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I give a brief review of particle and charge fluctuations in multicomponent systems. The long

range nature of the Coulomb forces greatly reduce the fluctuations of the uet charge g, in
a domain A C R?. Io particular, while the variance of particle numbers in A grows like the
volume, (03 ) grows only like the surface area of A. : _

The basic building blocks of matter are charged particles, so the behavior of electric
charge fluctuations in space is a problem of some conceptual interest. To be specific I will
consider fluctuations in'a domain A contained inside a very large, spatially homogeneous and
overall neutral system in d-dimensions. I shall later take A itself to be of macroscopic size
but always such that the volume of A, denoted by |A|, is very small compared to the size of
the whole system. This situation is idealized by taking the system to be infinitely extended
from the beginning with A some regular domain in R?. A

The microscopic configuration of the full system is specified by X = {x;},i = 1,2,3,...,
x; = (rj,0;), ri € R?, representing the coordinates of the particles and o; € {1,...,k} the
species of the particle at position r;. Statistical properties of relevant observables or functions
on the phase space, /(X), will be obtained from a translation invariant (extremal) probability
measure pu(dX). For aclassical system in equilibrium, at temperature B~! and uniform
densities n,, y = 1,...,k, p will be an infinite volume Gibbs measure obtained as the
thermodynamic limit from some sequence of finite boxes. For an equilibrium quantum
system p. will be the infinite volume limit of the diagonal elements of the density matrix /i in
the position or X representation.! The existence of such a limit measure can be proven under
suitable assumptions on the potential; Coulomb interactions require extra care, see [2,3].

To appreciate the “‘peculiar” behavior of charge fluctuations in equilibrium systems (both
classical and quantum), I will first consider fluctuations of particle numbers of the individual
species. Let py(r; X) be the microscopic particle density of species y at r € RY

py(nX) =2 8(r—r)dos,y,  y=1,2,...,k 1)
i
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The number of particles of species y in A will then be the integral of the random variables
py(r;X) over A ,'

N ) = /A py(r; X)dr. @)
Their expectations and covariances, with respect to the measure i, will be given by
(VA7) = ny A, 3)

5D = (W - PN - P = [ [ dridnagen-n) @
Here ny = (py(r; X)) is the density of species y and
Gra(ri ~13) = (py (r1;X)pa(rs X)) —nyng = Rya(X) ~r2) —nyng + ny5(r; ~ 1)8,q4 (5)
where n.,q is the usual pair density, see [1,4].

Note that in (3) and (4) we have used the fact that A i8 translation invariant. This permits
also to rewrite (4) in the form

BY®=|A| /Rd G, a(r)dr - /n« Gs(r)an (r)dr, ©)
where .
a®) = [ xar+n)(t - xa(ry)lan, | 0
In (7) xa is the characteristic function of the set A c R? ’

4 I, yeA .
XA(Y)={0, §¢A o v

The existence of the separate integrals in (6) requires that fv’,,s (r) be integrable, e.g., decay
faster than |r|~(9+) for some € > 0. This is expected-to be the case for pure phases away
from critical points. It can generally be proven rigorously only at high temperatures and low

densities.+3 _
To find out what happens to BY® when A is large, formally when |A] = o, we observe’7

that when A — R? in a self-similar way then o (r) will grow like |@A}, the d — 1 dimensional
“surface area” of A. (|J0A| =2 ford = 1.) Averaging |dA]~ @ (r) over rotations yields,’

limpp | OA| " g (r) = agr. ®)

o

Hence, dividing (6) by the volume, the second term on the rhs will vanish when A ARt
give '

with g a constant and » = |r],
, d
—l, d

a

3§ M=

W N -

Saf—

iAol A~ BYS = by = /Rd Gys(r)dr. )

For systems in equilibrium the right hand side of (9) can be identified, under gen-
eral conditions involving equivalence of ensembles, with thermodynamic susceptibilities or
compressibilities, that is

. 2
dany ‘Il (10)

bos = —T —
8 dAs  IAyaAs’




where A is the chemical potential of species 6 and II is the Gibbs free energy or grand
canonical pressure (each muitiplied by 8). ‘

The covariance matrix per unit volume, b, is expected to be strictly positive for systems
with short range interactions — it was proven by Ginibre for some model classical systems. !
This implies in particular that if we look at the covariance of the fluctuations in some linear
comibination of the N\"), say Ty = %, ¢,N{"(X) with $|c,| > 0 then ((Ty — (Tp))?)/|A|
will remain strictly positive as |A| — o,

We note that N\ can be thought of as a sum of |A| random variables, each variable
representing the number of particles of species 7 in a unit cell inside A. When these variables
are “approximately” independent, as in systems with short range interactions away from
critical points, then the variance will grow like |A| and the right side of (9) will be bounded
away from both zero and infinity. The deviation of NX’) from its average, divided by /[A],
will then also converge to a Gaussian random variable. This is ‘normal’ behavior, At a critical
temperature there may be long range positive correlations between the densities in different
regions and some of the fluctuations will then grow like |A|*, » > 1. This represents “super-
normal’ fluctuations corresponding to infinite susceptibilitics. We do not expect to find, in
systems with short range interactions, ‘subnormal’ fluctuations or zero susceptibilities.

The situation is however very different when there are free charges in the system, i.e.,
charged particles which can move about without restraints. These interact with the Coulombic
potential,

&(rirty .01,0) = eq,e0 $a(ry), Coan
-7, d=1 oot

da(r)={ —logr, d=2 ,
rl, d=3

which are now included explicitly in the Hamiltonian, In such cases, with the system overall
neutral, 3 e,n, = 0, the variance of Qs = Y e,N}(X), the net charge in A, is sub-normal,
growing more slowly than |A|.> More precisely, while bys is strictly positive, for each y
and 8, |A|~'(@%) = 0. This is a direct consequence of “complete charge screening”s:3
corresponding to

S(r)dr=0 12
o Star=0 (12)
where S(r) is the charge—charge correlation
S(r1 —r2) = {q(r1;X)q(r2; X))
with
q(r:X) =) eypy(r;X)
What we have instead is that the fluctuations grow only like the surface of A

limpsalOAI~OR) =~ [ rS(r)dr =% (B) (13)
with a4 defined in (8). This behavior of (Q3) implies that the determinant of the matrix
b vanishes, which is consistent with the independence of the thermodynamic pressure from
certain components of the chemical potentials, 23

In writing (13) we have assumed that the infinite system is isotropic and the integral
(13) exists, e.g,, that S(r) decays faster than »~(?+!+€)_ There are also interesting situations
corresponding to (d + 1)-dimensional charges (points, lines, d = 2,1) confined to R? when
S(r) ~r=@+1) in which case (Q3) grows like |0A|log|A|. (These have been much studied
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for the one component system of ‘charges’ in d = 1, where the statistics of the charges corre-
sponds, after suitable scaling, to the distribution of eigenvalues of the Gaussian Orthogonal,
Unitary, or Symplectic Random Matrices.)

Eq. (12) is the first of an infinite set of moment conditions or sum rules which can be
shown to hold for systems with Coulomb interactions under certain assumptions on the decay
of correlations; the latter can be proven to hold for classical systems at high temperatures and
low densities and for various exactly solvable special cases, see [5,6,8, 10] and references
there. The sum rule in (12) is expected to always hold for both classical and quantum systems,
Hence, starting with the formula analogous to (7)

(@R =Nl [ srye - [ ste)ap(eyar. (14

and using (12) and (8) leads directly to (13).
Eq. (13) can also be understood and derived by using Gauss’ theorem

Or=cq fa AFJ(S;X) -ds, \ (15)

where cy is the inverse of the area of a unit sphere in R, E is the electric field and ds is an|
clement of the surface area of JA. The integral in (15) (like that in (2)) can be treated as a/
sum of |dA| random variables. It is these random varisbles, rather than the ¢(r;.X) which turm;,
out to be “approximately” independent so that the variance of their sum grows like |A|).!! i

A physical interpretation of the charge fluctuations in A is that they behave as if the
charges in the system were combined into neutral molecules.” To see this consider a two
component system with charges +e which forms neutral dipoles of length /" Then the
charge fluctuation in A would be due entirely to the boundary, JA, “cutting” some of the !
dipoles. Assuming further that these dipoles had only short range correlations in position and
orientation, we would have (03 ) = cne?l|dA|, where n = ny = ny is the density of dipoles and
¢ is a constant of order unity. This is of course a caricature of what happens in real systems
where, at high temperatures, or if we are treating a classical system with hard cores, then at
any temperature, we do not expect any permanent very tightly bound neutral structures. The
length / should then be identificd with the Debye comelation length /p = [4nB ):egn,]‘%
On the other hand, for quantum systems at not too high temperatures, the charges form
neutral atoms and molecules and / would then be characteristic of atomic sizes determined
by quantum mechanics, e.g., 1 Bohr radius for Hydrogen, unless the dominant contribution
to the charge fluctuations comes form the small fraction of jonized charges. What (13) shows
is that the fluctuations exhibit similar behavior at all temperatures even when we deal with
plasmas or molten salts. ‘

The above interpretation of the charge fluctuations is strengthened by considering not
just the variance but the whole probability distribution of Q. It was shown by Martin and
Yalcin® that in dimension 4 > 2, O/ v/|9A| approaches, as A — ® a Gaussian random
variable with variance Xy given in ( 12). This result was extended in [7] to show that the
distribution of charges in two disjoint domains, Ay and A; is again Gaussian with a covariance
equal to ~X4|0A) N Ay), ie., it is proportional to the area of their joint boundary. This is
exactly what would be expected from fluctuations due to the surface cutting the dipoles and

* gives, for two adjacent cubes of volusne L9,

MQ—I"%_Z - ~%g. : (16)
(In one dimension when |dA| doesn’t grow with A, the charge fluctuations in a given interval
L remains bounded and the probability of finding a charge O, in a two species system with
charges e can be found exactly.5) :
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It would be interesting to know the behavior of the charge fluctuations at the critical point
(cp) of the liquid—vapor phase transition in a Coulomb system discussed here by Michael
Fisher.!2 While the truncated pair correlation functions corresponding to the particle densities
become non-integrable at the cp, it is not clear what happens to the charge correlation function
S(r) defined in (12). While there is no apriori reason for S(r) to have power law behavior at
the cp, it is surely going to be different in the liquid and vapor phases and hence will have
some nonanalytic behavior at the cp. This should carry over to K(B) defined in (13), whose
behavior as a function of B is very much an open problem.

Acknowledgements

I thank Francois Comu, Bernard Jancovici, and Philippe Martin for useful discussions.

REFERENCES

{1] See, for example, D. Ruelle, Rigorous Statistical Mechanics, Benjamin (1969).

[2] J. L. Lebowitz and E. Lieb, Physical Review Letters, 22:631, 1969; Advances in Mathematics, 9:318-398,
1972. :

(3] Rigorous Atomic and Molecular Physics, ed. G. Velo and A. S. Wightman, (Plenum, N, Y. 1981).

(4] J.L. Lebowitz and J. Percus, Journal of Mathematical Physics, 4:1495, 1963.

[5] Ch. Gruber, Ch. Lugrin, and Ph. A. Martin, Journal of Statistical Physics, 22: 193, 1980.

{6] Ph. A.Martin and T. Yalcin, Journal of Statistical Physics, 22: 435, 1980.

{7] 3. L. Lebowitz, Physical Review A, 27: 1491, 1983.

(8) Ch. Gruber,J. L. Lebowitz, and Ph. A, Martin, Journal of Chemical Physics, 75: 994, 1981; L. Blum, Ch.
Gruber, J. L. Lebowitz, and Ph. A, Martin, Physical Review Letters, 48:1767, 1982,

[91 M. L. Mehta, Random Matrices, 2nd edition, (Academic Press, 1990); O. Costin and J. L. Lebowitz,

Physical Review Letters, 15: 6972, 1995. -
[10] B.Jancovici, Physical Review Letters, 46: 186, 1981; Journal of Stotistical Physics, 28:43, 1982,

{11] J. L. Lebowitz and Ph. Martin, Journal of Statistical Physics, 34:287, 1984.
(12} c.f. M. E. Fisher, Journal of Statistical Physics, 751, 1994.



