausgeschiedenen Atome
in der gréfiten Ausscheidung. Bei einer Konzentration von 20% an Ausscheidungsatomen bildete
sich bei héherem ¢ sogar eine perkolierte, netzwerkartige Struktur anstatt isolierter Ausscheidun-
gen. Wir filhren diese Effekte auf eine hiufige Verschmelzung von Ausscheidungen zuriick, was

sich durch ihre auf Grund der Fehlpassung verinderte Form nnd Anordnung erkliren lasst.




1. INTRODUCTION

At late stages of a coherent precipitation process, the total amount of interface between
precipitates and matrix is typically reduced via a coarsening process with large precipitates
growing at the expense of smaller ones [1-3]. The mechanism underlying coarsening was
elucidated in the papers of Lifshitz and Slyozov [4] and Wagner [5] (LSW). Their theory
predicts that at late times ¢ the precipitate size distribution, f(R,t), takes a scaling form.
f(R,t) = g(R/R)/R, where g(p) is a function independent of time and the mean precipitate
size R is proportional to the cube root of the time, R o t'/3. Two important assumptions
of the LSW-theory are: 1) the neglect of the influence of neighboring precipitates on the
coarsening rate so the theory is valid only in the limit of vanishing volume fraction c4 of
the precipitate phase. 2) the theory does not consider elastic coherency strains caused by a
difference in lattice parameter or elastic constants between precipitates and matrix. More
realistic models of coarsening, which abandoned one or the other of these LSW-assumptions,
left the results cited above essentially unaltered. Allowing a finite volume fraction of precipi-
tate phase resulted only in a slightly broadened, but still time-independent scaled precipitate
size distribution [6-12]. Recently performed experiments under microgravity conditions cor-
roborated these predictions [13]. Similarly, moderate elastic stress should not affect the
qualitative predictions either, as long as the volume fraction of precipitate phase stays small
[14]. The situation changes however when account is taken of both elastic misfit interactions
and finite volume fraction effects [15]. Experimental and computational investigations pro-
vide examples of a slowing down of the coarsening process at later stages [16]. This paper
addresses the question of the effect of a lattice misfit on the precipitation process using
computer simulations of a simple model [17,18]. In particular, we study the precipitate size
distribution as a function of misfit and volume fraction of precipitates. A narrower scaled
size distribution has been predicted [19] as a consequence of an inverse coarsening process
[20], wherein small precipitates grow at the expense of larger ones to minimize the elastic

misfit energy. Although such a narrowing was observed in some systems, e.g. Ni-Cu-Si



alloys [21], there are indications from model calculations [22] that a broadening may also
take place. Our model considers only an elastic misfit between the phases, but no disloca-
tions. In real systems of course, misfit dislocations are expected to develop at the interface
in the presence of large misfit. Nevertheless, Monte Carlo simulations employing this moclel
have proven successful in studies of the influence of internal and external stress on phase

separation in two dimensions [17,23] and recently also in three dimensions [24,18].

II. THE MODEL

In our model of a binary alloy A and B atoms occupy the N sites of a coherent fee
lattice with periodic boundary conditions. Atoms on nearest neighbor sites are assumed to
interact ” chemically”, with like atoms attracting one another leading to phase separation.
The elastic interactions due to the size mismatch between A and B atoms, are modeled by
connecting nearest neighbor atoms with springs having a longitudinal and two tranéverse
spring constants. The spring constants are assumed to be independent of the type of atoms
they are connecting, so the equilibrium spacing between the centers of a pair of atoms
depends on their sizes. We refer the reader to [17] for a detailed description. The total
energy of the system, #, is then a function of the lattice configuration of the atoms, which
is described by a spin variable y(r) taking the value y(r) = +1 if there is an A atom at site
r and y(r) = —1 if there is an B atom at this site, and also a function of their displacement,
u(r), from their lattice reference site r. Since the atoms in a real alloy relax to their elastic
equilibrium position much faster than they diffuse to a new position, we assume the system is
always in elastic equilibrium obtained by minimizing H over the atomic displacements u(r).
The resulting Hamiltonian H which depends only on the atomic configuration, is given in a

compact form in Fourier space as [25-27,17]

1 <) |12
%Zﬁg‘l’(k) | (k) I, (1)

where the summation extends over the first Brillouin zone and #(k) denotes the Fourier

transform of y(r). Translated to real space, this corresponds to a system with anisotropic

-
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long range pair interactions. The functional form of ¥(k) and details on the model can be
found in reference [18].

All parameters of our microscopic model, which are contained in the function ¥(k),
are experimentally accessible. The spring constants of. the connecting springs were chosen
according the Born-von Karman parameters of copper [28]. This results in a negative elastic
anisotro'py of the model, i.e. the elastically soft directions are the (100)-directions. The size
difference between A and B atoms determines the lattice misfit, § = (a4 — ag)/a.4, where
a4 and ap are the lattice parameters of pure A and pure B phases.

We performed simulations with five different lattice misfits, § = 0% (no misfit), and
§ = 0.25%, 0.5%, 0.75% and 1%. The model fcc lattice comprised 48% cubic unit cells, i.e.
the number of atoms was N = 442368. Two different concentrations of solute .4 atoms,
¢y = 0.1 and ¢4 = 0.2 were considered. The simulation temperature was T = 0.51Ty, Ty
being the critical temperature of a nearest neighbor Ising model on an fcc lattice. The atomic
configurations evolved in time by a standard Metropolis algorithm with Kawasaki exchange
dynamics of nearest neighbor atoms [29]. The simulation time unit is one Monte Carlo step
(MCS), i.e. one attempted exchange per lattice site. All simulations were carried out up to

6000 MCS starting from an initial quenched state corresponding to a random mixture of .4

and B atoms.

III. RESULTS AND DISCUSSION

Figure 1 demonstrates the influence of an elastic misfit between matrix and precipitates
on the microstructure. The three plots correspond to three different misfits (6 = 0%, 0.5%
aud 1%, respectively) increasing from left to right. The two-dimensional plots of the three-
dimensional system were obtained by averaging the concentration of solute A atoms along
lines normal to the plotting plane and therefore can be read like X-ray transmission micro-
graphs. The salient feature of the plots are an increasing regularity in the spacing between

precipitates with increasing misfit. Also the shape of the precipitates evolve from a ”bloh”-



like appearance into a more needle-like morphology. The plot in the middle corresponding
to the case of a small misfit combines features of the plots to the left and right: the blurry
structure, but also some alignment along the elastically soft (100)-directions.

Figure 2 shows the percentage of solute A atoms contained in the largest cluster, N
plotted as a function of time. A cluster was defined as a set of A atoms, all connected by
nearest neighbor bonds. At the concentration ¢4 = 0.1 all largest clusters start out very
small and 7,4, grows more rapidly when the lattice misfit increases. For the largest /misﬁts
it reaches as much as 13% by the end of the run. Evaluation of the mean precipitate size,
liowever, showed that that the larger values of n,,,, are not the result of an overall increased
coarsening rate for large misfit [18]. The behavior is dramatically different in the model alloy
with the higher content of A atoms (Fig. 2, right). Already from the very beginning almost
all 4 atoms are contained in the largest cluster. This is due to percolation which occurs in
a random solid solution on an fcc lattice above the concentration threshold clandom — 0,198
[30]. Without elastic misfit, condensation into precipitates quickly leads to a break-up into
individual droplets, the largest containing less than 10% of the A atoms. At a misfit value
greater than 0.5%, however, the condensation does not lead to individual precipitates and
a percolated structure, perpendicularly interconnected, (such as in Fig. 1, right) develops.
which comprises almost all A atoms (nmee = 100%). It is quite remarkable that for the
same concentration and temperature, there is either the occurrence of isolated precipitates
or a percolated microstructure depending on the misfit, which suggests that the dvnamic
percolation transition [31,32] depends on the misfit.

With the definition of a cluster given above, we determined a precipitate size distribution
f(n), where f denotes the number of clusters comprising n atoms. n or equivalently the
volume of a precipitate, is proportional to R3, where R defines an effective radius only since

the precipitates are not spherical. The mean effective radius R is then defined, for small

values of the concentration, as

ZnZno nl/Bf(n) ( )
ZnZno f(n)
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where monomers and other clusters smaller than ny = 10 were discarded, because they can
be considered as being part of the matrix. In Figure 3 the number of clusters of a given size,
g, is plotted versus the scaled variable p = R/R for ¢y = 0.1 and varying misfit. The scaled
precipitate size distribution g(p) is normalized so that 3 g(p) = 1. To improve statistics, we
averaged g(p) over intervals of length Ap = 0.2, where the data points in Figure 3 mark the
middle of these intervals.’ Since we are interested in late time distributions, we determined
g(p) after 3000 MCS and then every 500 MCS, i.e. seven independent distributions were
obtained for each misfit. The data points and error bars in Figure 3 correspond to the mean
value and the standard deviations of the mean of these data. Despite the poor statistics
due to the small system size, an influence of the lattice misfit on the scaled precipitate
size distribution can be observed. There is a broadening of g(p) for large misfit, § > 0.5,
compared to the distributions for smaller misfits indicating that the system contains larger
clusters when elastic interactions are more dominant, which is consistent with Fig. 2. A
strong difference in g(p) from the scaled precipitate size distribution derived from the LS\V-
theory can be observed for all values of 6. This is consistent with the LSW-function being
too narrow compared to those observed at finite volume fraction [6]. Moreover, there is a
shift to the left of the maximum position of our simulated g(p) as compared to the LSW-
result. This may be ascribed to our times not being long enough. To test this, we have
performed simulations on a larger system and longer times in the case of no misfit, which
revealed a slight shift of the maximum of g(p) to the right for longer times, a result also
observed experimentally [13].

As already noted for ¢, = 0.2 a single cluster contains almost all A atoms for large misfits
(Fig. 2b, right). Nevertheless, this does not mean that all atoms have assembled into a single
compact precipitate. In fact, looking at Figure 1 suggests a rather continuous transition with
increasing anisotropy in cluster shape, orientation and position. For large misfit (Fig. la)
precipitates elongated along (100)-directions touch and form a sort of network across the
system. In order to get an estimate for the typical thickness of the individual branches

of this network, we use a measure, sometimes called chord-length distribution [33]. The
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idea is to draw lines parallel to (100)-directions across the specimen and to color the line
differently when it is inside phase A or inside phase B. The statistics of the segment (or
chord) lengths, D, of a given color is then the chord length distribution G(D). Figure 4
shows the chord length distribution of the precipitate phase for ¢4 = 0.2 and the two cases:
no misfit and ¢ = 1%. The time evolution is strikingly different for both cases. While for
0 = 0% the chord length distribution exhibits a maximum shifting toiwards larger values
of D, G(D) remains more or less static for § = 1.0% with a strong maximum. The chord
length distribution includes information on both, the size distribution of the precipitates and
their shape. For example, G(D) would be a delta function for the case of cubic precipitates
of the same size, while for any distribution of spheres G(D) decreases monotonically. The
maximum of G(D) in the case of no misfit (Fig. 4a) is therefore due to some flattening of the
interfaces perpendicularly to the (100)-directions. While the shift of the maximum of G(D)
to the right for 6 = 0% indicates some coarsening, the position of the maximum at D ~
two lattice parameters is independent of time for § = 1%. This means that the thickness
of typical domains remains of the order of only several lattice spacing, despite the fact that
a peltcolated network of such domains covers the whole system. Using the "natural scaling
method” proposed in Ref. [34], we also tested the scaling behavior of the data without misfit.
Except for small values of the scaled variable D/D, data obtained after 4000 MCS can be

well fitted by a scaling curve G, which is different for the two concentrations cy = 0.1 and

¢4 = 0.2 (Fig. 5).

IV. CONCLUSION

In the present paper with have investigated the effect of internal stresses caused by a
lattice misfit between precipitates and matrix on the precipitate size distribution by means

of Monte Carlo simulations. Our conclusions of these investigations are as follows:

e The scaled precipitate size distribution, g(p) was found to be broader in comparison

to the prediction from the LSW-theory for all lattice misfits . This is presumably due

9




to the basic assumption in the LSW-theory of zero volume fraction of the precipitate

phase [6].

e We observed a further broadening of g(p) in cases of large misfit. This result is in dis-
agreement with theoretical considerations, which predicted a narrowing of g(p) as the
consequence of an inverse coarsening process [19], but agrees with numerical solutions

of an extended Cahn-Hilliard equation, which considers elastic interactions [22].

e We believe that this broadening of g(p) is due to the strong anisotropy in the system
with elastic interactions. The shape of the precipitates are significantly elongated and
they are oriented along the elastically soft <100)—directioné. This anisotropy in shape

and orientation favors coalescence of neighboring precipitates.

These results have been obtained for a model that contains numerous simplifications. Due
to the long range nature of elastic interactions, the simulations become very time consuming
and cannot be extended to very large precipitate sizes. In addition, one has to be aware
of finite size effects caused by the small system size [35]. The model does not allow for
dislocations, for example misfit dislocations appearing in real alloys at the interface between
the phases. The model also does not consider ordering in the precipitates, siich as in the
~" phase in nickel-base superalloys, where anti-phase boundaries can hinder the coalescence
of neighboring precipitates [36,37]. Finally, the elastic constants between precipitates and
matrix are a'ssumed identical, which is not the case in many alloys. Since all these effects may
lead to quite different morphologies of the two-phase mixture [15,22], one must, therefore,
be vary careful in generalizing experimental and computational results on precipitate size

distributions in alloys, where elastic interactions cannot be completely excluded.
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FIGURES

FIG. 1. ”X-ray transmission micrographs” of the system showing the precipitate morphology
for different lattice misfit § and ¢4 = 0.2 at £ = 6000 MCS; no lattice misfit, § = 0% (left), 6 = 0.5%

(middle), 6 = 1% (right). Bright regions indicate a high intensity of solute A atoms.

FIG. 2. Time evolution of the size of the largest cluster, nmqe, (given as percentage of all A
atoms) for different lattice misfits and two concentrations, ¢4 = 0.1 (left), and ¢4 = 0.2, (right).

Data points are connected by straight lines to improve the readability. Note the different scales on

the y-axes.

FIG. 3. Scaled precipitate size distributions, g(p), for various misfits and ¢4 = 0.1; p = R/R.
Error bars, plotted only for the case of no misfit and largest misfit (§ = 1%), mark the standard
deviation of the mean. Data points are connected by straight lines. The dashed line corresponds

to the scaled precipitate size distribution predicted by the LSW-theory as it would look like in this

representatiou.

FIG. 4. Chord length distribution, G(D), (see text) for ¢4 = 0.2 plotted at six different times

for misfits § = 0% (top) and § = 1% (bottom). Curves drawn are guides to the eyes only.

FIG. 5. Scaled chord length distribution G (see text) for c4 = 0.1 (open symbols) and ¢4 = 0.2
(full symbols) and no misfit obtained with the "natural scaling method” proposed in Ref. [34].
Data for 4000 MCS (circles), 5000 MCS (triangles) and 6000 MCS (squares) is included. The

curves connect data at the latest time for ¢4 = 0.1 (black line) and cy = 0.2 (gray line).
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