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~Abstract S : : ;
Using atomistic simulations, we have studied the effects of uniaxial load on phase sep--
aration in a binary alloy with face-centered cubic structure.The two kinds of atoms have
different radii and there is a harmonic coupling between nearest'neighbour atoms. Integrat-
ing out the vibrational degrees of freedom induces long range elastic interactions. Quenching
the system into the miscibility gap from a high temperature initial state, the system’s behav-
ior depends strongly on the applied external stress. Without external stress the composition
modulations along the elastically soft (100) directions lead to a nearly periodic arrangement
of solute precipitates. A uniaxial external stress applied along the [100] direction induces a
planar morphology perpendicular to the stress direction in the case of a compressive stress,
whereas needle-like precipitates are formed along the stress direction in the case of a tensile

stress.

Introduction
The close connection between the microstructure of an alloy and its macroscopic prop-

erties is the reason for the great interest in the shape and arrangement of precipitates. An
important example is the phenomenon of directional coarsening or rafting, when certain
alloys containing misfitting precipitates are subjected to an external load. Depending on
whether the external stress is compressive or tensile, the microstructures that develop are
completely different, either needle-like or plate-like. Different theoretical approaches have
been pursued to model the kinetics of this process, including sharp and diffuse interface
models, as well as atomistic simulations [1]. The latter approach was quite successful in
predicting the breaking of the cubic symmetry of the alloy due to external stress. In 2-
dimensional simulations, the kinetics of formation of stripe-like structures was studied in
detail [2,3]. The obvious shortcoming of such 2-dimensional simulations is that needle-like
and plate-like domain morphologies cannot be distinguished, since they both appear as
stripes in two dimensions. Here we present the first results using a 3-dimensional model
crystal with face-centered cubic structure.

Model and Simulations

Our microscopic model is an extension of a conceptually simple 2-dimensional elastically
anisotropic model of a binary alloy [1,2] to three dimensions. We consider a fcc lattice £ with
L cubic cells in each direction, containing N = 4L3 sites, and periodic boundary conditions.
N, atoms of type A with radii R4 and Np atomis of type B with radii Rp < R4 are placed
near each site peL. A spin variable y(p) is assigned at each pel, with y(p) = 1 if there
is an A atom at site p and 7y(p) = —1 if there is a B atom there. To model the elastic
interactions, all nearest-neighbor pairs of atoms are considered to be connected by springs




with a longitudinal and two different transverse spring constants. The three independent
macroscopic elastic constants of a cubic crystal are then given by the long-wave relations[4].

Under the assumption that the atoms come to thermal equilibrium much faster than
they diffuse to a new position on the lattice, an effective Hamiltonian for the system can be
written in Fourier space as [4,5],

Z ®(k) | (k) I (1)

where 9(k) denotes the Fourier transform of the spin variable v(p). ®(k) depends on the
length and the direction of k and includes both a short-range chemical interaction (which
is chosen to be attractive between the atoms leading to phase separation) and a long-range
elastic interaction. In the case of an additional external stress applied on.the system, a weak
dependence of the elastic constants (i.e. the spring constants) on the local composition has to
be considered in order to observe non-trivial effects. Assuming the external stress to be large
enough to cause displacements of the atoms from their reference sites which are much larger

-, than their displacement due to the elastic forces, the Hamiltonian can again be: written

in the form of Eq.(1) [3]. The algorithm in our simulations , in essence, amounts: to: the
Metropolis algorithm with Kawasaki exchange dynamics. The time unit in the simulations
“is one Monte Carlo step (MCS), i.e. one attempted update of every lattice site. Although a
special updating procedure described in [2] was used to deal with the long-range interaction
potential, the simulations proved to be time-consuming even on modern workstations and
supercomputers,

The numerical values chosen for the spring constants correspond to the experimentally
obtained Born-von Karman parameters of copper resulting in a negative elastic anisotropy.
A lattice misfit between a pure A phase and a pure B phase of about 4% was assumed. The
results presented here were performed on a lattice with L = 48, i.e. N = 442368 lattice sites,
at a temperature T' = 0.5175, T being the critical temperature of an nearest-neighbor Ising
model on a fec lattice. The concentration of the A atoms was cy = N4/N = 0.2.

Results
The three columns of Figure 1 summarize the evaluation of the end configurations ob-

tained after 1000 MCS with our MC simulations. Each column corresponds to a different
stress case described at the top of the figure. Arrows or circular symbols (in the case that the
direction of stress is the line of vision) mark the direction of the applied stress. To reduce the
3-dimensional configuration of atoms to a 2-dimensional plot, we averaged the concentration
normal to the stress-direction in the first row ((i)-(iii)), and along the stress-direction in
the second row ((iv)-(vi)). Bright (dark) regions indicate a high (low) intensity of solute
A atoms. The six plots above the bar can be read like ”X-ray transmission micrographs”,
assuming that only one of the phases is absorbant for X-rays.

In the case of no applied stress, the top view (i) and the side view (iv) of the specimen are
similar. The precipitates form at equal distances along the elastically soft (100) directions
forming a nearly periodic arrangement. This symmetry between the (100) directions is
broken for the case of an applied external stress as can be easily observed by comparing
the corresponding plots in row 1 and 2 ((ii) and (v), (iii) and (vi)). The plots (ii) and (iii),
top views of the specimens with tensile and compressive stress, respectively, show a striped
structure rotated 90° with respect to each other. This is the result already known from 2-d
simulations [3]. The difference of the three-dimensional case becomes apparent in the side
view along the stress direction: for the tensile case (v) bright spots are visible indication that
the stripes are really needles. Conversely, the side view in the compressive case (vi) reveals no
obvious details: in accordance with experiments, the' A atoms cluster in plate-like structures
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Figure 1: The concentration after 1000 MCS averaged normal to ((i)-(iii)) and along ((iv)-
(vi)) the stress direction for the case of zero ((i), (iv)), tensile ((ii), (v)) and compressive
((iii), (vi)) external stress is shown in the first two rows. The third row shows 1-dimensional
plots of the average concentration in a direction normal to the external stress, for tensile
and compressive stress. In the last two rows sections through the 3-dimensional structure
function S(k) along the (001) plane ((2)-(c)) and along the (100) plane ((d)-(f)) are plotted
for the three different stress cases. :




Figure 2: Compressive (left) and tensile (right) configurations after 1000 MCS, viewed along
the direction of external stress. Two adjacent (100) planes from the fcc lattice are superposed
to form a s1mple square lattice of lattice parameter a/2. In the compresswe case a” doub]e-
plane with. a maxlmal numbe1 of white A a.toms is shown X o

'perpendlcular to the stress d1rect10n The texture visible in (vi) 1nd1cates that the plates s
‘have thickness variations that are somewhat reminiscent of the structures visible in (iv) or
(v). To highlight the difference between (v) and (vi), we have also drawn 1-dimensional -
concentration plots along directions perpendicular to the external stress. The concentration -
modulations are much smaller in (vi) than (v). Instead of averaging, we have also plotted a
typical (100) plane perpendicular to the stress direction (Fig. 2), for the compressive case
(left) and the tensile case (right). The right picture is clearly a section through an array of
parallel needles perpendicular to the plane of section. The left image, however, reveals some
new details: in fact, the (whitish) plate-like structure has holes in it, which may explain the
texture seen in the averaged picture (vi).

Sections through the 3-dimensional structure function S(k) (i.e., the squared Fourier
transform of the configuration, S(k) =| 3 pe’*Py(p) |?) are shown below the bar in Fig.
1. The six plots show the section along the (001) plane ((a)-(c)) and along the (100) plane
((d)-(f)), where the external stress was applied along the [100] direction. They correspond
to measurements of the small-angle scattering of X-rays or neutrons using single crystals.
Again there is hardly any difference between (a) and (d) in the no-stress case. The striped
configurations of (ii) and (iii) translated into Fourier space ((b) and (c)) appear as a nearly 1-.
dimensional series of peaks. For the tensile case (e) the scattering pattern corresponds to the
regular array of needles, whereas for the tensile case (f) the regularity of the arrangement
of the precipitates in a plane rectangular to the stress direction seems rather poor. The
main maxima of S(k) at k ~ 228 correspond to a spacing in the crystal of about 6a, a the
lattice parameter. This is exactly the spacing between precipitates in the no-stress case and
between needles in the tensile and plates in the compressive case. Maxima of higher order,
best observable in plot (e), indicate a high regularity in the arrangement of the precipitates.
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