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We prove that for almost all realizations of the Boghosian—Levermore stochastic cellular automaton model the density
profile converges, in the scaling limit, to the solution of Burgers' equation. The proof goes via the propagation of chaos and
yields tight bounds on the fluctuations. These estimates also yield stability properties of the (smooth) shock front: at long
times it remains well defined on 2 micrascopic scale - but its location fluctuates.

1. Introduction

The use of cellular automata to model hydrodynamical flows of all varieties has grown explosively in the
last two years from the spark started by Frisch, Hasslacher and Pomeau (FHP) in their seminal paper [1]:
for earlier work see [2], for recent work 3, 4]. While the numerical results so far appear promising, at least
to the devotees, the difficulties involved in proving convergence of the FHP model to the solutions of the
Euler or Navier—Stokes equations appear almost as formidable as proving this for a system composed of
atoms obeying Newtonian dynamics. In both cases the microscopic dynamics conserve mass, momentum
and energy. The macroscopic fields corresponding to these quantities, obtained as sums of many
microscopic variables, are then expected to evolve, on macroscopic-space—time scales, according to suitable
deterministic hydrodynamic equations [S]. More precisely, we expect the non-conserved rapidly varying
variables to accommodate themselves to the “instantaneous” values of the slowly varying ones to produce
states of “local equilibrium” with parameters specified by the values of the slow variables. The central
mathematical problem is then to show that the correlations created by the dynamics do not take the system
out from such a local equilibrium state. (This is of course true by definition for a global equilibrium
state — but such a state is of no interest for time evolution.)

In order to get some insight into the questions posed by cellular automaton evolutions Boghosian and
Levermore (BL) [6] invented a cellular automaton model for solving the one-dimensional Burgers’
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equation,

2 2

%p(r,t)+c-a?7( -32-)=ng"‘ (1.1)
Here ¢ > 0 is a velocity and » a viscosity. For v =0 (1.1) can lead to the formation of sharp shocks from
smooth initial data. These are density discontinuities, low density on the left high density on the right,
which travel at a fixed speed. For » # 0 there are still such traveling fronts but the profile is now smooth
having a thickness of @(v/c). We shall continue to refer to these fronts as shocks.

Boghosian and Levermore argued convincingly and demonstrated numerically that the density profile of
their model does indeed follow the solution of Burgers’ equation over a macroscopic time period of order
unity. Their main difficulty in actually proving this involved controlling the correlations which may build
up in the microscopic system —a problem which, as already mentioned, is central to all models of this kind.

In this paper we solve this problem for the BL model and prove very strong convergence to Burgers’
equation. We do this by proving the propagation of chaos, i.e. we show that correlations do not in fact
build up for fixed macroscopic times. We also discuss some results about the behavior of the system for
“long” times when the main effect of the microscopic fluctuations is to shift in a random way the location
of the shock profile — the shape remaining sharp on the microscopic level. This is consistent with stability
properties of Burgers’ equation.

Our analysis relies heavily on the results of DeMasi et al. [7) who obtained Burgers’ equation for the
density profile of particles on a lattice evolving via continuous time stochastic dynamics - the weakly
asymmetric exclusion process.

We also mention here that the BL model generalizes in a natural way to higher dimensions and to cases
where ¢ depends on position leading, in 4-dimensions, to the macroscopic equation

TR g b

——-——ap(a't’t) +v:[e(r)p(1-p/2d)] = 7. | (12)

2. Description of model and statement of results

Our model is the same as that investigated by BL [6]. We consider a system of particles on a
one-dimensional lattice, each one with “ velocity” o = + 1. There is an exclusion rule that two particles at
the same site cannot have the same velocity. Therefore each site ¢ € Z may have at most two particles
(with different velocities). Each unit time updating of the automaton consists of two steps, the first is
stochastic the second one deterministic:

Step 1 - Velocity flips. This updating rule acts independently at each site g. If there are two or no particles
at g then nothing happens. If, on the other hand, there is one particle at g with velocity 6(q) then its new
velocity o’(q) takes the value +1{~1] with probability p = § + €[4 — €], € > 0, i.e. the o'(g) are indepen-
dent random variables with mean 2e,

Step 2 - Advection. Every particle at site ¢ moves to ¢ + 0'(g) keeping its velocity.
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Notice that there is an effective interaction, “collisions”, among the particles. The fact that a particle
cannot flip its velocity if another one is present at the same site causes nontrivial space-time correlations
in the process.

Notation. Let X be the set of all particles configurations 1, 7= {n(g,9); n(¢q,0)€ (0,1}, g€ Z,
a(q) € {1, —1}}. Let P, be the transition probability of the automaton described above from its state at
time ¢, r € N, an integer, to its state at ¢+ 1,

P(n(q,0;t+1)=1n(t)=n)=4{n(g—0,0) +u(qg—0,—0)}
+ea{n(g—o,0)+n(g—0,—0a)=2n(g—0,0)n(q—0,—0)},
(2.1)
P(n(q, -1;1+1)=1,n(g+2,1;0+1) =1|n() =m) =n(g+1,1) 'n(g+1,-1). (2.2)

We call the above process the weakly asymmetric automaton process (WAAP); E; denotes the
expectation with respect to the WAAP with initial measure 4. If e =0 we call the process the symmetric
automaton process (SAP) and write P and E, for the above quantities.

We finally define 7(qg, ¢) to be the number of particles at (g, ¢), i.e.

1(q,t) =n(q,15¢) +n(q. —1;1) (2.3)
and we set 1(g,0) = n(q).

Our first result concerns the convergence to Burgers’ equation and propagation of chaos for the WAAP.

Theorem 2.1. For € >0 let g, be any probability measure on % such that for all n>1, for all distinct
qy--+» g, and all 0y,..., 0,

E,,,[ 11 n(q,.,ao] - T [4e(ea)), (24)

i=l,n i=1l,n

where p(r), r €R, is a smooth function with values in [0, 2]. Then for any n =1

lim sup
€=04,,0y,....qn, 0,

E;f,{ ].—[ n(q,-,ai;[f_zll) - H [Jip(fqt"t)] =0, (2-5)

i=1.,n i=1,n
where [€~ 2] is the largest integer <e™%.

The sup in (2.5) is over all distinct {(g,,9}),...,(qx» 9,)} While p(r, 1) solves Burgers’ equation (1.1) with
c=2,v=1%, e

2os2d{ofi-5)-1 50 e
p(r,0)=p(r). (2.6b)

In Theorem 2.1 Burgers’ equation is derived as the limiting equation for the ensemble average
occupation numbers. In real systems, as well as in computer simulations, we are interested in what
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happens in the system in a single run, see [6]. With this in mind we set for any >0, €N, g€ 2

Mg, t;e7%)=¢ Y a(q1) (2.7)

l9'-qlsiee

the actual density of particles at time ¢, in the interval having length ¢~* centered around g. We shall
choose @ <1 so that on a macroscopic scale where the unit of length is ¢~ the interval is infinitesimal.
M(q,t; %) is of course a random variable, different for each realization. The next theorem states our
result about single realizations of the automaton system.

Theorem 2.2. Let p and p, be as in theorem 2.1, Then for any a and £, such that 0<a <1 and
0<é<a/2, £<1—aq, and any positive T and R

lim Pf{ sup sup |M(q,t;¢7%) — p(eq, )| > ¢

#( ) —o. (2.8)
=0 "N oice T g5 R

The convergence in (2.8) is faster than any power of e.

As mentioned in the introduction the study of fluctuations is important for establishing the stability
properties of the evolution. We introduce the density fluctuation field X/ (¢) as

X:(9) =ve X o(eq)[n(q. %) —p(eq,1)]. (2.9)

qel

Here ¢ € %(R), the Schwartz space of C* real functions with “fast” decay at oo, such that any derivative
is uniformly bounded. One should think of ¢ as a smoothed characteristic function of an interval, say for
instance the interval [0, 1]. Then X/(¢) would be the total number of particles in [0, ¢~!] minus its
asymptotic value (as ¢ — 0) divided by the square root of the volume. Hence X(g) is just the usual density
fluctuation random variable in that interval. The next theorem states that the density fluctuation field
converges to a Gaussian distribution: .

Theorem 2.3, Let p, and p be as in theorem 2.1. Let P, be the law of the process generated by all density

fluctuation fields defined as in (2.9). Then P, converges to P on finite distributions, where P is Gaussian
with mean zero and covariance kernel C*,

lim E5 (X:(9) X5, (#)) = [f drdro(r)4(r)CA(r. ). (2.10)
C* satisfies the equation

d , 32 . 0 .
KS:CI:*I+S("”‘)=%ﬁct:kl+s(r’r)+2.a_r.[1—p(r’t+s)]cl:kl+s(r’r)’

with the initial condition at s =0 given by

C(r,r) = G(r, r) +8(r—r’)[p(r,t)(1 - elet) )]
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where C,(r, r') is the solution of the equation

‘aa—tc,=%aaz C+2§r[1—p(r Hc(r,r)+ 4 aa/2C +2£ [1-p(r,0)]C(r, "))
+8(r—r’){p(r 1)( p(rzt))ar (r,1) - (arp(r z))} (2.11a)
with
Cyo(r, 1) =0. . (2.11b)

Remark. Actually a statement sharper than the one given in theorem 2.3 holds. Let D(R . — S'(R)) be the
space of functions from R, to the distribution space S'(R) which are right continuous with left limit,
endowed with the Schorohod topology [8]. Let P¢ be the law on D(R ,— S'(R)) induced via (2.9) by the
WAAP with initial measure p,. Then P¢ converges weakly to the Gaussian law described in theorem 2.3.

3. Outline of the proofs

We shall prove the theorems stated in section 2 using correlation functions techniques, as in (7). Let
x=(q,0), €2, 0= +1 and for each n > 1 set

x=(x,...,x,)=(q,0),

where x; # x; if i #j. The n-body correlation function is

i) = E5| TG r)), (3.1)

E; being the expectation w.r.t. P}, the law of the WAAP with initial measure p,. Using the evolution rules
for the automaton described in the preceeding section we can easily write an equation for the time
increments of the correlation functions:

2n
ul(x,t)= kz Yclk, y,&; x)up(p,t—1). (3.2)
-y

The coefficients in (3.2) satisfy the bound

Ylelk, y,e; x)|<ce if k>n, (3.3)
R

where the ¢, are suitable constants.
This bound reflects the fact that when € =0, ie. in the symmetric case, the right-hand side of (3.2)
contains only n-body correlations, a rather surprising fact at first sight, since there is a real interaction
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among particles. More precisely (3.2) becomes

ud(x, 1) =2 Q(x~p)uf(y, - 1), (3.4)

u® being the correlation functions for the SAP and Q a probability transition matrix which describes the
backward evolution of the n-particle symmetric automaton. Q is analysed in more detail in the appendix.

To go from the SAP to the WAAP one might try to view (3.2) as a perturbation of (3.4). The difficulty is
that the bound (3.3) is only linear in e. As a consequence the perturbation series can only converge for
times of the order of ¢!, Such times are infinitesimal on a macroscopic scale, where times are scaled by
¢~2, hence the expansion does not allow to go past time 0, macroscopically. The problem comes from the
fact that since we are looking for a derivative in (3.2), cf. (2.6), we cannot afford to neglect the signs of the
coefficients, namely we need to do better than bounding their absolute values, as done in (3.3).

Let us assume, for the moment, that we can in fact extract a lattice derivative from the expression

2n
kE Yelk, yoe x)up(y, t—=1) =2 0(x=>y)us(p,t—1) (3.5)
=n ) ¥y

and that the powers of Q are well approximated by random walk transition probabilities. (This is trivially
so if n =1, otherwise some estimates are needed to control the effect of the exclusion interaction, we do
this in the appendix.) This gives (after some work) an estimate on (3.5) of the form

Y ck Y Fle—s50"" [semr = sl Pn(n+ 1) - (n+ k). (3.6)

k (>5> - >8>0

where ¢ is a suitable constant. The last factor takes into account the combinatorics of the expansion and
[s5;,— 5;41)71/? estimates the difference between the probabilities that a symmetric random walk goes to
nearest neighbor sites after a time s;— 5, .

Unfortunately the estimate (3.6) is only sufficient for proving convergence at times of the order ek
with 8> 0. For any such time in fact the terms in (3.6) with k > 1 are infinitesimal w.r.t. €, s0 that by
stopping the series after a suitable number of terms, we get an expression for the correlation functions
which is as accurate as desired. To reach later times we cannot simply iterate the above procedure, we
would inevitably run into convergence problems once macroscopic times are reached. To break the growth
of the correlation functions we have to fix, i.e. condition on, the value of the particle configuration at the
times ke~2*#, the end steps of our iterative procedure. By choosing B suitably small the iteration then
works for times of order ™%

To realize this program we need to prove estimates like (3.6) for a process which starts from a single
particle configuration and not from the nice smooth measure g, which we assumed describes the initial
state of the system. Secondly we need to prove that the configurations on which we are conditioning are
suitably close to the macroscopic density profile which solves the limiting Burgers’ equation. In the next
section we shall see that closeness may be expressed by the condition that for all relevant ¢’

e Y (n(g.1)—p(eq.€)) (3.7)

jg-ql<ice

st kRan

R T

-a

is suitably small. Here 1(g, ¢) denotes the number of particles at ¢ € Z at time ¢, ¢ is one of the times
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ke~2+8, while p(r, ) is the solution of (2.6). [t will be convenient in the actual estimates to replace p in
(3.7) by the solution of a discretized version of (2.6).

The probability that (3.7) is larger than some quantity can be bounded using the Chebishev inequality.
This states that if Y is a random variable with distribution P, then for any § >0 and n =1

P(|Y] > 8) <8 E(Y?),

E denoting the expectation w.r.t. P. Hence

Pp‘{ > ce]

2n
Sc-—Zn& E CZ"QE‘:‘[H(T](Q,',I)—P(cqiyfzt))}' (38)

Qe B l— 18170 i=1

< ¥ (nan)-eleg, )

lg—q'l<}e®

This motivates the introduction of the following quantities which are slight, technically convenient,
modifications of the expression appearing in the right-hand side of (3.8):

v;(x,t[n)=E,;L:l_[l(n(x,,t)—pt(x,.,tln))}, (3.9a)
s ) = 5 T (a0 el )| (3.50)

where 7 is an arbitrary configuration while g, is the initial measure defined in theorem 2.1. Finaily
p.(x, t|n) is the solution of the following equation:

pc(Qvo’t-{—lM):[%-‘-(a] E P<(4‘0,T,t|ﬂ)"2<° ]._[ll%(q_ay"',flﬂ)v (310)

Tl Tt

with initial condition p,(x,0)=n(x); while p(x, rl1.) satisfies the same equation with initial condition
p(x,0) = Ef(n(x)). Notice that eq. (3.10) is obtained from (2.2) by assuming that the correlation functions
factorize.

The main estimate, from which all other results follow more or less directly, is stated in the following
proposition:

Proposition 3.1. For any n21, T > 0, there is a constant ¢ such that for any 71 and any t < €T
sup |vi(x, t|n) | < ct™"%, (3.11a)
X
while if g, is as in theorem 2.1, then
sup |t (x, ) | < e (3.11b)
x

Proof of theorem 2.1. As proven in [6] the theorem is a consequence of the factorization of the correlation
functions, which we have from proposition 3.1. One of the main results in [6] is that p(-, - [#) actually
approximates the solution to (2.6) in the limit ¢ — 0.
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Proof of theorem 2.2. We shall use the Chebishev inequality to estimate the probability in (2.8), but first we
need to rewrite (2.8) in such a way that after having used the Chebishev inequality, we have an expression
containing v-functions, so that we can use proposition 3.1. To do this we note that we can rewrite the
difference in (2.8) as the expression in (3.7) with an error which goes like ¢!~ We then use the following
estimate, proven in [6]:

[20(q,0,111.) = p(eq,€¥) | < ce

uniformly in ¢, g, ¢ < ¢~2T, where c is a suitable constant. Such a bound allows us to replace p by o in
(3.7). The error goes like €. Since by assumption £ <1~ a, the event in (2.8) is bounded by e Te R
times an expression similar to that on the right-hand side of (3.8) with p, in place of p. Such an expression
in turn is bounded by the maximum of {ce“"e‘fz", ce"e"fz"}, where as usual ¢ denotes a suitable constant
independent of e. The first term bounds the contribution coming from the sum over g,,..., 43, when they
are pairwise equal, the second term deals with the case where all g, are mutually distinct. We have used
(3.11b) for estimating these last terms, while the former just counts how many terms are present, each
giving a bounded contribution, because all occupation variables are bounded by 1. It is easy to see that the
intermediate cases are also bounded by the same quantity. Since £ < a/2, we can, by choosing n large
enough, make this term arbitrarily small when € — 0, so that it still vanishes when multiplied by ¢ In
this way the theorem is proven; we shall omit the details.

The proof of theorem 2.3 is slightly more delicate, it requires a further analysis of the expression in (3.2).
On the other hand it can be reduced, by using abstract arguments, to the proof that for any positive ¢,
|e"v§(x,e“2t|,u<)| < ¢ where ¢ does not depend on x. This follows from (3.11b) and so the theorem is
proven. We refer to (7] for more details.

We conclude this section with some comments on the relation between the BL automaton and the
simple exclusion process. The two systems share many common features and their differences disappear in
the hydrodynamical limit, at least in the weakly asymmetric case; it does not seem, however, that they are
truly isomorphic, at least we have not succeeded in establishing such a relation. To compare their collective
behavior we should remember that the BL automaton may have twice as many particles per site as the
exclusion process, hence when going from the automaton to the exclusion we should divide the density by
2. Furthermore in order to compare the WAAP to the weakly asymmetric simple exclusion considered in
(7] we need to change the flip rates. In our case in fact the drift of a single particle is 2¢ while in [7] it is
only €. Therefore if we set the probability that the velocity flips to +1 equal to (1 + €)/2, we then get (1.1)
instead of (2.6) with c=1 and v=14. Then p=p/2 solves the same Burgers’ equation as the limiting
density profile in [7].

4. Proofs

We shall first write an equation for the time increments of the v-functions (unless otherwise specified v}

- stands both for (3.9a) and (3.9b)). The equation will have a structure similar but more complex than for

the usual u-correlation functions, cf. (3.2). It is convenient to interpret as number of particles the degree of
a v-correlation function, its argument specifying locations and velocities of the particles. In such language
the equation for the v-correlation functions describes a birth-death process with displacements. Besides



J.L. Lebowitz et al. / Convergence of cellular automaton to Burgers' equation 173

the basic unperturbed motion determined by Q, the same as that in eq. (3.4), we have more displacements,
births (already appearing in eq. (3.2)) and deaths.

This last is a novelty with respect to (3.2) where the number of bodies could not decrease. This is not
surprising since the v-functions are linear combinations of wu-functions with equal or smaller degree.
Naively one might think that this should not worry us at all, since the iteration becomes simpler when
there are less particles, This is indeed so, but remember that we are trying to prove an upper bound for the
p-functions which decreases when the number of particles increases, see (3.9). The real problem is in fact to
recognize a suitably small factor for each particle which dies. In this way we shall deal with deaths. The
problems coming from the births (convergence of the corresponding perturbative series) is dealt with by
studying the process only for a time interval ¢"2*# and then iterating, in the way explained in the
preceeding section. This second part is very similar to what is done in [7] so we shall only outline the main
ideas. The first part is also pretty similar to 7], but with a somewhat more complex algebra. In particular
we have to treat separately different type of configurations (including velocities) occurring in vy(x, t). We
shall consider in detail the new problems while just outlining what can be reduced to {7]. We begin with
estimates for ¢ < e~ 2*# for free configurations.

We have already mentioned that in the equation for the v-functions particles may die. This does not
happen for free configurations: we give some definitions and then state a lemma to clarify this point.

Definition. We shall say that a configuration x = (x,,..., X,), x;,=(g,,0;), i=1,...,n,is freeif g;— q;# 2
for all i #.

Definition. T is the transition probability in the configuration space of n particles which describes the
process of randomization of the velocities defined in step 1 of section 2, for € = 0. Namely each particle
changes or keeps its velocity with equal probability if no other particle is at the same site, if there is
another particle then no change occurs. S, is the advection step in the evolution, namely each particle
moves by +a, ¢ being its velocity. With the above notation Q, as defined in section 3, equals T'S_,
P=S,T is the forward evolution, R = TS T is the self-adjoint evolution operator. Notice that TS , T =
TS_T, T*=T, T is self-adjoint while (S, )*¥=S_ and that Q"T = R". Note also that by its definition

£0(x = x)f(x)= L 8_(x=x")T(x" = x)/(x)

so that in matrix notation (x|Q|x") = (x|S_T|x’) or @ = S_T. Finally applying T(x — x') to a function
f(x')=f(q’,a") corresponds to replacing ¢’ by g, summing over the velocities and dividing by a
normalization constant.

Lemma 4.1. Let x be a free configuration of n particles and let ¢ be an integer, ¢ > 0. Then there exist
coefficients a(k, y, ¢, x,t), k=n,...,2n, such that

ZT(x—-»x’)u,‘,(x’,t+1) =Y R(x-y)v(y, 1)+ Z'i Ya(k, y,e, x,t)vs(p,1). (4.1)

k=n y

The coefficients a are equal to O unless the position of each particle in y is nearest neighbor to some
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particle in x. Furthermore for all &

Yla(k, y, e, x, )| <ce, (4.2)
y

where ¢ is a suitable constant which only depends on n. Finally for any k as above it is possible to
partition the set of all y into pairs y’, y” so that 1) y’ differs from yp” by displacing a particle by two sites
and 2) there is a constant ¢, which only depends on n, such that

la(k, y' e, x,t) +a(k, p", e, x, 1) | < ce™'/% (4.3)

Proof. Let us first consider the case n =1. We have

uf(g,0,t+1)=(3+ed) Y uf(g—o,7,t)—2e0ui(qg—0,1,9—0,~1,1)
T 4]

from which we subtract p,(q, 0, t + 1), as given in (3.10). On the left we then have vi(qg, 0,7+ 1) and on
the right the linear terms reconstruct a v-function. On the other hand setting ¢’ = ¢ — g we get

ué(q',l,q’,—1,t)=v§(q’,1,q’,—1,t)+ Z Utl(ql"r’t)pc(ql_'rat)’*' Illpc(Qvfat)»
T 1 T=x

so that

v§i(g,0,t+1)=(3 +ea) ) vi(q', 7, t)—2e0v5(q’,1,9',—1,1)
T 4]

—2¢0 Y. o8(q' 7, t)plq", —7,1). (4.4)
T

This proves (4.1) and (4.2) in the case n = 1. The same argument easily extends to n>1 when no two
particles in x are at the same site (at ¢ + 1). We shall consider later the case when there are two particles at
the same site.

Notice that in (4.4) ¢ multiplies €. Therefore in the equation for Tv§, obtained by summing (4.4) over o
and then dividing by the normalization factor [2 in this case], the first order terms in ¢ have opposite signs.
The arguments of the corresponding v¢ and p, functions are different, the sites are displaced by 2. Then
(4.3) is a consequence of the following estimate valid for all ¢ and o:

‘pc(q’o'»t)—pc(q_29°"t)|SCt_l/zv (45)

which can be derived from an analysis of (3.10). Actually for p.(:,-,-|p.) the factor 171/ on the
right-hand side of (4.5) can be set equal to €. The same argument holds for n>1 proving (4.3) and
therefore the lemma for free configurations with at most one particle per site.

The new case is when there are two particles at the same site. We have

“E(qa q,t+ 1) =E‘{0El[(%+€0)n(q—0,t) “26071(4— U’S’t)n(q— g, — S’t)]}’

where we have omitted writing the velocities in the arguments of the u-functions: we use the convention
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that each u equals the sum of w-functions over all possible velocities; above, on the left side of the
equation, the sum is trivial, since the velocities must be of opposite signs. We have that

5(q,q,t+ 1) =us(q,q,t+1)— Y, ui(q,0,t+1)plq,—o,t+1)+ [] olq.0,1+1). (4.6)
a=+1

o= 11

Proceeding as before we find after some elementary manipulations that the zero order terms in e
reconstruct the action of R on v, the linear order in ¢ have the form of a lattice derivative
(sites displaced by 2). The remaining terms are of the order €2, notice that € < const. £~ !/2, since we do not

go past times of order e~2 Combining this with the previous analysis we then obtain the proof of the
lemma. :

Remark. Some comments on lemma 4.1 may be useful to relate what we are doing now with the outline
given in the preceeding section. The whole game was and is to extract lattice derivatives from the equation
for the time increments of the v-functions since the factors € in (3.3) and (4.2) are not enough to make the
perturbation series converge. Lemma 4.1 tells us that for each k the sum over p breaks up into a sum over
suitable pairs p’, y”. Each pair, by (4.3), is bounded by the sum of a lattice derivative of a v-function and
a term of the order of e1~'/2, Such result is responsible for the terms [s; —s;.,]” /% appearing in (3.6).

As explained above the validity of (4.3), crucial for our analysis, is directly related to the fact that we are
computing Tu. It would not hold for v alone. Notice however that the following telescopic identity holds:

K(x )= ¥ fo-x(xm[u:(y,s)— EQ<y~z)v;(z,s—1>}, (4.72)

s=1 ¥

since by definition v<(-,0) = 0. Hence, recalling that Q = TS _ and defining for s <1, Q/_;=S_Q "7},
the right side of (4.7a) can be written in the form

ZQ{_s(x—*y)[ET(.v—* 2)0i(z.s) = DR(p = 2)oi(z, s - 1)], (4.75)

so that if y is free we can again use lemma 4.1. On the other hand for the SAP the Q-probability that after
time ¢ —s the configuration in (4.7) is not free is small if 7 — s is large. This follows from the already
mentioned fact {which we shall prove in the appendix] that the powers of Q behave asymptotically like
those of the transition probability of a random walk.

We next examine a particular subset of non free configurations.
k-type configurations

Definition. A configuration x =(q,,0y,..., Gn» 0,) is Of k-type if n =2k and g,;— 05;=qp;_y — 03— for
all i <k.

In the next lemma we examine the time increments of a 0§ function evaluated at a type-1 configuration,
the analysis of v$,, k > 1, is similar because different pairs of particles do not interfere in a unit time step.

Tt
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Lemma 4.2. Let t>1 and g € Z. Then there are uniformly bounded functions &', b", b™ so that

=1 r=x1

u;(q+1,1,4—1,—1,r+1)=u;<q,1,q,—1,1)+%[ > —wi(qmt)H > m(qu)]
—%[p((q,—l,t)]—p((q,l,t)]z+¢:2[b’(q,t,<)v§(q,1,q,—l,t)

+ ) vﬁ(q,'r,t)b”(q,'r,t,e)+b"'(q,t,e)]. . (4.8)

r=%1

The proof of the lemma is essentially computational and is omitted.
Other configurations

There are, of course, configurations which are neither free nor of k-type. The simplest example is that of
a configuration x with 2 particles at distance 2 having the same velocities. If we compute the time
increments of the corresponding v-function we may argue as in lemma 4.1, and we get the same estimate
except for the bound given in (4.3). This is so because in the sum on the left-hand side of (4.1) there is a
configuration x’ which is of type-1, for which the arguments used in the proof of lemma 4.1 do not apply.
No problem about this particular configuration: we can use lemma 4.2 which gives us the right
contribution. The troubles come from the remaining cases. We need to prove the estimate (4.3) for the time
increments of ¥ _T"'(x — x")v§(x’, t) where T" is like T except that it equals 0 at type-1 configurations. The
problem is then to find, even in such a restricted ensemble, the right cancellations which produce the
desired lattice derivative, in the sense of the inequality (4.3), cf. the remarks at the end of the proof of
lemma 4.1. In the present case it is easy to check that this is possible. In fact the time increment of
vi(q, —1,1,g+ 1, —1,¢) satisfies the estimates of lemma 4.1 (it is just the same computation as for the
case when two particles are at the same site and such a case has been considered in lemma 4.1). Again
it is a matter of simple computation to check that the same estimates hold for the combination
rooa3(g—1,7,9+1,7). '

We can generalize the above argument to an arbitrary configuration where, however, the structure of the
cancellations which produce the desired lattice derivative has a rather complex form. Their origin however
is quite transparent: we shall group together configurations in such a way that in each group the average
velocity is 0, like in the previous example. We start with a definition.

Definition. Given a configuration x =(g,,0,..., 4, 9,) = (¢,0) [sometimes we shall write more explicitly
(%), g ={q<€q: |g—q)| #2foralli=1,...,n}[or equivalently g)(x)], x = {(g;,0,): ;€97 },
x® = {(g,,0,): thereis j# i such that ¢,— o, = qj—-oj}, x@={(q,0,): €9, (910, & xM}. We
finally set g™ = {g;: (g, 0,) € x®} for A =1,2 [or equivalently gM(x))

In the above definition x(/ is the free component of the configuration x, x® is the type-k (for some k]
component of x. The sets ¢ and ¢® obtained from x are, as explained above, respectively unions of
maximal connected components, two sites being connected if they are at distance 2 from each other. Using
such notions we make the following definition.

e
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Definition. Given x let g®/, i=1,..., m be the set of all maximal connected components of ¢, and for
i=1,...,m let

Si= 3 g

g9
be the total velocity of the particles in the ith connected component of ¢,

We still need one more definition which establishes the notation for the subsets of configurations where
cancellations will occur.

Definition. Two configurations x and y are equivalent if (i) ¢(x)=g(y) [hence ¢/)(x) =g )(p)] (ii)
x® = p® [hence ¢P(x) =gP(y) and they have the same connected components, say there are m such
components) and finally (iii) [S @ {(x )| = [SP{( p)}, for i=1,..., m.

Given a configuration x we denote by 7(x) the set of all configurations y which are equivalent to x. We
then denote by IT, the collection of all mutually distinct subsets of the form =( y) for any y such that
T(x > y)>0.ForacII, set a™={ yN: yea}, where A=/,1,2.

Let x be a configuration with n particles and assume that there are k sites where there is one and just
one particle of x. Then with the above notation

LT(x—=yp)oi(y,0)=27% 3 X us(p,1). (4.9)

y a€ll, y€a

The cancellations will occur among configurations belonging to the same atom a. In the sequel therefore
we fix an a and analyse the sum over y € a. We shall first formalize a property already used several times,
namely that the effects on the time increments of v¢ coming from particles which do not interact in a unit
time step are independent.

Let us define the increments of v* as

vtz|(z, t+ 1) = ZUL:lC(E, 2, z,y t), (410)

where [z| denotes the number of particles in z. To simplify the writing we set v*(x, 1) ® v‘(y, 1) for
vt (2, t) with z being the disjoint union of x and y. An analogous definition holds for the & product of
more than two v-functions. Thus given x and a €11,

Yo(y,t+1)= & Y Yui(z,t)cle, y™,z,1). (4.11)

y€a A=f12 g™ g

We have already studied the structure of the increments for configurations which are either free or of
type-k in lemmas 4.1 and 4.2. Eq. (4.11) tells us that such estimates can be applied also for general
configurations, because of the product structure of (4.11). So we are left with the problem of estimating the
contribution of the sum over all y®@ e a®.

Using again the independence of the effects coming from different connected components we can
actually reduce ourselves to the case where a® has a unique connected component. In this case the
positions of the particles in any of the configurations y® € a®® are fixed and are ¢, +2,...,4+ 2N for
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suitable ¢ and N. Call oy,..., 0y the corresponding velocities, then, necessarily 0,2 0;,, for i=0,..,,
N — 1, otherwise there would be a type-k component in the configuration. Therefore the allowed
configurations are characterized by an index [/ which takes the values 0,..., N+ 1: =k means that
0,=1for i <k and g;= —1for i > k. If I = N +1 this means that all o;= 1. The configuration with / =k
has therefore total velocity opposite to that of the configuration with /= N + 1 — k. Since an atom a is
determined by the requirement that all its configurations have the same absolute value of the total velocity
there are just two configurations in a if =k and k# N+ 1—k and only one otherwise.

Let o,=1 for i <k and = —1 otherwise, i.e. I =k, call y® such a configuration and let it be in the
atom a we are considering. Then using (4.4)

(%. + eo,.) Y vi(g+2i—o;,T,1)

T=+1

Yoz, t)e(e, y@,z,0) =
z i=0,N

~2<ci{v§(q+ 2i—o,1,q+2i—0,—1,1)

+ Y vi(g+2i—ag,7,t)p g+ 2i—oi,—'r,t)}]. (4.12)

=1

Developing the product, the zero order in € gives Q acting on v*(-, ¢), while the first order term is

1 .
> eo,.[ @ 70‘1((]4'2]—0!.,1’,[)]

i=0,N Jei

<) [ Y vi(q+2i—o,-,'r,t)—20§(q+2i—o,-,1,q+2i—o,,—1,y)
T= 41

-2 Y vi(g+2i-o0,7,0)p(g+2i—0,—71,1)]| (4.13)
Tl

If we consider the same expression starting from the other configuration w® in the same atom a‘® as y9?,
where, to be definite, we assume that a® has two elements, we get the same expression as in (4.13) but
with the new configuration o’. Since =N + 1 — k in this configuration it then follows that there are as
many positive values of o/ as there are negative values of ;. By putting these together we reconstruct
differences between v-functions and /or products of v-functions and p functions with displaced arguments.
In this way we obtain lattice derivatives of v-functions and/or p functions. The latter are estimated by
(4.5) and in this way we derive the same estimates as in lemma 4.1 also for this case, where the lattice
derivatives involve differences of v-functions with sites displaced by at most 2N.

Summary of estimates

With the above considerations we have completed the characterization of the time increments of the
v-functions as they appear in the perturbation expansion (4.7). We summarize below the main conclusions.
(1) If no particle disappears when developing the square bracket term in (4.7b), then we have a factor ¢
together with either a lattice derivative or a factor s~1/2 (2) If however s = 1, cf. (4.7a) and (4.7b), we only
get a factor e, [This will be enough because we do not have to sum over s as we had to in case (1).] (3)
When particles die there is a type-k component in y at time s, which implies that k pairs of particles at
time s have to be close [in each pair the distance between the two particles of the pair is 2}. Furthermore
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for each pair there are three possibilities; (i) no particle dies, (ii) one particle dies contributing a factor
s™172 cf. (4.8) and (4.5), and there is a lattice derivative, (iii) both particles in the pair die, contributing a
factor s !, cf. again (4.8) and (4.5). Instead of this in any of the above three subcases of (3) there might be
a contribution of the order of €2, cf. (4.8).

For the convergence of the perturbation series it is enough at each step to have one single lattice
derivative and we can disregard the possible presence of other ones.

The same general features as above appear also in the weakly asymmetric simple exclusion process
considered in [7], the number of terms at each step of the expansion, as well as their specific structure are
different than in the present case, but they lead to the same conclusion (1),...,(3) as above. There is
however still an important difference, namely that the unperturbed motion described here by Q is not the
same as the one appearing in (7], i.e. the transition probability of the symmetric simple exclusion process.
In [7) the main point was to use the closeness of such process to that of independent symmetric random
walks, here we obtain similar closeness between our r-particle symmetric automaton, with transition
probability @, and the process of n symmetric independent particles. This is done in the appendix, and
since we can derive the same bounds as in [7] for the difference between the interacting and independent
processes we are then reduced to the case considered in {7]. We do not consider it necessary to reproduce
in the present context the arguments used in [7] to conclude the still long proof, since this requires
essentially only a change of language. On the other hand the reader who has reached this point of the
paper might like to have a somewhat more detailed outline than that in section 3, of how the proof
proceeds, and this is what we are going to do below.

Sketch of remaining steps

As already mentioned in section 3 we cannot iterate indefinitely eq. (4.7a), even if we limit ¢ to be less
than ¢~2*8, 8> 0. All our estimates in this section depend strongly on the number of particles [degree of
the v-functions). We are forced to keep this number fixed and take the limit as € = 0, no diagonal limiting
procedure [n — oo as € = 0] is allowed by our estimates. So let us fix the value of n for which we want to
prove (3.11a) at ¢ < e~2*£. We then choose an integer N such that

A et

ETTN HT IO R

2 gy (4.14)

and we iterate (4.7) N times. We get a finite sum of terms. Part of these terms do not have any v-functions
left, all particles have died; the remaining terms still have v-functions and their contribution is bounded by

¢ Y (1=5,) sy = 53) 72 o (syoy = Sw) 2N < clem@mAINA2EN, (4.15)
(<§y> o0 >y

The estimate in (4.15) is obtained by proving that the largest contribution comes from terms in which no
particle dies. We can then use the estimates in lemma 4.1. We shall see that each lattice derivative produces
a factor (s;— 5;,,)~'/2, i being the ith step in the iteration. The constant ¢ in (4.15) is a combinatorial
‘factor which takes into account the number of terms present in the remainder. Notice in fact that any
v-function is bounded by 1. The right-hand side in (4.15) is smaller than c’e#"/2, By (4.14) it is therefore
smaller than ¢~"/%, because 1 <e™2

We shall next analyse the other terms obtained when iterating (4.7) N times, namely those where all
particles die. We group together terms by fixing the number of iterations [of (4.7)], say &, and the times
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when the iteration takes place, say s,...,s,. We further specify which particles die and which are the
newly created particles [recall that when a new particle is created it starts from the same site where a
previously existing particle was, we specify which was the ancestor but not its position]. Once all this is
fixed, what we are left with is a process with initially n particles. They move according to the law specified
by Q till time ¢ — s,. Then some birth and/or death occurs which determines a new particle configuration
at time ¢ — (s, — 1). The specifications allow to reconstruct such a new configuration if that at time 1 — s, is
known. After this the Q process with a possibly different number of particles runs for a time s; — s,. Then
a new birth and death process takes place, and so forth. The game would be over [almost] if Q were the
transition probability of the process of independent particles, we could then estimate the probabilities of
events like two particles are at distance 2 by using classical results for random walks. To reduce ourselves to
this case we introduce a coupling between the exclusion and the independent processes, namely we
introduce a larger space where both processes live and a joint law for the two whose marginals are the
exclusion and independent process. The main feature of such coupling is that with large probability the
interacting and the corresponding independent particles do not get too far from each other, which means
that at time ¢ they are not farther than ® as £ — co, for any « > }. An application of this result is that
with large probability the condition that two particles at time ¢ are at distance 2 from each other, is a
consequence of the condition that the corresponding independent particles are at distance 2 + 2% This
explains the reason for the bound in (3.11a). It turns out that the largest contribution in the iteration
comes from terms where, at each step, there are only deaths, and just 2 particles die. Assume n =2k and
denote by P the law of the process starting with n particles from x and by PO that for the independent
particles, starting from the same initial configuration. When referring to independent particles we add a
superscript 0. We have a bound which goes like

)» P[ N {1g2-1(e = 5:) = qai(r = 5,1 =2} H sit

l>51"'>5k>0 i-l'k l=l./\'

< 3 P°[n{nq%_l(z—s,.)—q%.-(r—szmsz+2<z—s.-)°}

(>sp 0 >8>0 =1,k i=1,k

< const. Y (t=5,)) % o (1 =5) 7 s e st
(>s5 0 >85>0

times a large but fixed constant which takes into account the number of terms when such situations may
occur. The last sum vanishes like ¢~ for any y < 4 — a, ie. like £="4/8% for any { > «/2 — >0 and
arbitrarily close to 0 since a may be any number larger than 1. To really get the exponent in (3.11a) equal
to 4 we need to exploit one more feature of the coupling, namely that the first two [or any other chosen
pair of] particles have the same distance in the exclusion and independent processes, with at most an error
of 2. So that we can replace the condition that particles 1 and 2 are at distance 2 at time 7 — s, by requiring
that the independent particles 1 and 2 are, at the same time, at distance not larger than 4. In this way the
first factor in the last sum namely (¢ — s,)*~*/2 is replaced by (¢ — 5,) "*/? and so (3.11a) is obtained.

Of course the proof that the above is the worst case requires an analysis of all the others. This'is done in
a way similar to the above one, but we first need to specify how to properly take into account the
contributions coming from the lattice derivatives. This is the last point we want to mention about the
analysis of the case ¢ < ¢~ 2*A. Assume x is a configuration with n + 1 particles [notice n + 1 and not n].
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Denote by x!l, i = 1,2 the same configuration without particle i. By using (4.7a)

(2, 0) —ot(xW, 1) = ¥ Lo (2@ o p) = @ (x M= p) ¥ (p,e,5),

s=1 y

where  is simply a shorthand for the square bracket term in (4.7a). We now use a further property of the
evolution defined by Q, i.e. of the symmetric automaton, which states that it is possible to label the
particles and follow them in time in such a way that the marginal over the motion of n particles of
the process with n + 1 particles, has the law of the automaton with those n particles. We discuss this point
in the appendix, it is a nontrivial feature of the process, but perhaps not so surprising since we have seen
that in some respects the symmetric automaton looks like the independent process, cf. section 3, and for
the independent process the above property holds trivially. Assume therefore that we have introduced such
a labeled process and consider the event { particle I and particle 2 are at same site at some time < —s}.
Conditioned on this event the configuration at time ¢ — s will be symmetric under the exchange of particles
1 and 2 and it will not contribute to (4.16). Therefore the expression (4.16) does not change if we add the
condition that the above event does not occur. We do this and then consider separately the two terms in
the above difference, the contribution coming from the lattice derivative is in fact sufficiently well taken
into account by the characteristic function that the two particles involved do not meet in the time interval
associated with the iterative step we are considering. As before this projects into a property of the
independent particles: here we are lucky, since the event refers to the distance between two particles. By
choosing, in the given time interval under consideration, the coupling with the independent particles in
such a way that the two particles distances are the same (or differing at most by 2] in the exclusion and
independent process we reduce the previous condition to one for the independent particles. We had
already mentioned this feature of the coupling. Note that (1) we have to choose properly the coupling in
the different steps of the iteration and (2) the probability that two random walks do not meet in a time
interval s, —s,,, starting from a distance d is bounded by cd(s; — s,,,)"'/?, ¢ being a suitable constant.
This is the origin of the corresponding factors in (3.6).

By combining this and the previous estimates one can bound all the terms coming from the N iterations
of (4.7) and prove the validity of (3.11a) for ¢ < ¢~ 2*#; we omit the details.

Macroscopic times

We outline below the various steps necessary to reach the desired time ¢~ ?r [its integer part to be more
precise], where T is any given, fixed positive number.

First let us assume that the system lives in a finite interval of Z of length ¢~ with periodic boundary
conditions. From a physical point of view this is just the same as before, since we are interested in what
happens in regions of size ¢~!. Technically this simplifies the proofs a little bit, the infinite case, however,
can be treated as well, cf. [7]. At time = ¢~ **# we compare the actual [random] configuration 7" with
the solution p,(-, t|7®) to (3.10) with initial condition 7‘». We estimate their difference by means of the
following expression:

lo.(-y 110 @) = n®] = sup| T 0% (g, 0) = (¢", o)) [0 la' o', t1n®@) —uD (g’ 0] | (4.16)
q.0 | g'a’
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Using (3.11a) and proceeding as in the proof of theorem 2.2, cf. section 3, we can casily see that the
probability that (4.16) is larger than ¢! vanishes faster than any power of ¢ if { < §. [Since Q is essentially
a random walk transition probability, ¢ ranges typically in an interval of size ¢~'/%. The normal
fluctuations of the total density in such a region are of order €'/%, hence the choice of {]. We choose 7™M so
that (4.16) is less than ¢f. We then take 7 as the new initial condition and let the system run for another
time interval of length ¢ "2*A. We then compare the new random configuration 7@ with p (-, e 2+A|p)
and, as before, we can assume that their ||-|| difference is less than ¢!. We keep doing this until we reach
the time ¢~ 27. We also choose the initial configuration 79 so that its || - || difference from the initial profile
04, 0) = $peq) is also smaller than €. In doing this we are neglecting configurations whose probability
vanishes faster than any power of ¢, since ., is a product measure. )

The following statement can be proven by slightly modifying the proof that the solution to (3.10)
converges to that of (2.6), cf. also (7], and it expresses the stability of (3.10) with respect to small
perturbations.

Let 1'%, k > 0, be as above. Then if f is small enough, there are § >0 and ¢ such that forall 1 <k <€ 71
and all t such that ke™**F <t < (k+1)e™?%A

sup Ipc(q, t(1n®) - po(q,t = (k- 1)5”2+B|ﬁ‘k"1’) ‘ <cé. (4.17)
q

The next step in the proof of proposition 3.1 consists in proving (3.11a) with some positive exponent,
not necessarily as large as §. This is a rather easy consequence of (4.17). Let > ¢~ 2*# the proof in the
other case has already been obtained. Assume also that t <e . Call k the largest integer such that
(k + 1)e~2%# < 1. We then have

o (x, ol = E,‘,[é“,:¢~ug( TI
-

1,n

(o) = i) )| (@19)

where & denotes the expectation conditioned on the value of the process in the whole time interval [0, s].
Since this is a Markov process, such conditional expectation only depends on the configuration 7, at

time s.
We assume that the initial configuration 7 is such that
lin = odl < €,
where, as before, p(g,9) = 1p(eq). Denote by x the characteristic function of the event

., = pe(-y s sip)l <€ forall s=ie2*?, i<k,

where p,(+, *, s|pt.) is the solution to (3.10) with initial condition p(q, o) as above. Setting x°=1—x we
have

5, )1 % () + B3| B acnon I (1m0 k7279) = 1))

As already noted the expectation of x¢ vanishes faster than any power of ¢, cf. also the proof of theorem
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2.2 in section 3. In the second term we add and subtract
p((xia t— kf_“Blﬂ(‘, i) k€—2+ﬁ))s

namely the solution to (3.10) with initial condition (-, -, ke"2*#), We expand the product. Since the
difference of the two p functions depends only on the configuration at time ke~2*# it drops out of the
conditional expectation, which therefore defines a v-function at a time less than 2¢~2*8, For this we use
(3.11a) already proven in such a time interval. To estimate the difference of the two p functions we use
(4.17), so that we get a bound which goes like ¢® [i.e. like #=%/2 when ¢ is of the order of ¢~2], because of
the presence of the characteristic function x. In this way we have proven a bound like on the right of
(3.11a) with the exponent being the smallest of §/2 and %, it can be seen that actually the latter is the
largest of the two.

It is now easy to prove (3.11a) with the right exponent %. Let n be fixed and ¢ =¢~*r. We go back to
(4.7a) and use it again to rewrite the terms containing v¢ in its right hand side. We keep doing that for each
term which contains a v-function with less than N particles, where N is such that N§/2 > n/8. For such
terms we use the previous estimate with exponent §/2. For the others we use the same analysis as at short
times, i.e. at ¢ <e¢~2%A, Since we have limited the growth of the number of particles we do not have
convergence problems. What was accomplished earlier by assuming ¢ <e~2*# is now obtained using
(3.11a) with exponent §/2.

The proof of (3.11b) is very similar to the previpus one, one only needs to use (4.5) with € on the right
side instead of ¢~!/2, and this is correct because of the assumed smoothness of the initial datum. Actually
the whole proof becomes much simpler, cf. for instance []. Notice however that the proof still requires an
a priori bound for v which goes like ¢%%, so that we cannot shortcut the previous analysis and examine
directly the case of the initial state is described by g, at least using our type of approach.

5. Long time behavior: Micro-macro connection

As mentioned in the introduction the Burgers’ equation (1.1) has traveling solutions, namely solutions of
the form p(r, t) = p*(r — vt), where p* is a smooth increasing function such that

r_I_iTwp*(r)=pi, P> P (5.1)
and
v=c[1-1(p.+p.)]. (5.2)

While the velocity v is independent of the viscosity » appearing in the right of (1.1), the shape of p* does
depend on » and in the limit as » = 0, p* converges to a step function [shock wave] with values p_ and
p., cf. for instance [6].

The stability of the traveling solutions to (1.1) with » = 4 can be analysed in terms of the automaton
model since its density profile converges to the solution of (2.6), i.e. of (1.1) with ¢=2 and v=3.
Therefore we choose the initial condition p(r)= p*(r), a traveling solution with velocity v > 0. If we then
observe the system at a fixed macroscopic time ¢ (¢~% in microscopic units) from a frame which moves
with velocity v, we will see, when ¢ — 0, the same profile p* ‘as at time 0. The question then is what
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happens if we look at microscopic times 7 much larger than ¢~ 2 More precisely we would like to know on
which time scale, if any, we start observing macroscopic deviations from the traveling profile solution to
(2.6). Remember that theorem 2.1 requires in an essential way that r¢? stays bounded when ¢ — 0. If there
are going to be deviations for longer times, say microscopic times of the order of €3, then we would like
to know in which way the macroscopic profile changes. We refer to (5] for a detailed analysis of such
questions in a more general frame, here we make just a few remarks. First notice that the stability analysis
on (1.1) does not give unique answers: a traveling profile p* is (i) stable with respect to local perturbations
which preserve the total mass; (ii) if the perturbation is still local but does not preserve the total mass then
the shape of the traveling wave is stable but, asymptotically in time, the profile is spatially shifted with
respect to the unperturbed one by an amount which depends on the mass variation. Finally (iil) the profile
is unstable for macroscopic changes of the density at infinity. Which one of the above cases, if any applies
to the description of the WAAP?

By looking at the automaton it seems natural to measure stability in terms of the size of the fluctuations.
Theorem 2.3 provides an explicit expression for the covariance of such fluctuations. In particular one can
see that C,(r, r") diverges linearly in ¢ as t — . The analysis is the same as in [7] to which we refer.
Actually it is possible to deduce from the asymptotics of the covariance that the fluctuations’ growth is due
to rigid random spatial shifts of the profile of the traveling wave around its average position. Such effect
should become macroscopic after macroscopic times of the order of €1, hence at microscopic times of the
order of €2 for the WAAP.

This phenomenon has been observed in the asymmetric simple exclusion for a shock with left density 0.
ie. p_=0,cf. 9], (10]. It is proven that the macroscopic shape of the density profile is stable and that the
shock’s location fluctuates like Brownian motion and the diffusion coefficient is explicitly computed. Most
interestingly the shape of the shock is well defined even at the particle level. There is a stationary measure
for the process as seen from the leftmost particle which converges exponentially to the Bernoulli measure
with density p,, far to the right of the leftmost particle.

It is an open question whether similar results hold for the asymmetric exclusion in general, i.e. p_>0,
and for the automaton process of Boghosian and Levermore. The computer simulation in {6] seems to
suggest that the shock broadens with time, contrary to what is indicated by the analysis of the fluctuations
discussed above. On the other hand there are very recent computer simulations on the exclusion process
{11] which indicate that the profile of the shock is stable, its location fluctuates like a Brownian motion and
its diffusion coefficient agrees with that found by studying the fluctuations of the weakly asymmetric
simple exclusion process. Actually the main purpose of the simulation was to see whether there is a
stationary shock at the particle level, when p_>0. Their answer is positive, and we shall now describe
their idea for finding microscopically the location of the shock in the context of the Boghosian-Levermore
automaton [unlike the case p _= 0, where the shock could be identified microscopically with the position of
the leftmost particle, if p_> 0 it is not so clear what to do].

Let us consider the asymmetric automaton, p > i, cf. section 2 for notation. Start with a state
corresponding to density p . to the right, resp. left, of the origin. Call the particles in this state first class
particles. Add other particles, the second class particles, to the left of the origin so that overall first and
second class particles have density p .. Let the particle move according to the rules given in the appendix,
considering the first class particles as having a smaller label than the second class ones. In this way the first
class particles move like they were alone, while first and second class particles together move also
according to the Boghosian-Levermore automaton. Overall the system is in equilibrium and one might
conjecture that the microscopic shock starts from the position of the rightmost second class particle. A
similar procedure applies to the exclusion process and in the above referred simulation [11] one does
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indeed see a stationary distribution when viewed from the rightmost second class particle. Far away from
this particle the measure appears very close to the equilibrium measure with parameter p ,. It would be
very interesting to have a rigorous proof of this behavior and to know whether the Boghosian—Levermore
automaton has similar behavior.

We may add here that finding the level at which microscopic models with the same macroscopic
behavior differ is a problem of general interest. In our case this means knowing how long we have to wait
and how hard we have to look, to see a difference between the simple exclusion and the BL automaton. Put
differently, what are the universality class for hydrodynamical behavior? This question has been investi-
gated extensively for equilibrium phenomena, but only little is known for models of non-equilibrium
behavior {S].
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Appendix

In this appendix we study the backward symmetric automaton with finitely many particles. Let us begin
with the case n = 1. Assume the particle is initially at x = (g, ¢). Then at time 1 it will be at (¢ — o, ¢")
where ¢’ = +1 with probability 4, the corresponding transition probability is denoted by Q, cf. section 4,
Sy {we shall use the same symbol Q also when there will be more particles]. At time k, i.e. after k£ time steps,
R the random position ¢’ of the particles will have the same distribution as a symmetric random walk
initially at ¢ — ¢ [not ¢] and moving for a time & — 1, [not k). Its velocity at this time is +1 with equal
probability.

The randomuness is all in the velocities, given the velocities the motion is deterministic. It is therefore
natural to introduce the probability space ({ —1,1}" , >\) where A is the Bernoulli measure on { —1,1}"
which gives equal probability to +1. We interpret w = (w(i), i = 1) € {~1,1}" as a possible choice of the
velocities at the times 1,2,..., each value w(i) occurring with probability 3 independently of the other
values, It is convenient to denote the velocities by w and not by ¢ for reasons which will become clear in a
while.

Let us now consider n particles, n > 1. We introduce n independent copies of the previous probability
space ({—1,1}”, )\), and denote the elements of the new space by w=(w,,...,w,). We label the »
particles and define x(k), k > 0 starting from the initial configuration x as follows: x(k)=(q(k), a(k)),
x(0)=x,and foralli=1,...,n

q:(k+1) = q,(k) - o (k), (A.1)
o(k+1)=w,(k+1), if g;(k+1)#q(k+1)Vj<i, (A.2a)

o(k+1)=—w(k+1), ifdj<iiqk+1)=gq,(k+1), (A.2b)
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i.e. in a collision the lower labeled particle goes its own way while the higher labeled one accommodates to
preserve the exclusion rule. We shall call this process the symmetric labeled automaton. [t is trivial to see
that if we neglect the labeling, i.e. we identify configurations which differ by a permutation of the labeling,
then the process becomes the symmetric automaton process, with transition probability Q.

It is also easy to see that the process of any subset iy, ..., i,, of the n particles 1,..., n has the same law
as the process with the iy,..., i, particles alone. In particular any pair of particles move like independent
particles until they collide with each other. Such properties are needed at some stage in the proof of
proposition 3.1, cf. the end of the analysis of the estimates for 1 < ¢~ %% in section 4.

Let us now discuss the coupling of this exclusion automaton with the independent one. Notice that the
above realization of the labeled automaton process with exclusion naturally defines a coupling. Let us
denote by EB,-_I',,({ -1,1} N >\), ® standing here for the independent product of probability spaces, the
space where we have realized the labeled automaton process. Define in such a space the process x°(k),
k >0, as x°0) =x and

g?(k+1)=g)(k) = o?(k),  o/(k)=w;(k), (A.3)
for i=1,...,n. Of course this is the independent process, hence we have realized a coupling with the
labeled automaton, both processes living in the same space. This is a very effective coupling indeed, as we

are going to discuss. Notice first that particles with the same labels have the same velocities, except
perhaps at the collision times, when two particies are at the same site. In fact from (A.2) and (A.3) we have

o;(1) —o(t) = ZAi.j(t)a (A4)

j<i
where
4;,,(1) =8q,(,),q,(,)[—w,~(t) ““’i(’)]- (A.5)
Therefore

a()-a0)= T T, s) (A.6)

j<is=0

thus the total displacement at a time t between the exclusion and the independent particles with label i is the
sum over j < i of the displacements up to time t caused by the collisions with particle j. We are going to show
that the probability that |q,(t) — q2(t)| > 1 with a > % goes to O faster than any inverse power of t.

Let us examine the effect of the collisions with particle j, j < i, namely

‘il.Ai,j(s)' ’ (A7)

s=0

To compute this quantity we need to know the trajectory of the exclusion particles i and j [up to time
¢ — 1] and the values w(s) and w;(s) at the times s when particles i and j collide with each other. Note
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