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We review the main ideas on the derivation of hydrodynamical equations from microscopic models.
The Boltzmann equation, which is a good approximation for the evolution of rare gases, provides a
useful tool to test these ideas in mathematically controllable situations such as the Euler and
incompressible Navier—Stokes limits, which we describe in some detail. We also discuss the
heuristics and some rigorous results available for stochastic particle systems. © 1999 American

Institute of Physics. [S1070-6631(99)02008-5]

1. INTRODUCTION

The kinetic description of a classical fluid is intermediate
between a fully microscopic one and a purely macroscopic or
hydrodynamical one. The microstate of the system, consist-
ing of N point particles (atoms) in a box A is specified at a
given instant of time by a point X in its 6/N-dimensional
phase space I'; X=(r;,vy,....In,uN) Where r;, y; are the
coordinates and velocities of the ith particle. As time
changes, X evolves according to the Newtonian equations of
motion which, once the interaction between particles, the
external force, and some initial state Xg are provided, give X,
for all te (—o,+®),

The fully macroscopic description, on the other hand,
appropriate for fluids, is given in terms of five hydrodynarmi-
cal fields &(r,0)=[n(r,t),u(r,t),e(r,t)] where r is a point
in the three-dimensional region of space A containing the
fluid. The particle density n, momentum density nu, and
energy density ne correspond to the local quantities con-
served by the interactions. (We have taken the mass of the
particles to be unity.) The time evolution of &(r,t) is usually
taken to be given by the compressible Navier—Stokes (NS)
equations or some approximation to them, e.g., Euler (B),
incompressible NS (INS), Boussinesq, etc.

The kinetic description, intermediate between the micro-
scopic and macroscopic ones, is specified by the density of
particles with position r and velocity v, f(r,vt), in the six-
dimensional space, re A, ve R3. The time evolution of f is
given, for a gas, by the Boltzmann equation (BE) which has
the form!

af(r,vt) + of

7}
Jt y.—t9—r+E(r’t)'ﬁ;f-J=Q(f’f)’ (I'l)

where F is an external force and Q(f.f) is a bilinear colli-
sion operator whose exact form depends on the interaction.!
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While X, clearly contains all the information necessary
for the determination of ¢ and f, the derivation of autono-
mous equations like NS and BE from the underlying Hamil-
tonian microscopic dynamics is a notoriously difficult prob-
lem only partially solved at the present time (see Refs. 2-4),
An intermediate problem with a long history is the derivation
of hydrodynamical equations from the BE for gases, when
the £(r,t) are obtainable from f as integrals over v

n(r,t)= f f(r,vt)dy,

nt_t(r,t)=f uf(r,v,t)dvy, (1.2)

ne(r,t)= f %(y—u)zf(z,y,t)dy-

The collision term Q(f.f) in the BE, like the interaction on
the microscopic level, conserves all the £s. A direct evalu-
ation of the evolution of the £'s from the BE does not, how-
ever, lead to a closed autonomous system. Rather it involves
higher order velocity moments of f which leads to the well
known closure problem.

The derivation or closure problem was tackled via the
well known ‘‘expansion’’ methods of Chapmann-Enskog
and Hilbert. Both of these incorporate the assumption (or
fact) that the spatial variation of f and thus of £ is slow on the
scale of the mean free path. In this note we shall describe
recent work on making those derivations rigorous by intro-
ducing explicitly a spatial scaling parameter € and control-
ling the remainders in the series expansion when € is small.
It will turn out, not surprisingly, that we get different hydro-
dynamical equations depending on the time scales and other
circumstances we consider.

Thus, for times of order €~ ! the &s satisfy the Euler
equations, while for times of order €2 they satisfy the INS
equations for certain classes of initial f's. A discussion of
these results as well as comparison with results obtained
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from microscopic dynamics both for Hamiltonian systems
and for particle models evolving according to stochastic dy-
namics will also be given.

Il. THE BOLTZMANN EQUATION

We shall not discuss here the problems involved in the
derivation of the BE referring the reader to the books'*? and
references there. We will just write down the collision op-
erator and state some properties which are important in the
sequel. Since the collision operator acts only on velocities,
position and time being just parameters, we omit such depen-
dences.

We have, after symmetrization

1
o(f.8)(v)=73 fRady* L deB(|lv—vl. @)
2

X[f'gstfi8 —f8sx—Fx81, 2.1)

where S, is the 2d sphere in R?, do is the surface measure
on it

FI=fv"), fi=f), fe=flvy), f=£(v).

The vectors v, v, are the outgoing velocities of a binary
elastic collision between two equal mass particles with in-
coming velocities v’ and v,

v =v-olo (v-v,)],
2
v =vytolo (-l 22)
Finally, B(|v—v,|, ) is the differential cross section of the
collision, depending on the interaction law. For hard spheres
it is given by

B(lv— vyl ,0)=3(v—y) 0l (2.3)

while for power law interaction it can be easily computed
using the rules of classical mechanics. For infinite range in-
teraction the function B has a divergence corresponding to
grazing collisions which we need to remove for technical
reasons. We assume this to be done according to the Grad’s
angular cutoff procedure.5 This assures that B is a bounded
smooth function of @, growing with |v— y*l at most linearly
(hard spheres case).

Let f, g, and h be functions of v such that the integrals
below make sense. Then

(@)

4
[ avot.o@n=0ithe)=3, caxals) 4

with ¢, some real constants and

1 a=0,
vy, a=i=1..3,
Xol¥)= i (2.5)
— a=4,
2 44

The functions x,, @=0,...,4 are called collision invariants.
The vanishing of the integrals in (2.4) expresses the conser-
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vation of mass (@=0), momentum (a=1,2,3), and energy
(a=4) during a collision.
(b) If f=0, then

fRadyQ(f,f)(y)logf(y)=N(f), (2.6)
where the entropy production N(f)
|
N(f)=3 fkadyfRady*js dwB(|v—y,@)
X[f'fLflllogff-logf'f'] 2.7)

is nonpositive and vanishes if and only if log f=2‘;=ocaxa.
(c) Let f(r,v,t) be a non-negative, normalized function,
Then it was shown by Boltzmann that

o(f.f M r,ut)=0 (2.8)
if and only if

flruty=M(n(r,t),u(r,t),T(r,t);v) (2.9)
with

M(n,u,T;v)= [—Z%T]me"“’_“)zm, (2.10)

where we have set Boltzmann constant equal to one. Simple
integrations show that n,u, and e=3T fulfill the relations
(1.2) for f=M and this justifies the notation used for the
parameters of M. The density n(r,t) and the temperature
T(r,t) are non-negative; u(r,t) is the stream velocity vector.
The functions M(n,u,T;v) satisfying (2.8) are called local
Maxwellians. They play a crucial role in studying the hydro-
dynamical limit, because they are the local equilibria in the
context of kinetic theory. We note that M is a stationary
solution of the Boltzmann equation only if the parameters are
independent of both r and . This statement is correct when
F=0, under some assumption on the domain A containing
the gas, e.g., A is a torus or a bounded open set of R® with a
smooth boundary were particles collide elastically. In this
case M is the global Maxwellian or equilibrium solution of
the BE.

An immediate consequence of the property (a) are the
local conservation laws for the mass, momentum, and en-
ergy. In fact, multiplying (1.1) by x,, @=0,..,4 and inte-
grating on v, by property (a) we get

dn+div[nul]=0,

3
(9,(nu,)+2l (9,j(nu,-uj+l'l,-,j)=nF,-, i=1..,3, (2.11)
i<

u2+ +di u2+5 +
n\ 5 te ivinu| >+ 3e|+q

= [ ducunlomu(eolly-un] @12)

9y =nE-u,

where

is the stress tensor and
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g= fdeyf(r,y,t)[y- u(r.)Plv—u(z,0)]

is the heat current vector.

Of course the above relations are not the hydrodynami-
cal equations: the stress tensor and the heat current vector
cannot be a priori computed only in terms of n,u,e. The
closure problem consists in finding such relations. The sim-
plest case corresponds to assuming local equilibrium, i.e.,
that f is a local Maxwellian. In this case, Egs. (2.11) are
obviously closed and are just the Euler equations for a gas.
The assumption, however, is not correct in general because
as noted earlier local Maxwellians are not solutions of the
Boltzmann equation. In fact, an important point is missing in
our discussion: the Boltzmann equation and the hydrody-
namical equations hold on very different space scales, while
those in (2.11) hold on the same scale of the Boltzmann
equation. We shall see in next section that, after the intro-
duction of different scales, the assumption of local equilib-
rium is approximately correct on the hydrodynamical scale
and provides the hydrodynamical equations.

We conclude this section by introducing the linearized
Boltzmann operator, which will play a major role in the se-
quel and state some properties we will extensively use. We
refer to Ref. 6 for the proofs.

We fix a Maxwellian M (v)=M(n,u,T;v), with n, ¥ and
T possibly depending on r and #. Since the linearized Boltz-
mann operator acts on functions of the velocity, the space-
time dependence is only parametric and we disregard it be-
Jow. The linearized (around M) Boltzmann operator is
defined formally by

Lg=20(M,g). (2.14)
It is convenient to introduce also

Lg= — L) = —= O(M, \H) (215)

14 \/M 8 \/'M y 8). .

Simple calculations show that £ and L can be decomposed as
=—p()+K, L=—-v(v)+KkK, (2.16)

where (v)=v,>0 is a smooth function growing at large
velacities as the cross section; K is an integral operator
which is compact on the space of square integrable functions
H=L,(R%). Therefore the operator L is well defined in the
domain DC H of the functions g(w) such that vg € H. Some
properties of L are

(i) L is symmetric in H

(g,.Lf)=(f.Lg), f.geD. (2.17)
(ii) L is nonpositive in H

(f.Lf)<0, feD. (2.18)
(iii) Let

Vu=VMx, @=0,..4, (2.19)

P be the projector on the space Z spanned by {¢,.@
=0,..,.4} and P the projector on T*, the orthogonal
complement of Z. Then

(2.13) |
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Null L=Z, Range LCT". (2.20)
(iv) There is #>0 such that, if fe P-D, then
(fLf)s—p(fvf). (2.21)

ill. EULER LIMIT

We introduce a scaling parameter €>0 which represents
the ratio between the microscopic (kinetic) and macroscopic
length: roughly € is the size of the mean free path in macro-
scopic units, This scaling parameter arises in (1.1) when we
consider initial data of hydrodynamical type. By this we
mean an initial distribution f§(r,v) whose spatial depen-
dence is so slow that one has to look at macroscopic dis-
tances to find appreciable variations of f§. This is obtained
by choosing a smooth function fo(x,v) and putting

folr,v)=foler,v). (3.1)

The variable x= er represents the macroscopic position. We
assume for simplicity periodic boundary conditions, that is r
varies in the torus of size €', T,=[0,e"!] so that corre-
spondingly x varies in the unit torus T= [0,17% ie., €is thus
just the inverse length of the box expressed in microscopic
units.

Since the initial datum is almost constant on the micro-
scopic scale, the time evolution given by the Boltzmann Eq.
(1.1) will not depart significantly from the uniform state be-
fore sufficiently long times. Just how long a time is required
can be estimated from the fact that to depart from spatial
uniformity a particle of the gas, moving with finite velocity
v, has to cover a macroscopic distance to detect the varia-
tions of the initial datum. This means that it needs a time of
order €~ !, Therefore, we shall look at the solution of (1.1) at
a time €7 '7: we set

fxut)=fe 'z v.e ') (3.2)

with f(r,v,t) solving (1.1) with initial datum fo(er,v). The
space-time scaling used in (3.2) is called hyperbolic or Euler
scaling.

We note that, in order to make the above considerations
consistent, we also have to assume that the size of the exter-
nal force is of order € because a finite size force would
produce, on the time scale we are considering, very large
accelerations of the particles. Therefore we assume in (1.1 a
force of the type eF(er,et). Note that if the force is a po-
tential one, with a potential U also slowly varying on the
microscopic scale, such a condition is certainly fulfilled. It is
immediate to check that fé(x,v,?) has to solve the rescaled
BE with the notation

defafs afs afs
€ Y — R
D.f gy +v +F PR

(3.3)

it is
1
D f*==Q(f*f), (3.4)

with initial datum fo(x,v). We expect to recover the hydro-
dynamical equations in the limit é—0. Formally it is clear
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that in this limit the right hand side of (3.4) would become
singular. The only possibility of avoiding this singularity is
that

lim Q(f<.f)=0.

e—0

(3.5)

Condition (2.8), (2.9) then forces f€ to converge to a local
Maxwellian. As remarked before, this, together with the lo-
cal conservation laws, produces a set of closed equations for
the hydrodynamical variables, which are the Euler equations
for the ideal fluid.

A more accurate argument to get such a conclusion goes
back to Hilbert,” who proposed the famous Hilbert expansion
as an example of his theory of linear transformations. The
starting point is to look for the solution f€ as a power series
in e

©

=2 éfi

k=0

(3.6)

and try to find the functions f;, k=0 by imposing that (34
be satisfied at each order in e. By plugging the series (3.6) in
(3.4) and equating terms of the same order in € we get the
following conditions:

et 0(fo.fo)=0,

e 20(fo.f1)=Dfo, (3.7
Ek: 2Q(f0’fk)=Sk(fo»ff""»fk—l)»
where
S(forfiseeosfx-1)=Difx—1— > Q(fwSfnr).
(h,h'y: hh'=1
h+h'=k
(3.8)

The lowest order in (3.7) implies, using (2.8), (2.9), (2.10)
that f, is a local Maxwellian M =M (n,u,T;y) with the func-
tions n, u,T not yet determined. Definition (2.14) then allows
to write the other Egs. (3.7) in the form

Lfi=Si(forfisofi-1)s k=1 (3.9)
We now discuss the solution of the equation
Lf=g. (3.10)

By (2.4) a necessary condition for the solvability of (3.10) is
that

fRadyxa(y)g(y) =0, a=0,.,4 (3.11)

With the notation F=fM ™2, g=gM~"2, (3.10) is equiva-
lent to

Lf=% (3.12)
and the solvability condition becomes
(8,¥,)=0, a=0,.4 (3.13)

Hence, if g is in 7*, the space perpendicular to the invariant
subspace Z, the solvability condition is fulfilled and, by the
compactness of K and the application of the Fredholm alter-
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native, we can conclude that there exists one and only one
solution of (3.12) in 7. With an abuse of notation we denote
it as L™'g. In fact, since Null L is not trivial, L is not invert-
ible. Only its restriction to T+ can be inverted. The general
solution to (3,12) is therefore

4
F=L"'g+ go Cala- (3.14)

Going back to (3.10), we can conclude that, provided that g
satisfies (3.11) and gM ™ 2e L,(R®), the general solution of
(3.10) is given by '
Ca
f=L7'g+ 2 caxaM,

(3.15)
where we used the (slightly inaccurate) notation
£~1g=M”2L~l(gM_”2). (316)

We now return to the study of (3.9). Let us consider first
k=1. The solvability condition in this case is

fRadyxa(y)D,M(n(z,t),z(J_c,t),T(J_r,t);y)=0,
a=0,...4. (3.17)
By simple Gaussian integrations we get, for i,j=1,...,3
[ oM ae, s TG (0]
X[v;=ui(x.0)]=n(x,0T(x:1) (3.18)
where §; ;=1 for i=j and 6;;=0 for i# j. Moreover
fﬂadyM(n(J_c,t),u(J_c,t),T(J_c,t);_v)[v:—ui(ac,t)]

(3,19)A

Therefore we can conclude that the solvability condition
(3.17) is satisfied if and only if the parameters of the Max-
wellian satisfy the equations

dmn+div{nul=0,

x[v—u(x,1)]?=0, i=1.3.

ndu+n(u Vou=—VP+nF, (3.20)
nde+n(u-Vg)e+Pdivu=0,

where
e=3T, P=nT (3.21)

are the equations of state for the pressure and internal energy
of the ideal gas. Tt should be noted that, since we are con-
sidering a situation in which the average distance between
the particles is much larger than their interaction range, these
are indeed the appropriate equations of state.

The previous discussion shows that to the lowest order
in e the solution of the rescaled Boltzmann equation is a
local Maxwellian whose parameters solve the Euler equa-
tions of the ideal fluid. The method allows to compute cor-
rections of arbitrary order. In fact, once the solvability con-
dition (3.17) is satisfied, f; is given by
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4
fr=L7' DM+ 2 ciXaM, (3.22)

with c(al)()_c,t), a=0,...4, arbitrary functions. The presence of
arbitrary functions permits us to continue the procedure and
determine f, for k> 1. Suppose that at some step  the func-
tion f,...fx— are determined uniquely and f} is determined
up to arbitrary functions cﬁ,k)(,y,t),a=0,...,4

4
fk=.7k+azo Cg{)XaM'

(3.23)
In order to determine f;4; we have to solve
Lfk+l=Sk+l(M’fl""’fk)' (3.24)
The solvability condition
J deXa(y)Sk+l(y)’ a=0,...,4 (3'25)
R

can be satisfied taking advantage of the arbitrary functions
cg‘)()_c,t): in fact (3.25) is a set of five linear partial differ-
ential equations (PDEs) in the unknown functions c®
X(x,t), which fully determine such functions once initial
conditions are provided. Therefore f;. can be determined
by (3.24), up to arbitrary functions ¢**1) and the procedure
can be iterated indefinitely.

In conclusion, all the coefficients f are uniquely deter-
mined by the above procedure. Unfortunately there is no
indication that the power series (3.6) has a finite radius of
convergence, so that the previous argument is only formal.

On the other hand, one can hope that finite truncations of
the series are good approximations of the solution, if any. In
order to see this, one fixes N>0 and looks for a solution of

(3.4) of the form

N

f‘=k20 éfit€R (3.26)
with f,, k=0,...,N determined by the previous procedure,
and R a suitable remainder function, depending on € and N,
to be chosen so that f€ solves (3.4). Note that one would
expect m=N+1, but one can try to prove a weaker state-
ment by choosing m<N+ 1. Actually this is the case and the
following theorem has been proved:

Theorem 3.1. Assume that there exists a unique smooth so-
lution in H(T), with s sufficiently large. [n(x,1),
u(x,8),T(x,0)] to the initial value problem associated to the
Euler Egs. (3.21), at least in a finite time interval [0,t0).
Denote by M, the local Maxwellian with above parameters.
Suppose that

Ifo— Mol <& (3.27)

for some 8> 0 sufficiently small. Then there is an €y>0 such
that for €<eg, there exists a smooth solution FE(1) to the
rescaled Boltzmann equation, with

sup |Ifé(1)—M/|<Ce
!E(O.to]

(3.28)

for some C>0. The norm is defined as
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lell=sup (1+ 022 (-, )la,em

ve R3

(3.29)

with k,s>3/2, - | u, (1) being the Sobolev norm of order s on
T.

Theorem 3.1 has been proved in the case of one-
dimensional space variations and §=0 by Caflisch,® who
used the truncated expansion with N=6, m=3. Note that
such a choice of N and m is just the simplest possible choice
and one could choose other pairs of values. Extension to
higher space dimensions and >0 have been given in Ref. 9.
The supremum on time in (3.28) is restricted to t>0. This is
due to the fact that §can be much bigger than e. Even in this
case, the solution at positive macroscopic times is close to
the local Maxwellian up to O(¢), because it is attracted to a
neighborhood of the local Maxwellian on a time scale much
shorter than the hydrodynamical one (initial layer).

Other results on the convergence of the solution of the
rescaled Boltzmann equation to the Euler equations are due
to Refs. 10 and 11. These results are based on the argument
(3.5) and do not use the Hilbert expansion, They hold only
for short times. In fact, it should be stressed that the locality
in time of Theorem 3.1 is essentially of hydrodynamical
type, in the sense that it is only due to the locality of the
solutions of the Euler equation. If a global solution of the
Euler equations is given, then Theorem 3.1 holds with ¢,
arbitrarily large (and the constant C possibly diverging for
to— + ). On the contrary, the locality of the results in Refs.
10 and 11 is of the kinetic type.

IV. NAVIER-STOKES LIMIT

An noted in Sec. III, the Hilbert expansion not only pro-
vides the limit as eé—0 of the solution of the rescaled BE,
but also permits us to compute the corrections to any order.
We are mainly interested in the first order corrections, ie.,
we look for f;. While the explicit form of £~![DM] is
only available for particular molecular interactions (Maxwell
molecules) a general expression for f; can be obtained:' let
v=v—uy and

A, (V)=T7;— E} 8ijs

4.1)

o~

5
Bi(y)=('—2_—§T)§i’ i1j=l""’3'

It is immediate to verify that, if we define P'g
=MY2P-[M~2g], where P* is the projection into the
space I*, then _

iy 3 5L 4.2
= i&x,- ) ) )

waxj i=1

3
73*[D,M]=M[ ._21 A
L=
Moreover, there are two non-negative functions, depending
on |7, ¥, and ¥, such that

LA MI=—T 4, L7 [BM]=—"V¥,B(v).
(4.3)

Therefore
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3 3

_ du; aT
LDM)=-Y, X A=Y, > B—
ij=1 3Xj =1 ‘ox

4.4)

This is the part of f} in Z7*. The part of f | in Z represents the
first order correction to the hydrodynamical quantities. A
suitable resummation of the Hilbert expansion, known as the
Chapmann—-Enskog expansion,l provides a closed set of
equations, accurate to first order in fy, for the hydrodynami-
cal fields

dn+div[nu]=0,

ndutn(u-Vou= -V, P+nF+V,

' (/-“Ev,gl.‘) + V,g( ge div ';‘)’ (4'5)
nde+n(u-Vy)e+P diVl_l=V£'(KEV‘!T)+,LLE(V§L_t)2
+§E(divu)2’
with .= e€u, {=€l, k.=€k and
/-“=fR3d1)[Al,2(y)]2\I,l(lyl),
4.6)
= [ ATV s
and
o= [ aB YD), @)

The coefficients u, ¢, and « are called transport coefficients
and, in particular, u is the shear viscosity, ¢ the volume vis-
cosity, and k the heat conduction coefficient. 1t is a well
known result of the kinetic theory that the transport coeffi-
cients depend only on the temperature T and the molecular
interaction, but not on the density, (see Ref. 1, p. 198). The

above formulas are similar to the Green—Kubo formulas? for -

the transport coefficients in statistical mechanics. Equations
(4.5), with e=1 are the well known Navier—Stokes equa-
tions for a viscous fluid. As derived from the Boltzmann
equation, they contain the viscosity and heat conduction
terms multiplied by the factor € which, by definition, is es-
sentially the mean free path in macroscopic units. There is no
chance to prove that the arguments presented in the previous
section are correct up to €= 1 or at least some realistic value.
So, we do not have a rigorous justification of (4.5) for rel-
evant values of the transport coefficients: actually to show
that the terms neglected in (4.5) are really small we are
forced to consider € a small number, eventually to be sent to
0. This is the main problem of the derivation of the Navier—
Stokes equations as a scaling limit from a microscopic
model: terms involving second order space derivatives are
negligible in the scaling limit, when compared to terms in-
volving first order space and time derivatives.

The typical way to enhance the second order derivatives
is to consider from the beginning a longer time scale e %,
instead of €~ !z, that makes the time derivatives of the same
order as the viscous terms. The heat equation is an example
of an equation which is invariant under this parabolic or
diffusive scaling. Unfortunately, this is not sufficient to get
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rid of the €'s in (4.5). In fact, the nonlinear terms involving
the first order space derivatives are now of order €' while
the other terms are of order 1.

In conclusion, both the hyperbolic and the parabolic
scalings are not suitable to get the Navier—Stokes equations.
1t is not hard to realize that this is true for any pure space-
time scaling.

On the other hand, if the velocity vector field 4 were of
order ¢, the first order terms would be as big as the time
derivatives and the viscous terms in the second of (4.5). To
make this consistent the force in (1.1) has to be assumed to
be of order €, because we want to keep u of order e for
times of order €2, so the acceleration has to be of order €.
With such a scaling, Eqs. (4.5) can be rewritten as

dn+divinu]=0,

nou+n(y-Voyu=—e VP+nEF+[V, - (uVu)

+V,(&divu)],
. (4.8)
nde+n(u-V)etPdivy=[V («V,T)+ €2( (Y u)?
+{(diva)D)].

The study of the asymptotic behavior of (4.8) as e—0 is
well known in fluid dynamics as the low Mach numbers
limit. Namely, in (4.8) e plays the role of the Mach number.
The Egs. (4.8) are often considered in the isentropic case,
where the pressure is assumed to depend only on the density
and hence the first two Egs. (4.8) can be solved indepen-
dently of the third. In this case it has been proved in Ref. 12
that the limiting solution obeys the incompressible Navier—
Stokes equations (INS)

divu=0, 4.9)

Su+(u-V)u=F—-V p+tnlu

with 7 the kinematic viscosity coefficient. The pressure p
appearing in (4.9) is no more given by a state equation, but is
itself an unknown of the problem.

We notice that (4.9) is invariant under the scaling

x'=elx,

(4.10)

Such invariance is a necessary condition in order that an
equation be the scaling limit of a more fundamental one.

With the above remarks in mind we can ask the question
of the asymptotic behavior under the parabolic space-time
rescaling of the Boltzmann equation with initial data such
that the average velocity u is of order € (low Mach number
assumption). In other words, we define

t'=¢%r, u'=eu, p'=¢€p.

vt =fle xve ) (4.11)
and assume the force in (1.1) of the form eF.

Equation (1.1), after rescaling becomes

afe 1 off are 1

—_—t -y — + —_—= € f9). .

ot Ty e eF o= 00 ) (412)

We consider the following initial condition:

Fixv)=m()+ePo(x,v), m(¥)=M(1,0,L;1).
(4.13)
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This means that at the lowest order the initial distribution is
a global Maxwellian with vanishing average velocity. There-
fore

uo(x)= engdyd)o(:_c,y)y (4.14)
so the low Mach number assumption is fulfilled. We are also
assuming constant initial density and temperature both set
equal to one. We remark that the formal part of the argument
below can be worked out even in the case of nonconstant T
and n,'> where new interesting phenomena arise, e.g., mass
flows induced by temperature gradients, which are not con-
tained in the INS. We present only the case of constant tem-
perature and density for the sake of simplicity and because
the theorem we state has been proved only for constant ini-
tial density and temperature. The choice of the constants, T
=1, n=1, is not restrictive, since they can be easily removed
by a suitable change of units.

Given the initial condition (4.13) we look for a solution
of (4.12) with the same property: we set

Fé(x.u)=m(v)+eP(x,v,0). (4.15)

This assumption is consistent with (4.12) provided that ®¢
solves the equation

oo 1 9P* am obe

” +2y' 7% +F'0—y+EF- £

i 1
= 5 LD+ —Q(&09). (4.16)

We try to solve this equation using a kind of Hilbert
expansion along the same lines presented for the Euler limit.
We look for a solution of (4.16) in the form

=D, gy (4.17)
k=0

and determine the unknown coefficients ¢, k=0,..., by im-
posing equality of terms of the same order in €. By plugging
(4.17) into (4.16) we get the conditions

6_2: £¢0=0,

E—l: £¢1=y'v,§¢0—Q(¢0»¢0)’
(4.18)

€ Loy=0,¢pt vV, +EF- —*—ZQ(¢0,¢1

et: Lorra=Zi(do b15e-

where

Zk(¢01¢1’-'-,

¢k+1)’

di+1)

Ipi—1

=8,y tv Vi +E- .

(hh'): BA'=0
h+h'=k+1

O(dnrdnr). (4.19)

The first condition and (2.4) imply
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-3
—_——) ‘&()j,t)},

(4.20)

where we have denoted by p and & the first order corrections
to the constant density and temperature and by u the first
nonvanishing contribution to the stream velocity vector,
which is of order € by construction.

The other equations (4.18) are again in the form (3.10).
Therefore, in order to solve them, we have to check that the
right hand sides satisfy the solvability condition of orthogo-
nality to the null space of £. To find ¢, we need

dolx,v.)=m(v)| p(x,1) + v t.t().c,t)+(

JRadyxa(y)y- V.dolx,v,1)=0, a=0,..4. (4.21)
It is easy to check, by explicit Gaussian integrations that the
above conditions are satisfied if and only if

divu=0, V (p+3)=0. 4.22)

The first equality of (4.22) is the incompressibility condition.
The second one, which ensures the constancy of the pressure
up to the first order, is called the Boussinesq condition. 14
Once we choose u, p, and ¥ so that (4.22) is satisfied, the
second equation of (4.18) can be solved and we get

b= L' [v Vydo]— L7'[Q( o, b0+ X, (4.23)
with y; € Null £, and hence of the form
xl(x.y.t)=m(y)[p1(ac,t)+yjm(ac.t)
' -3
+(—“—‘2 )’31(?_6,1)}' (4.24)

The quantity £~ '[v- Vo] can be computed using the
same arguments employed to get (4.4) and the result is

du;

v
L7V hol=—¥, 2 A

\IIZE Bxa
(4.25)

To evaluate the second term in (4.23) we note that, by
simple calculations one can get

~£7'[Q($0.40)]= 2@("5")

+ = ﬁz’iﬂ[(IPZ 3) m}. (4.26)

The evaluation of ¢, is thus complete, up to x, . For this
we need to evaluate ¢,. This requires the solvability condi-
tion for the third of (4.18). The expression just obtained for
¢, and the evaluation of some Gaussian integrals provides
the explicit solvability condition
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dp+divu; =0,
u?
"'+P'0+P1+191}+77AL_¢,

ark‘“"k"vl_c‘-‘:E_Vs )

4.27)
25,0+divy, Ty V= kAT,

where 7 and & are the the shear viscosity coefficient and the
heat conduction coefficient given by (4.6) and (4.7), evalu-
ated at temperature T=1, We put
u?
and replace divy, in the third equation with —d,p=9,7.
Note that the second equation of (4.22) only states that p
+ 9 is constant in space. However, from this, it is easy to
check that, with the periodic boundary conditions assumed
here, the time derivative of p+ also must vanish. There-
fore we get the following system in the unknowns u, 9, and
p:
divy=0,
Juty-Vu=F—Vp+ iy,
29, 90+u -V, 4=RAD.

The first two equations are just the INS Eqgs. (4.9) for the
unknowns u and p. As in the derivation of the Euler equa-
tions, they arise as solvability conditions for the coefficients
of the power series expansion (4.17). The third of (4.29) is
the heat equation with a convective term due to the stream-
ing velocity: its solution does not influence u.

Suppose that, given appropriate initial conditions, a
unique solution can be found for the system (4.29), at least in
some time interval (0,¢o]. Then, by the Boussinesq condi-
tion, p is determined up to an additive constant and hence the
first term in the expansion ¢ is completely determined. The
second term, ¢, is determined up to x;, but with py, 4y,
and 9, not completely arbitrary because div 4, is prescribed
by the first of (4.27) and the sum p+ 9, is prescribed by
(4.28). The procedure can be continued to determine the next
term f,, by taking advantage of the partial arbitrariness of
x, to satisfy the solvability condition for ¢, . In fact, we are
now in the same position as we were in the previous step.
The only difference is that the Egs. (4.29) for p, u, and ¥ are
nonlinear, while those for py, u;, and &, are linear, The
argument goes on as for the Euler case and the coefficients
¢, can be determined for any k.

As in the Buler case, nothing is known about the conver-
gence of the series. Also in this case it is possible to intro-
duce a suitable truncation of the series and try to estimate the
remainders. To do this, fix N>0, and put

(4.29)

N

®=, P+ e™R (4.30)
k=0

with ¢, k=0,...,N computed according to the previous pro-

cedure and R, depending on ¢, to be chosen so that ®€ solves

(4.16). For sake of definiteness, assume N=6 and m=3. The

existence of the function R is the main ingredient to prove

On the derivation of hydrodynamics from the Boltzmann equation 2361

the following:

Theorem 4.1. Assume that the initial value problem for the
system (4.29) has a unique, sufficiently smooth solution ina
time interval (0,ty]. Then there is an €,>0 such that for €
<€, there exists a smooth solution (1) to (4.16), having
the property that

sup |®€(1)— polt)l|=<Ce
1e(0,4)

(4.31)

for some C>0.

Theorem 4.1 has been proved in Ref. 13. We remark that
the existence of a solution to the hydrodynamical equations
is among the hypotheses of the theorem, and hence the result
inherits, as in the Euler case, the locality in time of the hy-
drodynamical problem. A different approach has been con-
sidered in Ref. 15, where the aim is to get existence of global
weak solutions to the hydrodynamical equations as a conse-
quence of the existence of weak solutions of the rescaled
Boltzmann equation, proved in Ref. 16. This interesting pro-
gram is, to our knowledge, not yet complete.

Previous arguments are also applicable to derive the in-
compressible Euler equations. In fact, it is enough to con-
sider shorter time scales, such that the viscosity effects are
still negligible. In other words, instead of looking at times
€2, one has to look at times €~!77, with 0<<o=<1, and
scale the stream velocity as €7 and the force as €' "2F. The
cases o=0 and o=1 correspond to compressible Euler and
incompressible Navier—Stokes equations, as already dis-
cussed. In general, it is convenient to consider only values of
o such that 1+¢~" is an integer N>2. With the notation
&= ¢, the rescaled Boltzmann equation becomes

aff 1 off e 1 oo
7ft-+ v gf; +&F- '5{‘; = QUf9). (4.32)

We assume the low Mach number condition in the form

fé=m+ed® (4.33)
with @ satisfying
L L a<I>E+F om o oD
a ¥ "o v
=—1—cc1>?+ Lg(qﬁqﬁ) (4.34)
& -1 el :

Proceeding as before with the power scries expansion, we
can get the incompressible Euler equations

divu=0,
(4.35)
dut(u-V)u=-Vp+F.

The above ideas can be generalized in several directions.
One of them concerns the scaling of the force F. We have
seen before that the low Mach number assumption and the
parabolic scaling are consistent with a force of order €. A
remarkable exception to this rule is provided by gravity. An
additional force of order €2, €2G, with G a constant vector,
can be permitted in above discussion. The main difference is
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that in this case a buoyancy force —ad®G, a>0, is also
present in the second line of (4.28). Such a modification is
particularly interesting when the top and bottom boundaries
are not periodic, but at different temperatures (Benard prob-
lem). In this case, the relevant adimensional parameter is the
Rayleigh number, which depends on the viscosity coeffi-
cient, on G and the temperature difference. The scaling has
to be arranged in order to leave the Rayleigh number invari-
ant. For sufficiently large values of the Rayleigh number,
well known convective instabilities arise. The same kind of
instabilities have been found in numerical simulations for the
Boltzmann equation, for sufficiently small values of € Ref.
17. Indeed, the numerical simulations show that for larger €

bigger critical values of the Rayleigh number arise and the -

usual instability portrait is obtained, also with some quanti-
tative agreement, only for values of € very small, where hy-
drodynamical solutions are a good approximation to the
Boltzmann solutions.

The mathematical analysis of the Benard problem re-
quires the extension of previous arguments to more general
boundary condition, including the case of the thermal contact
with a reservoir and to forces of order € of conservative
type. Such extensions have been discussed in Ref. 18, where
the analog of Theorem 4.1 has been established, together
with results on the existence of the stationary solution match-
ing the hydrodynamical conductive solution. It should be
possible to extend these results to the convective solutions
and study the stability properties as well as bifurcation phe-
nomena at the kinetic level.

Stationary solutions corresponding to special geometries
are the only examples where it has been possible to get some
information on the problem of the derivation of the com-
pressible Navier—Stokes equations from the Boltzmann
equation. This is the case of a gas in a slab of macroscopic
size between two infinite parailel plates in contact with ther-
mal reservoirs at specified temperatures. A constant force
parallel to the plates, of size €2F, also acts on the gas. The
geometry of the problem is clearly one dimensional. The
macroscopic equations are the stationary one-dimensional
compressible Navier—Stokes equations. In Refs. 19 and 20 it
is proved that, if | F| is sufficiently small, the local Maxwell-
ian with parameters solving the hydrodynamical equations
approximates the stationary solution in the sense of Theorem
3.1. The first paper deals with the case when the two plates
are at rest and at the same temperature, while in the second
such restrictions are dropped.

Open problems

We conclude this section on the derivation of the hydro-
dynamical equations from the Boltzmann equation by men-
tioning a few of the many open problems in this field. To this
end we fix a positive small ¢, say €= 1073, and consider the
time evolution of a hydrodynamical initial datum of the type
(3.1) on the time scales 7=¢€~ ¢, for different values of a.

First of all, since the initial datum is almost constant on
spatial regions of order €1, the time evolution for O0<a«a
<1 is essentially ruled by the homogeneous Boltzmann
equation that drives the system locally to the equilibrium
given by a local Maxwellian (2.10). This initial layer analy-
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sis has been carried out rigorously in Ref. 9 for =0 but
should be correct for any 0<a<1 too.

The time scale a= 1, corresponding to the Euler scaling,
has been discussed extensively in Sec. III and from the rig-
orous point of view we know that Theorem 3.1 holds. The
main limitations of this result are the following: (1) it holds
up to times ¢ where the Euler equations have smooth solu-
tions; (2) the space domain is assumed to be a torus.

It is known that, at least in one space dimension, the
Euler equations develop singularities in finite times and the
arguments proving Theorem 3.1 fail when this happens. The
reason is that big space gradients develop in the process of
creating singularities and the Navier—Stokes corrections dis-
cussed in Sec. [V may become important.

The same problem arises when one considers more gen-
eral boundary conditions than the periodic ones. Large gra-
dients close to the boundary prevent the use of the Hilbert
expansion uniformly in the domain, Therefore the expansion,
even if still correct in the bulk, needs to be modified close to
the boundary (or to the shock) by boundary layer (or shock
layer) expansions to take care of big space variations. We
refer to Ref. 21 and references quoted therein for a more
extensive discussion of the role of such layers.

Unfortunately, only few rigorous results are available on
this at present for the Boltzmann equation, although there are
some explicit solutions for some particle systems which give
rise to the Burgers equation.?2

The only mathematical results we are aware of for fluids
are for the case of stationary solutions in a slab discussed in
Refs. 19 and 20. In these cases it is necessary and possible to
use a mixed expansion: Hilbert expansion in the bulk and
boundary layer expansion to fit the boundary conditions. It
then comes out that the Navier—Stokes terms are essential: in
fact, under the Euler equations no stationary solutions are
possible because there is no mechanism to dissipate the en-
ergy provided to the system by the extemal force. Such a
mechanism is present in the Navier—Stokes equations and
the energy is dissipated at the boundaries by the viscosity, so
that a stationary solution can be obtained. The size of the
Knudsen boundary layer is of order € on the macroscopic
scale and does not affect the hydrodynamical equations.
Other situations, such as the flow past an obstacle, can be
studied along the same lines, but the technical difficulties are
at the moment very great.

From the above considerations it is clear that going to
longer time scales, a>1, is in general very difficult. Only
the low Mach number situation has been studied with some
success. Assume 1< a<2, If the initial datum has mean ve-
locity of order €*~! while the density and temperature differ
from constant values by corrections of order €*~ ! then, in
the case of periodic boundary conditions, the limiting behav-
jor is, as discussed in Theorem 4.1, ruled by the incompress-
ible Euler equations. Also in this case we have restrictions
about the time of convergence, corresponding to develop-
ment of singularities in the Euler solutions, if any. Boundary
conditions may create large gradients which prevent the va-
lidity of the result close to the boundary. In both cases the
Navier—Stokes corrections cannot be neglected, but the de-
tailed analysis is not available.
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The case a=2 is special, because the Navier—Stokes
corrections are as big as the convective terms and the limit-
ing equation is the incompressible Navier—Stokes equation.
In this case no-slip boundary conditions can be included in
the expansion, as shown in Ref. 18, and the boundary layer
corrections are concentrated in a layer of order € close to the
boundary. Hence the solution to the Boltzmann equation is
not of the hydrodynamical type in this region but matches
the hydrodynamical solution in the bulk.

Finally, one should also consider the very long time
scale @>2. A priori higher order terms of the Chapman-
Enskog expansion could become dominant on such time
scales. This does not seem to be the case, because, as proved

in Ref. 23, the presence of some of them makes the global '

equilibrium unstable. This corresponds to a violation of the
positivity of the entropy production, a rather unpleasant fea-
ture which excludes the possibility that they attract the ki-
netic equation in some regime. On the other hand, the
Navier—Stokes terms already contain the necessary mecha-
nism to eventually drive the isolated system to global equi-
librium, so that, from the qualitative point of view, it does
not seem necessary to conjecture more corrections to under-
stand the approach to equilibrium of the system, although
corrections may be required to get better agreement with
experiments, Unfortunately, no precise statement about this
has been proved at the moment.

V. HYDRODYNAMICAL LIMIT FOR PARTICLE
SYSTEMS

We now describe briefly how the ideas presented in the
previous sections can be extended formally to particle sys-
tems with fully microscopic dynamics. The rigorous proofs,
however, are not available for deterministic systems and the
introduction of some artificial stochasticity is necessary, at
the present time, to achieve them. The evolution X, of a
system of N particles of mass m in a box A under the action
of a two body smooth potential is given by Newton’s equa-
tions

Zj=yj7
| (5.1)
ml’i:—[;j Y;,V(lrj—rkl)], j=1,...N,

A. Euler scaling

In order to get the Euler equations, we use the same
scaling we adopted for the Boltzmann equation. We assume
the particles to be in a box A of macroscopic size, so that its
volume is of order €3, e.g., in a three-dimensional torus of
size € !. To have a finite density, we also choose the num-
ber of particles N= €~3. This choice of N has to be com-
pared with the choice N =¢~2 adopted in Sec. II for the
Kinetic limit, where density has to be small, We set x=¢€r,
and look at X.-1,, the solution of (5.1) at time et Let
)_cf(t)= erj( e 'n), vil= yj(e'lt) denote the position and
velocity of the jth particle on the macroscopic scale. Since
we shall only use macroscopic variables, we drop the super-
script € from now on.

After this hyperbolic rescaling (5.1) become
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. lg—ad\] . (5.2)
mpy=—| > V| =——] |, Jj=L..N:
;7 €

The hydrodynamical fields will be obtained as limits of
the measure-valued fields éf,N Ndx,t), a=0,....4, defined as

N defyy N
£ax.n=nM(dx)=5 2 8;0(ds),

def] N

et]
£(dx.n) =p"dxn =5 2 v yp(do,  63)
N def | N
E(dx)=eMdrn = 2, ¢/(1)dy (),
where ¢;(#) is the energy of the j particle, given by
def] |)_Cj—)£k|
ej—i[myjz-+kgj V(—e—— . (5.9

One can evaluate the time derivatives of the fields (5.3) using
(5.2). It is easy to obtain conservation laws of the form

d
T =div]g, a=0..4 (5.5)
where the currents J,=(Jo,1=1,2,3) have the form
Iy, t)=p{M(dx.1),
Ly
JS]I:JI)(d)_C,t)‘—: —]\_IJZI [vj’l(t)vj,,,(t)
J_Cj(f)—J_Ck(f)
+I§j ‘I’n,l(—?‘— 5;_:1.(;)(‘1)_6),
(5.6)
LN 3
J(dx,t) =5 2 [e,-(r)v,-,,<r>+ PPN
! N =1 i) a=1
x;(0)—xlt)
x(_j_T—— (vj,n(t)+vk.n(t))
X 851(1)(d£)’
where
W, i(x)=x0; V(). (5.7)

Similarly to the Boltzmann case, the currents cannot be
expressed in terms of the hydrodynamical fields, so one
would like to close such equations using the local equilib-
rium.

This, in particle systems, is not just a local Maxwellian,
but a local Gibbs state, defined as a probability distribution
on the I'-space (AXR®)Y, with a density with respect to the
Liouville measure given by
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G(N)(J_Cl ULy XN UNGE)

n(x;,1) {_ [y—u(x; 0]

N
=z}
ot} [2aT(e N2 | 2T(x;.0)

1 |J_C,-—z_ck|)
+ 1%
T()_Cj,f)kzj ( €

where Zy is a normalization factor and n>0u,7>0 are
functions parameterizing the family of the local Gibbs states.

We formulate the local equilibrium assumption as fol-
lows: as e—0 (and, consequently, N—®) the probability
distribution on T is ‘‘well approximated’’ by a local Gibbs
state with smooth parameters. We leave vague the meaning
of well approximated.

Given such assumption, the fields §E,N ) and the currents
Jf,’f’,) converge, as N—o, by the law of large numbers,
weakly in probability to their averages, which can be com-
puted using the local Gibbs state and hence can be expressed
in terms of the fields n, 4, and T. Therefore, the local con-
servation laws (5.5) become in the limit the Euler equations
(3.20), but the equations of state for the pressure and the
energy

e=e(n,T), P=P(nT) (5.9

are now those corresponding to an interacting gas rather than
to the ideal gas. We skip the details of such a derivation and
refer the reader to the paper’* and to the book? and refer-
ences quoted therein.

As for the Boltzmann equation, the derivation of the
Euler equations could be formally justified by an expansion
in powers of € similar to the Hilbert expansion. However, a
rigorous justification is not available, because we do not
know how to prove the analog of Theorem 3.1 for the N
particle system. The only proof of the validity of the Euler
equations for deterministic systems is, to our knowledge,
contained in Ref. 25, where it is shown that the one-
dimensional hard rods model converges to a kind of degen-
erate hydrodynamics. A deep clarification of the situation has
been given in Ref. 3. In that paper it is shown that the deri-
vation of the Euler equations can be really accomplished, at
least in a region of the parameters where there is no phase
transition, provided that one can prove a local ergodic theo-
rem. For deterministic systems such a proof is not available
with the present techniques, but in Ref. 3 it is shown that one
can slightly modify the system to achieve such a result. In
fact, the authors add to Newton’s equations a stochastic
noise, small enough not to modify the macroscopic equa-
tions, but sufficient to provide the local ergodicity that they
need to complete the proof. A technical limitation in the
paper is that they cannot deal with high velocities so that,
instead of the Hamiltonian of a classical particle system, they
have to deal with Hamiltonians growing linearly at high ve-
locities, an example being the relativistic Hamiltonian.

) (5.8)

B. Navier-Stokes scaling

For the derivation of the Navier—Stokes equations we
may also proceed as for the Boltzmann case. By the consid-
erations of Sec. IV, we confine ourselves to the incompress-
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ible case. We look at X.-2,, the solution of (5.1) at time
€%t and adopt the same notations as before, namely )_cj(t)
= ezj(e'zt), yf(t)= yj(e-zt) denote the position and veloc-
ity of the jth particle on the macroscopic scale. Again, we
drop the superscript € from now on.
After this parabolic rescaling (5.1) become
1

=€y,

| (5.10)

L -1
my;=—¢

Xi—X
EVX.V(———L’ '*l)], J= 1.

e €

The low Mach number assumption is embedded by choosing
an initial distribution given by a local Gibbs state which is a
perturbation of order € of a global Gibbs state.

N
Gg )('El » Vi a--'a-xNyN)
N

=z no(&j) ex {_ [?_Jj“l.lo(?_fj)]2
N 2oz ) TP T T 2To(x))

1 |x-—xk|)
o V| 5.11
T &) ( : 10
with the parameters ng, uo, and T, such that
no(x)=1+ep(x), u(x)=ewo(x),
(5.12)

To(x)=1+ed(x),

where the reference temperature and density are set equal to
unity without loss of generality. Even if one could prove that
the distribution stays close to a local Gibbs state of the above
form, this would not be sufficient to find the transport coef-
ficients, which are crucial to get the Navier—Stokes equa-
tions, because their knowledge goes beyond the local equi-
librium assumption: as we learned in dealing with the
Boltzmann equation, in order to get them one has to know
the corrections to local equilibrium. This can be achieved by
an expansion technique inspired by the one presented in Sec.
IV and, as a result, one can obtain, at least heuristically, the
INS equations and the heat equation as given by (4.29), with
the factor 5/2 in the third of Eq. (4.29) replaced by ¢, the
specific heath at constant pressure of the fluid and the trans-
port coefficients 7 and k given by the Green—Kubo formulas.
We refer to Ref. 26 for details on this.

The above discussion is totally formal and not even a
rigorous stochastic version of it is available, as in the Euler
case. The reason for that is related to the need for determin-
ing the transport coefficients in terms of the Green—Kubo
formulas. Giving a rigorous sense to them is a highly non-
trivial task which has been accomplished in some cases with
the help of the Varadhan’s nongradient method? At the
moment no effective application of this method to problems
where the space variables are continuous is known.

For this reason we try to modify the deterministic model
given by Newton’s equations not by just adding some sto-
chastic noise, but rather considering a particle system on a
lattice. This means that particles are allowed to occupy only
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lattice sites and move from one site to another via random
jumps. The most famous of such models is the simple exclu-
sion process which we describe briefly because it is the basis
of the construction of the model for the Navier—Stokes equa-
tions. We refer the reader to Refs. 28 and 29 for a more
extensive discussion and references.

Given >0, consider the lattice A of points with integer
coordinates contained in [0,e"1]¢ (we identify the edges in
order to get periodic boundary conditions). On each point of
A we allow at most one particle. 7(x) € {0,1} is the occupa-
tion number at x € A. The dynamics is prescribed by giving
the numbers p,=0, 2 p,=1, where ¢ are vectors in Z%, The
dynamics is roughly described as follows: at all sites xe A
there are independent Poisson clocks which ring with inten-
sity 1. When the first one rings, say at x, a direction ¢ is
chosen with probability p, and the particle at z, if any,
jumps in x+¢, provided that the arrival site is empty. If x is
empty or x+e is already occupied, nothing happens. The
evolution continues after this with the same rule. The only
conservation law for this very simple system is the conser-
vation of particle number.

Euler and Navier—Stokes limits can be investigated. On
the Euler scale®® the behavior of the simple exclusion pro-
cess is determined by the inviscid Burgers equation, even
when it develops shocks, the particle system following the
solution which satisfies the entropy condition. The Navier-
Stokes limit, in the case p,=p-—, (symmetric simple exclu-
sion) is simply the diffusion equation with unit diffusion
coefficient. When the symmetry condition is violated, no
general answer is available, as in the case of the compress-
ible Navier—Stokes fluid. However, if an analog of the low
Mach number condition is satisfied, namely, if the initial
density differs from a constant by terms of order ¢, and if
d=3, the limiting behavior can be proved31 to be determined
by the viscous Burgers equation with a diffusion coefficient
given by a Green—Kubo formula.

In order to get the usual hydrodynamical equations, one
needs more that just one conservation law. This is usually
achieved by considering particles which, like real particles,
have a velocity. For stochastic particles on the lattice, the
notion of velocity is replaced by one of drift. In the simple
exclusion case, the drift is just the vector Egg Pe- Therefore,
we fix the space dimension d=3 and consider a set of three-
dimensional vectors V of cardinality S, whose elements v
have all the same modulus and are all the possible velocities
of the model. The set V is assumed invariant under reflec-
tions and permutations of axes. For each ve V we consider a
species of particles, labeled by v, which jumps from one site
to another according to a simple exclusion process with drift
v. For example, we can choose p(V)= x+(1/2)y-e, with
x>0 sufficiently big to ensure that p ()>0. The exclusion
rule applies only to particles of the same species and the
jumps of the different species are independent of each other.
Now we have S conserved quantities, the number of particles
of each species, but they are too many. Therefore, we intro-
duce a collision process to reduce the conserved quantities to
the hydrodynamical conservation laws. The collision process
is defined as follows: we say that a quadruple ¢
=(v,w,v',w') is a possible collision if the condition
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vtw=v'+w', (5.13)

i.e., the conservation of momentum is satisfied. Note that the
conservation of energy is automatically satisfied because the
velocities have the same modulus. In all the sites x € A there
are other Poisson clocks, independent of those used for the
exclusion, When the first one rings, a possible collision, say
g=(vw,v',w'), is chosen at random, with equal probability
and the collision g happens, provided that there is one par-
ticle with velocity v and one with velocity w at x and there
are no particles with velocity v and w' in x. In this case,
after the collision the particles with velocities v and w dis-
appear from the site x, and particles with velocities v’ and
w' appear. After this nothing happens until the next ring of a
Poisson clock. Such collisions are constructed in order to get
the total particle number and the total momentum as the only
conserved quantities. This is true only for suitable choices of
the velocity set V. In Ref. 4 it is proved that by choosing V as
the set of vectors (+1,%1,*w), up to permutation of axes,
with w irrational, the only conserved quantities are the total
particle number and the total momentum. A formal calcula-
tion shows that the transport terms in the hydrodynamical
equations for this system do not coincide with those of the
Navier—Stokes equations due to the presence of an extra
Burgers-type term. Its coefficient depends on « and can be
set equal to 0 by a suitable choice of the value of w.

The results in Ref. 4 consist of two parts. The first part is
about the existence of the transport coefficients. The currents
Wa» @=0,..,3, the analog of the currents for the determinis-
tic system, can be decomposed in a component proportional
to the gradients of the conserved quantities, whose coeffi-
cients are the transport coefficients, and a component fast
oscillating, which does not contribute to the hydrodynamical
equations. This is the basic content of the nongradient
method of Varadhan, which, as shown in Ref. 4, can be
successfully applied to a rather general class of models, in-
cluding the model described above. The transport coeffi-
cients are obtained via some variational formulas which are
equivalent to the Green—Kubo. formulas, whose validity is
therefore established. The viscosity matrix obtained in this
way is not as isotropic as the one obtained from the Boltz-
mann equation and the one expected for Newtonian particle
systems because the presence of the lattice creates some an-
isotropy, a phenomenon well known in the theory of cellular
automata lattice gases.32 We remark that the model in Ref. 4
closely resembles the models considered in the theory of
cellular automata. The basic difference is that the jumps of
the particles in those models are deterministic and they all
happen simultaneously at integer values of the (microscopic)
time rather than at stochastic Poisson times,

The second part of the result of Ref. 4 is a statement
similar to the one of Theorems 3.1 and 4.1. Assume that a
smooth solution to the initial value problem for the limiting
equations does exist for some finite, not necessarily small,
time interval. Then, starting with an initial distribution for
the model whose mean velocity is of order € and total density
constant up to terms of first order in ¢, it is proved that in the
stochastic evolution, after parabolic rescaling, the measure
valued random fields
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vi(zn)=€ 2 8z exnlo(x.1),
xelfy
(5.14)
Vi) =€ D 8(z—ex) (x,1), @=1,..3
3eh,
converge, as €—0, weakly in probability, to a constant for
a=0 and to the solution of the INS equations for «
=1,...,3. Here 1_(x,t) denote, respectively, the total number
of particles, for a=0, and the total momentum, for o
=1,..,3, at the macroscopic time ¢ at the site xe A,

More recently it has been proved in Ref, 33, without
assuming the existence of the solution to the Navier—Stokes
equations, that subsequences of the random fields (5.14) con-
verge, weakly in probability, globally in time, to weak solu-
tions of the Navier—Stokes equations, This result, as given in
Sec. 1V, after Theorem 4.1, is not yet proved for the Boltz-
mann equation,

As a final remark, we note that the restriction of veloci-
ties to be all of the same modulus can be removed. In this
way the conservation of energy is an independent law which
permits us to include thermal phenomena in the modeling
and possibly treat convective problems. This has been done
in Ref. 34, where a model with two different values of the
modulus of the velocity is introduced. Moreover, a suitable
process is added to include the effects of external forces.
Hydrodynamical equations similar to (4.29) with some an-
isotropy are obtained and results similar to those in Ref. 4
are proved.

ACKNOWLEDGMENTS

This work was supported by NSF Grant No. DMR-
9813268, Air Force Grant No. F49620-98-1-0207, CNR-
GNFM, MURST, and DIMACS and its supporting agencies,
the NSF under Contract No. STC-91-19999 and the N.J.
Commission on Science and Technology.

IC. Cercignani, The Boltzmann Equation and its Applications (Springer,
New York, 1988).

2H. Spohn, Large Scale Dynamics of Interacting Particles (Springer, Ber-
lin, 1991).

33, Olla, S. R. S. Varadhan, and H. T, Yau, ‘‘Hydrodynamical limit for a
Hamiltonian system with weak noise,”” Commun, Math. Phys, 155, 523
(1993).

4R. Esposito, R, Marra, and H. T. Yau, ‘‘Navier-Stokes equations for sto-
chastic particle systems on the lattice,”” Commun. Math, Phys. 182, 395
(1996).

5H. Grad, Handbuch der Physik (Springer, Berlin, 1958), Vol. XII

SH. Grad, Asymptatic Theory of the Boltzmann Equation 11, in Rarified Gas
Dynamics, edited by J. A. Laurmann (Academic Press, New York, 1963),
Vol. 1, pp. 26-59.

D, Hilbert, Grundzugeiner aligemeinen Theorie der linearen Integralglei-
chungen (Chelsea, New York, 1953).

8R, Caflisch, *‘The fluid dynamical limit of the nonlinear Boltzmann equa-
tion,”” Commun, Pure Appl. Math. 33, 651 (1980).

9M. Lachowicz, “‘On the initial layer and the existence theorem for the
nonlinear Boltzmann equation,”” Math, Methods Appl. Sci. 9, 27 (1987).

10T, Nishida, *‘Flnid dynamical limit of the nonlinear Boltzmann equation to

Esposito, Lebowitz, and Marra

the level of the compressible Euler equation,”” Commun, Math. Phys. 61,
119 (1978).

15, Ukai and K. Asano, ‘“The Euler limit and the initial layer of the non-
linear Boltzmann equation,”’ Hokkaido Math. J. 12, 303 (1983).

123, Klainerman and A. Majda, *‘Compressible and incompressible fluids,”
Commun. Pure Appl. Math. 35, 629 (1982).

I3A. De Masi, R. Esposito, and J. L. Lebowitz, ‘‘Incompressible Navier-
Stokes and Euler Limits of the Boltzmann Equation,” Commun. Pure
Appl. Math. 42, 1189 (1989).

143, Boussinesq, Theorie Analytique de la Chaleur (Gauthier-Villars, Paris,
1903).

15C, Bardos, F. Golse, and D. Levermore, ‘‘Une interpretation des relations
entre les equations de Boitzmann, de Navier-Stokes et d'Euler a 1’aide de
*entropie,”” Compte Rendus del I'Acad. Sci. Ser. 1, 11, 727 (1989); See
also, ‘*Fluid dynamical limits of kinetic equations 1. Formal derivations,"’
J. Stat. Phys. 63, 323 (1991).

'R, 1. Di Perna and P. L. Lions, “‘On the Cauchy problem for the Boltz-
mann equations: Global existence and weak stability,”’ Ann. Math, 130,
321 (1989).

7Y, Sone, K. Aoki, and H. Sugimoto, **The Benard problem for a rarified
gas: Formation of steady flow patterns and stability of array of rolls,””
Phys. Finids 9, 3898 (1997).

!8R. Esposito, J. L. Lebowitz, and R. Marra, ‘‘Solutions to the Boltzmann
equation in the Boussinesq regime,” J. Stat. Phys, 90, 1129 (1998).

19R. Esposito, J. L. Lebowitz, and R. Marra, ‘‘Hydrodynamic limit of the
stationary Boltzmann equation in a slab,”” Commun. Math. 160, 49
(1994). )

“R. Esposito, J. L. Lebowitz, and R. Marra, ‘‘The Navier-Stokes limit of
stationary solutions of the nonlinear Boltzmann equation,'’ J. Stat, Phys.
78, 389 (1995).

2R, Caflisch, Fluid Dynamics and the Boltzmann Equation, in Nonequilib-
rium Phenomena, edited by J. L. Lebowitz and E. W. Montroll (North-
Holland, Amsterdam, 1983), pp. 193-223.

2B, Derrida, S. Janowsky, J. L. Lebowitz, and E. Speer, ‘‘Exact solution of
the totally asymmetric simple exclusion process: Shock profiles,” J. Stat.
Phys. 73, 813 (1993).

A, V., Bobylev, ‘*The Chapman-Enskog and Grand methods for soving the
Boltzmann equation,”” Sov. Phys. Dokl, 27, 29 (1982).

2A, De Masi, N. Ianiro, A, Pellegrinotti, and E. Presutti, A survey of the
Hydredynamical behavior of many-particle systems, in Nonequilibrium
Phenomena I, from Stochastics to Hydrodynamics, edited by J. L. Leb-
owitz and E. W, Montroll (North-Holland, Amsterdam, 1984), pp. 124-
294, .

¢, Boldrighini, R. L. Dobrushin, and Yu, M. Suhov, ‘“Time asymptotic for
some degenerate models of the evolution of infinite particle systems,”
Reports of the Universita di Camerino, 1980.

%R, Esposito and R. Marra, *‘On the derivation of the incompressibie
Navier—Stokes equation for Hamiltonian particle systems,”” J. Stat. Phys.
74, 981 (1994).

27§, R. S. Varadhan, ‘‘Nonlinear diffusion limit for a system with nearest
neighbor interactions II,"” in Proceedings of the Taniguchi Symposium,
Kyoto, Japan, 1990,

2 A, De Masi and E. Presutti, Mathematical Methods for Hydrodynamic
Limits, Lecture Notes in Math (Springer, New York, 1991), p. 1501.

¢, Landim and C. Kipnis, Scaling Limits for Interacting Particle Systems
(Springer, Heidelberg, 1998).

30F, Rezakhanlou, ‘‘Hydrodynamic limit for attractive particle systems on
Z4," Commun, Math. Phys. 140, 417 (1991).

3R, Bsposito, R. Marra, and H. T. Yau, *Diffusive limit of asymmetric
simple exclusion,”” Rev. Mod. Phys. 6, 1233 (1994).

32(J, Frisch, D. d’Humieres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.
P. Rivet, “‘Lattice gas hydrodynamics in two and three dimensions,”
Complex Syst. 1, 649 (1987).

33, Quastel and H. T. Yau, ‘‘Lattice gases, large deviations and the incom-
pressible Navier-Stokes equations,”” Ann. Math, 148, 51 (1998).

340, Benais, R, Esposito, and R. Marra, ‘‘Navier-Stokes limit for a thermal
stochastic lattice gas,’’ to appear in J. Stat. Phys,






