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J. Introduction

A. The van der Waals—-Maxwell theory

The difficulties encountered in obtaining from theory, the properties of
matter when the interactions between the atoms or molecules produce phase
transitions, are well known, Indeed the advance in our understanding of these
phenomena since the time of van der Waals is probably not as great as our

ur) = q(r) + w(r). 1.1

The short-range part keeps the particles apart and is responsible for
detailed correlations, The long-range part on the other hand sees only the
8ross, essentially macroscopic, density profile of the fluid and is responsible
for the condensation from the gas into the liquid below the critical tempera-
ture T,.

Van der Waals’s considerations led him to his famous equation of state in
which the pressure of 3 fluid consisting of N atoms or molecules in a domain
Q2 of volume |Q| at a temperature T is 4 sum of two terms

Paw(- |20 T) = NET(Q] ~ NB* —awjj@P], (120

TFor a historical account of van der Waals’ work see article by Brush (1970) and articles by de
Boer (1974) and Klein (1974). The latter two Wwere presented as lectures at the 1973 TUPAP
Conference in Amsterdam celebrating the centennia] of the van der Waals equation.
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In terms of the density p = N /|2 (1.2a) assumes the form
Puaw(0, T) = kTp(1 — bp)~! — gp2, (1.2b)

The first term on the right-hand side of (1.2) is an approximate representatio_n
of the pressure of a fluid (reference system) whose particles igteract only via
the repulsive part of the potential, g(r). The term ]Q] — Nb, with b a constant

p
Psat |-~ - - . T>Te
| ,
l : T<T
: :
o & v

Fic. 1. Typical isotherms for the van der Waals equation of state (solid lines) and Maxwell’s
modification (dashed lines). The shaded areas are equal.

depending only on q(r), gives the effective reduced volume available to the
molecules due to the exclusion of each particle from the “hard cores” of the
other particles. The pressure of this reference fluid is reduced by the attractive
part of the pair potential w(r). It was argued by van der Waals that becau_se
of the long-range nature and consequently slow spatial variation of w(r) its
effect on the pressure should be independent of the local correlations betwee_n
the particles and be proportional to the square of the mean density p. This
proportionality constant a, g > 0, would then depend only on w(r). The
graph of p_ o vs. p~1 is given in Fig. 1 for T > T and T < T, where T =
8a/27bk is the critical temperature. o
For T > T the van der Waals equation of state gives a good qualitative
representation of the isotherms of a real fluid; for T < T, however, each
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isotherm includes a section where the compressibility is negative, in violation
of the thermodynamic stability principle. The primary reason for this failure
is, as will become amply clear later, that the argument about the effect of
the long-range potential w(r) being independent of the detailed correlations
is only valid when the range of the correlations is small compared to the
range of w(r). This necessarily requires the system to be in a single phase;
it does not allow for the possibility of coexisting liquid and vapour phases
at different densities.

Maxwell (1875) showed that the coexistence region could be included in
the theory by using the van der Waals equation of state for both liquid and
vapour phases and using the thermodynamic equilibrium condition that the
two phases must have equal pressures and chemical potentials. This leads to
the following modification of (1.2) for T < T:

p = Mvadw(p, T) = {pvdw(p’ T) if p< pu(T) or P> Py (T) (13)

psat(T) if pu(T) < p < pl (T)

where p (T), p,(T) and p_, (T) may be determined by the graphical construc-
tion shown in Fig. 1.

A very interesting derivation of van der Waals’s equation of state with
Maxwell’s rule was given by van Kampen (1964). In this derivation the volume
|| occupied by the system is divided into a large number of cells, each small
compared with the range of the long-range attractive force, but large enough
to contain many particles. Avoiding the pitfall of assuming a uniform distri-
bution of particles over cells van Kampen obtained the distribution over
cells by minimizing the free energy. His method leads to the modified equation
of state (1.3), which implies a first-order phase transition. When p < p, or
p; < p, van Kampen’s method indeed gives a uniform distribution over
cells, but when p, < p < p, it leads to the conclusion that this distribution
is nonuniform, as it should be when two phases coexist.

Van Kampen’s treatment, while containing the physics of the probiem,
was, however, not mathematically rigorous. In particular the conditions to
be satisifed by the interactions were not specified and various limiting pro-
cesses were only hinted at but not carried out explicitly.

B. Rigorous results

An entirely different approach to the van der Waals equation of state was
taken by Kac ez al. (1963). Their work, which will be described in detail in
Section III, concerned a one-dimensional system for which the short-range
repulsive potential g(r) is infinite for r < d and vanishes for r > d (hard rods
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of diameter d) and an attractive interaction w(r) which contained an inverse
range parameter y

w(r,y) = —aye™ ™. (1.4

Using a formalism based on Wiener processes (Kac, 1959) especially
adopted to this problem Kac et al. were able to prove rigorously the validity
of the van der Waals equation of state (1.2) (with b replaced by d), together
with the Maxwell rule (1.3), in the van der Waals limit y — 0.

The limit process y — 0 provides a clear distinction between the short
range of q(r) and the long (infinite as y — 0) range of w(r, y). This limit was
first used by Baker (1961) in his study of spin systems.

Lebowitz and Penrose (1966) combined the ideas of van Kampen with the
use of the van der Waals limit y — 0. They considered systems with inter-
particle potentials of the form (1.1) with w(r) a Kac potential ofithe form

wir, y) = " ¢0r), (1.5)
where v is the dimensionality of the space considered. This reduces to (14)
when v = 1 and ¢(x) = —ae~*. By imposing certain conditions on gq(r) and

@(r) (which will be described later), Lebowitz and Penrose showed that in the
limit y — 0, taken in such a way that the range y~! remains small compared
to the size of the system,

lim p(p, T, y) = plp, T, 0+) = p%p, T) — ap® + Maxwell’s rule

, 90 = MC{pO(p, T) _ apl}' (16)

Here p°(p, T) is the pressure of the reference system, one for which w(r, y) = 0,
and

a= —%fw(r, P)dr = ——%fqﬁ(x) dx. 1.7

Theright side of (1.7) is a Riemann integral over all of v-dimensional space,
whose existence is one of the conditions ¢(x) has to satisfy. The extension of
(1.6) to quantum systems was done by Lieb (1966).

The results of Lebowitz and Penrose were generalized further by Gates
and Penrose (1969, 1970 a, b), who showed in particular that there are some
Kac potentials ¢(x) for which (1.6) does not hold. These potentials are of an
oscillatory type and apparently produce in the system, for some values of
p and T, an oscillatory local density rather than a separation into only two
phases. It is the latter situation which leads to (1.6). This will be discussed
further in Section II.

It should be mentioned here also that some very interesting results have
been obtained recently by Dyson (1969 a, bj, Thouless (1969b), and others
on one-dimensional systems with intrinsically long-range potentials which
are not of the Kac type.
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C. Metastable states

The rigorous equilibrium theory does not assign any meaning to those
portions of the “van der Waals loop” which Maxwell identified with meta-
stable states. While such metastable states are certainly present in real systems
it is difficult to see how to incorporate them in the usual formalism of
statistical mechanics. It was shown, however, by Penrose and Lebowitz
(1971) that for systems with long range potentials of the type considered here
it is possible to treat these states by considering situations in which the
system is initially confined to a region R of the configuration space in which
its density is “roughly” uniform. They proved that in the van der Waals
limit, y — 0, such a system, with overall density p in the metastable region
of the van der Waals loop, will remain in the region R with probability one.
Its pressure, and other thermodynamic properties, will then be given by the
van der Waals equation without the Maxwell construction.

D. Approximate results

While the works cited in the last section provide all the desired information
about a fluid when the range y~* of the Kac potential becomes infinite
(assuming knowledge of the properties of the reference system), they do not
give any results when y ™! is fixed at some finite value. Such results are clearly
desirable for an understanding of real physical systems where the interaction
between the molecules is of the Lennard-Jones type. Any reasonable separa-
tion of a potential of this type into a repulsive part g(r) and an attractive
part w(r) yields a w(r) whose “effective range” is not much longer than the
range of g(r). For real fluids a generalized van der Waals—Maxwell theory of
the form given by (1.6), while yielding a reasonable qualitative description,
1s not too good quantitatively for any range of densities and temperatures
and fails even qualitatively in the vicinity of the critical point. To remedy
this fault much work has been done in recent years to obtain improvements
on this theory (or its equivalent, the Weiss mean field theory for magnetic
systems) for fluids whose interaction potential can be reasonably represented
in the form (1.1) or (1.5) with w(r) of “long” (but not infinite) range compared
to ¢(r), ie. avoiding the van der Waals limit y — 0. The conceptually most
straightforward of these methods is an expansion of the thermodynamic
and correlation functions in a power series in . In practice, however, it is
sometimes simpler to consider expansions in which the terms are general
functions of y which vanish successively “faster” as y — 0. These expansions
can also be formulated in a way which does not require the explicit use of the
parameter y and can thus be used for a general w(r) in (1.1). While it is not
known whether any of these expansions converge for any values of p and
T it is known that they fail in the vicinity of the van der Waals critical point
(the terms generally becoming infinite).

i
;
)
§
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An alternative approach has been to use some kind of closed self consiste_nt
approximations which are particularly “reasonable” when the potential
w(r) is long range. These methods usually involve the solution of some sort
of integral equation and do not make use of any range parameter y. Indeed
some of these methods precede the introduction of the Kac potential. We
shall discuss some of the many approximation methods suitable (or so
believed) for systems with long-range potentials in Section IV.

Ii. Rigorous Derivation of van der Waals—Maxwell Theory

A. Preliminaries

Before going on to give a rigorous derivation of eqn (1.6), we shall first restate
the whole problem in terms of the Helmholtz free energy density f(p). (We
do not indicate explicitly the dependence on T.) Quite generally if we want to
have intensive thermodynamic variables which are independent of the shape
of the container we must define f(p) as the infinite volume limit, the thermo-
dynamic limit, of the free energy per unit volume for a system of N particles
in a v-dimensional domain Q = R, with volume |Q|, at temperature T.
This limit is formally taken (Ruelle, 1970; Griffiths, 1972; Lieb and Lebow?'tz,
1972) by considering a sequence of increasing domains Q,j = 1,.. ., tendn.lg
to infinity in a reasonable way (reasonable meaning essentially that the ratio
of the volume of a region within a fixed distance D of the surface of £, to _the
volume IQJ| goes to zero as j — o0) and a corresponding sequence of particle
numbers N, such that the densities N,/|Q;| — p as j — co. .
For any fixed N and Q the free energy 1s given by the Gibbs formula,

F(N,Q) = —kT ImZ(N, Q) = |Q|f(N/|Q|; Q), 2.1)

where Z(N , Q) is the canonical partition function. For a classical system this
is given by

Z(N, Q) = (1/N ))(mkT/2nh?)"N/? J . j exp[ —BU(,,...1y)] dr, ... dry,
Q Q
22)

where m is the mass of a particle, Uf(r, . ..,ry) is the interaction energy and
p=(kT)"" .

The existence of the thermodynamic limit f(N;/ |Qj Q) - f (_p) indepen-
dent of the shapes of the domains ; as j — oo has been established under
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very general conditions on the interactions. In particular if U is the sum of
pair potentials,

U=> ur, — r), (2.3)
i<j
the case we shall be primarily interested in here, then sufficient conditions
for the existence of the thermodynamic limit are:

u(r) is bounded below (2.4a)
ur) > Ar=%*9, forr<r, (2.4b)
|u(r)| < Br=®*9, forr > ro (24¢)

where 4, B, r, and ¢ are positive constants (see Griffiths, Vol. 1, Chapter 2).

Furthermore, as a byproduct of the proof of the existence of the thermo-
dynamic limit, one obtains that the thermodynamic free energy density
f(p) is convex, that is

flp' + (1 = 0)p") < af (0) + (1 — &) f(p"),

The convexity of the thermodynamic free energy density guarantees that
f(p) is a continuous function of the density and implies directly that the

thermodynamic pressure, which is defined unambiguously in the thermo-
dynamic limit by

01 2.5)

0 0
Pe) = 7 < L1 )P) =p%p@—f(p), e

Is a monotone non-decreasing function of the density. Convexity also guaran-
tees that the derivative of the free energy which defines the pressure will be
a continuous function of the density almost everywhere. For the potentials
one is usually interested in, say a Lennard-Jones potential, Dobrushin and
Minlos (1967) and others have actually proven (at least for classical systems)
that the derivative of f(p) exists everywhere, which means that the pressure
is a continuous function of the density. Hence for classical, and presumably
also for quantum, systems with Lennard-Jones type potentials, there are no
“anti-phase” transitions in which the pressure changes discontinuously as a
function of the density. .
Returning now to the problem at hand we note that the free energy cor-
responding to the generalized van der Waals pressure of (1.6) without the

Maxwell construction is f %(p) — ap?, where f °(p) is the free energy density of
the reference system, since

P(0) — ap? = pZ%[(f"(p) —aYp]. @7)

.
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1t is also easily verified (Lebowitz and Penrose (1966), referred to as LP in
the rest of this section), that

MCp) - ) = p* 2 [0 *CE(°() — ap*}] 8)

where CE{¥(p)} means for any function ¥(p), the convex envelope of that

f(p)1

FiG. 2. A function f(p) and its convex envelope.

function, defined as the maximal convex function not exceeding ¥: CE
{¥(p)} = max ¢(p) for each value of p,

¢ (&) is convex
(&) <Y forallg )
Since the maximum of any family of convex functions is itself convex, the

function CE{¥(p)} is convex. If ¥(p) is convex, then CE{¥(p)} and ¥(p)
coincide; otherwise the graph of CE{¥(p)} consists partly of convex segments

29)
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of the graph of f(p) and partly of segments of double tangents of this graph
(Fig. 2). The construction of CE{¥(p)} from ¥(p) is sometimes called the Gibbs
double tangent construction.

The van der Waals equation of state with the Maxwell construction was
established by LP by proving that, in the van der Waals limit y — 0, the free
energy density of a system with interactions q(r) + y°¢(yr), denoted by
_ f(p,7), becomes equal to CE{f°(p) — ap®}. This was done by obtaining
.~ upper and Jower bounds on the free energy density f(p,y) which, under
_ suitable conditions, reduce in the limit y — O to the desired function.

B. Statement of main results
Let the interaction U be of the form (2.3) with

. Uy, ., .1y = Oy,,, Ty + W(ry,,. ., Iy) (2.10)
1.C.
ur) = q(r) + wir, y); wir, y) = y'd(y7),y > 0. (2.11)

wherc? we have assumed for simplicity of notation that u(r) depehds only on
the distance r. The reference potential g(r) is assumed to satisfy (2.4), ¢(x) is
assumed to satisfy the following conditions,

|$(x)| < 0. (2.122)
|p(x)| < Cx— 0+, (2.12b)

and that
va B dr = J $(x)dx = —2a (2.12¢)

exists as a Riemann integral and a is independent of y. We define (k) to be
the Fourier transform of ¢(x)

$(k) = fe“"%(x) dx. (2.13)

With these conditions the thermodynamic limit of the free energy density

f(p,y) exists and is convex in p. We define

fp,0) = lim f(p,7).

band

Theorem 1: For a classical system whose interaction potential satisfies the
above conditions '

CE{fO(p) + %Nminpz} - [a + %&’min ]pz < f(p> O) < CE{fo(p) - apz}:
(2.14)
where ¢_. = min $(k).

... .. ... . = = . . -

g_awmﬂ -
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Remarks (i) Theorem 1 was proven by LP under the stronger assumption
that u(r) has a hard core, ie. (2.4b) is replaced by g(r) = oo, for r < r,. The
proof that the theorem is also valid under the weaker assumption that the
reference potential be super-stable (which is implied by (2.4)) is due to
Gerardi et al. (1973).

(i) If @(k) > 0 for all k (which implies @, = 0) then, since 1 %p) is convex
50 is fOp) + 14,...p? = CE{fp) + 1B p?}- Hence the lower and upper
bounds in (2.14) are equal and

f(p,0) = fp) — ap®. 2.15)

(i) If @, = H(0) = —2a (this will certainly be true when ¢(x) < 0 for
all x, the case considered by van der Waals), then again.the lower and upper
bounds in (2.14) coincide and

flp,0) = CE{f°(p) — ap”}. (2.16)

Note that (2.15) is really subsumed under (2.16).

(iv) If, at some temperature T, 8% °(p)/8p* > | .| for all p (this implies
in particular that the reference system does not undergo a first order phase
transition at that temperature) then clearly f°(p) + 14, 0? is convex for all
p at that T and (2.15) holds.

(v) The limit, as y — 0, of the thermodynamic pressure p(p, y), is

)
p(p,0) = p? E» [ f(p, 0)], (2.17)

whenever the latter exists, which is almost everywhere. This follows from
the fact that f(p, y) is (for different values of y) a sequence of convex functions
(of p). The limit of such a sequence of functions is also convex and the limit
of the derivative is equal to the derivative of the limit wherever the latter
exists. When- the left and right side derivatives of f(p,0) do not coincide,
then p(p,0) is discontinuous and (2.17) applies to either derivative. As
mentioned earlier, however, for realistic reference potentials p(p,y) and
thus, when (2.16) holds, also p(p, 0) is a continuous function of p (Gates and
Penrose, 1970a).

(vi) When (2.16) holds and CE{f°p) — ap?®} < %) — ap?, in some
interval (p,, p,), then, as seen from Fig. 2, f(p,0) is linear in p and p(p,0)
is constant in (p,, p,) (obtained there via the Maxwell construction on
p%(p) — ap?). This corresponds clearly to a first order phase transition; p
being a discontinuous function of p (at fixed T), cf. Fig. 1.

(vii) It was shown by Gates and Penrose (1970b) that there exist Kac
potentials ¢(x) for which, '

f(p,0) < CE{f°(p) — ap®}, (2.18)
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at some temperatures and densities. These potentials ¢(x) are of the oscilla-
tory type, ¢ mim < $(0), and give rise to situations in which the state of the
system does not consist just of two phases, with each phase having a constant
density, as in a first order transition; instead, apparently, the density oscillates
in a continuous fashion. We note, however, that these oscillations occur in
n(x), the density in the limit y — 0, x = yr. We shall return to the Gates—
Penrose results later.

(vit) While in (2.14) the limit y — 0 is taken after the thermodynamic
limit the same results hold also (at least when ¢(x) < 0 or (k) = 0) when
the limits y — 0 and Q — oo are taken simultaneously; always keeping the
range of the Kac potential small compared to the size of the system, y~! <
Q)17 e.g. v ~ In|Q|- We shall do this when we discuss metastable states
in Section ILF. When the limit y — 0 is taken for fixed Q then clearly
lim f(p, 7:Q) = f%(p: Q).

As mentioned earlier the proof of Theorem 1 involves getting upper and
lower bounds on f(p, y) which in the limit y —» 0 have the form of the bounds
in (2.14). These bounds are not generally the best, or indeed very useful,
for any fixed y > 0. There are other types of bounds, however, which may be
useful whenever the interparticle potential u(r) is the sum of a “short range”
part g(r) and a “long range” part w(r). We shall describe these bounds first
as they shed some light on the origin of (2.14), even if they cannot be used to
prove that equation rigorously.

C. General bounds

Consider a system, classical or quantum, whose interaction U is-a sum of
two terms as in (2.10). The Gibbs inequality for classical systems or the
Peierls-Bogolubov inequality for quantum systems, ¢.f. Lieb and Lebowitz
(1972), states that

f0:9) + W10 < f(p; ) < fo: Q) < (WHYIQ (219)

Here f0 is the free energy for a system with interaction energy Q alone,
the reference system, and (W) is the expectation value of W with the
“canonical ensemble measure” exp [ — BH]/tr{exp [ — BH]}, (trace — integral
in classical systems). H, the Hamiltonian, is the sum of a kinetic energy
term and the interaction energy U. {W)° is the expectation value of W in
the reference system with Hamiltonian H® = kinetic energy + Q.

To prove the right side inequality in (2.19) for a classical system we only
have to note that it follows from the definition of convexity that if ¥(&) is a
convex function and P(¢) is a normalized probability distribution then

¥ = JP(é)‘P(ﬁ) df > YD) (&= Jél’(é) d¢. (2.20)
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Thus, since exp [ — BW] is a convex function of W, we have
exp[=pWD° = [ [ ar,...anfexp [-0YK")
Q )

x exp[— W] > exp [ W] (221)
where

K° =J J dr, ...dryexp [— 0]
o o

Combining (2.21) with the definitions (2.1), (2.2) and (2.10), according to
which Z = Z° {exp (— fW)>°, completes the proof.

The proof of the left inequality in (2.19) is entirely analogous, we merely
have to think of the system with interaction U as a “reference” system, and
note that

Lexp [BW]) = L .- L dr, ...dry {exp[-BUJ/K}

x exp[fW] > exp [KW)],  (222)
where

K = J j dr,...dryexp[—BU].
Q Q
To prove (2.19) for quantum systems is a bit more complicated due to the
non-commutivity of the kinetic and potential energy but is based on the
same idea.

When W is a sum of pair potentials as in (2.11) we may rewrite (2.19) in
the form

f%;Q)—dp* + %pzvvf [g(r, y; Q) — 1] ¢(yr) dr < f(p,7; Q)

< fO%p; Q) — ap® + %ﬂzv”J [3°0; Q) — 1] p(prdr  (2.23)
where
ad = Q! yvj J dr, dr, ¢(yry,)
Q

and we have defined the “average” radial distribution function g(r,y; <),
for the system with interaction U and density p in the domain Q, by

P25, 7;Q) = !QI‘IJ dry ny(r), 1) +1,9;9Q), (2.24)
[+
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where n, is the usual pair density, for a classical system given by

ny(r,,r,) = N(N — l)f f dry...dryexp [—-BUY/K.
e Jo

g° is defined in a similar way for the reference system with interaction Q.

We now want to take the thermodynamic limit of the various terms in
(2.23). These limits will certainly exist under the general assumptions on
qand ¢ made previously. We shall go further, however, and assumeT heuristic-
ally (for purposes of discussion) that %r; Q) — 9°(r) and 3(r, y; Q) - g, 7)
- as O — co. This yields then the infinite system inequalities,

%) — ap? + Lp? f L90e/7, %) — 1] ¢(x) dx < f(p, y)

< CE{f%p) — ap* + 1p? f [9°C/n) — 11 d(x)dx}  (225)

where, in deriving the right side of (2.25), we have used the fact that f(p, y)
Is convex from which follows that

Jo, 1) < ¥(o) = f(o,7) < CE{%W(p)). (2.26)

We consider now the limit ¥ — 0 in (2.25). If the reference system is in a
single phase then we expect iTg°xry) — 1] $(x) dx — 0 as y — 0. If this were
true at all densities (at the fixed temperature T) the right side of (2.26) would
then coincide with the right side of (2.14). Now if it was also true that at this
temperature T and some demsity p the correlations in the actual system
(with pair potential u) would not become of infinite rangeasy — 0,g(x/y, y) > 1
as y =0, ie. the pair correlation clusters, then the left side of (2.26) would
approach the value f°(p) — ap? and we would have the van der Waals
result f(p, y) > £ (p) — ap®. But note however that this is impossible unless
CE{f°(p) — ap?} = 1) — ap® at that density. Hence we may conclude
that when CE{ f%(p) — ap®} < ) — ap? for some values of p (at fixed T)
then there must be “long range order” in the actual system as y — (.

D. Proof of theorem 1

The proof here will follow closely that of LP. For the sake of simplicity we
7The existence and uniqueness of the finite volume correlation functions in the canonical
ensemble can be proven at low densities, where the virial expansion converges (Bogoliubov and

Khatset, 1949). F or the grand canonical ensemble {and presumably also for the canonical
ensemble) the existence (but not un.iqueness) of the limit on subsequences of domains 0 j}» was

5«—«-—«“———» -
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shall restrict ourselves primarily, as did Lebowitz (1974), to the case where
the reference potential q(r) and Kac potential o(x) satisfy the following
conditions;

1
qr) > ArT

£

forr<r, (2.27)

qr)=0forr >, q(r) =0, for all r

dx)<0, |Pp(x)|<B forallx, (2.28)

1
|p(x)] < Cove

withry, 4,1, B, C, ¢, positive constants.

While conditions (2.27) and (2.28) are considerably more restrictive than
(2.4) and (2.12) their assumption eliminates many of the annoying technical
points from the proof while still keeping the essential physics of the problem.

As already mentioned we shall prove Theorem 1, which for the case at
hand means proving (2.16), by obtaining upper and lower bounds on the
free energy which will coincide with the right side of (2.16) in the van der
Waals limit y — 0. To obtain these bounds we assume that Q is a cube.f
Q is then divided into M congruent smaller cubes (cells) @ ... 0y, and
estimates are used for the interactions across cell boundaries to relate the
free energy of Q to the sum of the free energies of the cubes w, ... w,,.

From these upper and lower bounds, the free energy in the van der Waals
limit is calculated by means of a succession of limit operations. First the
thermodynamic free energy density is calculated from F(N,Q,y), the free
energy for a finite domain with interactions given in (2.10) and (2.11), by
taking the thermodynamic limit. The stmplest way of taking this limit is to
double the side of cube Q repeatedly, adjusting N at each step to the value
p|Q|, (F(N,Q,y) may be defined for nonintegral N by linear interpolation).
The next operation is to take the van der Waals limit y — 0.

The upper and lower bounds on F(N,Q, y) which we shall derive lead
to upper and lower bounds on f(p, 0). These bounds depend on the volume
w of the cells w, used. The bounds can be simplified by a third limit process
@ — 00, leading to (2.16). This triple limit process corresponds to the follow-
ing relationships:

ro < o' <yl < Q1

among the four characteristic lengths of our calculation: the range of the

TSince in the thermodynamic limit the frec energy density is independent of the shape of Q this
assumption is no restriction.
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short-range potential, the size of the cells, the range of the Kac potential,
and the size of the container.
1. Upper bound on the free energy

Finding an upper bound on the free energy is equivalent to finding a lower
bound on the partition function. To obtain a lower bound, we divide the

.

corridor

7

P

F1G. 3. Division of Q into cells.

cube Q into M smaller cubical regions (cells) w, ... w,, each of side (s + 1)
where ¢ is defined in (2.27) and s is a positive length such that (s + 1) is a
submultiple of the side of . Since the small cubes completely fill Q its
volume is given by

IQl = M(s + t)".

For each w,, let o] be the cube of side s consisting of all points within w,
whose distance from the boundary of o, is at least ¢, see Fig. 3. Lower bound
on Z(N, Q,y) can be obtained by selecting any set of integers N,, N,,... N,,
which add up to N, and considering only the contribution to the integral
in (2.2) from configurations where there are N, particles in the cell ), N,
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in ), and so on. The quantity so calculated we denote by Z(N,, N,, ..., Ny,
There are NI (N, IN,! .., N,,!) ways of choosing the N, particles to go in the
cell ), N, to go in wj, etc., and since the particles are identical all these
different choices give the same contribution to the integral. Multiplying a
typical contribution by N !/IIN,! we thus obtain

Z>Z(N,N,y .. Ny

=1_'[[(1/Ni!)/1-va]j J exp(—BU)dr,...dry,  (2.29)

where the first N, of the Nv-fold integrations are taken over the region @/,
the next N, over ), and so on. Here 1 = (2nh*/mkT)? is the thermal de
Broglie wave length.

To obtain a lower bound on the integral in (2.29) we write

U=U + U (2.30)

where U’ is the contribution to the total potential energy from pairs of
particles that are both in the same cell, and U” is the contribution from
pairs that are in different cells. If U,/ is some upper bound on U”, then (2.29)
implies

Z >TTIW/N,Y P”ﬂf

1]

J exp[—BU’ — BUL, ]dr, ...dry

= [H Z(N; o, ')’)] exp (— ,BU;:’-Aax)v (2.31)

where Z(N,, o', y) is the partition function for N, particles in a cube w’, of
side s.

To obtain a lower bound on the exponential factor in (2.31) we note that
because of our assumption that g(r) = 0 for r > t there will be no short
range interaction between different cells so that the only contribution to
the inter-cell interactions comes from the long range potential W,

U’ = W". (2.32)

A convenient upper bound for W, the long-range contribution to U”, is

W < Z NN w ... (k) (2.33)
i<j
where
WK ) = max w(x —y, y) = max wk;; + 2r,y) (2.34)

XEW; rewg
Yewj .
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where w, is a cube of side (s + 7) centred at the origin, and k;; is the vector
from the centre of w;, to that of w;. Using this bound we obtain

F(Na Qs ')’) < Z F(Ni= CO’, y) + ZM NiNijax(kij)' (235)
i i<j

~ This upper bound holds for any choice of N;, N,,... N » Whose sum is N.

To obtain an upper bound on the thermodynamic free energy in the van
 der Waals limit it is simplest to consider the case where all of N Ny Ny,
areequal:

N1=N2=...=NM=p(S+t)”.

Then (2.34) yields after taking the limit & — oo and showing that the second
term on the right side of (2.35) goes over into a sum over an infinite cubical
lattice,

flo,7) < Flols + 1", o', p)/(s + &) + 3p(s + 1) Zk WarK).  (2.36)

where % is an infinite sum over the complete infinite lattice of possible
vectors k;; except k = 0.

Taking now the limit y — 0, making use of the fact that on the scale y~1
the size of the cells, w, becomes infinitesimally small, we obtain

f(0,0) < Fp(s + 1", 0')(s + 1)’ — ap?. (2.37)

The final limiting process is to make the cell size infinite by making s — 0.

Applying this limit on both sides of (2.37) and using the continuity of £°(p),
we obtain, since the volume of the cell o’ is s”, ’

f(p.0) < f°p) — ap?. (2.38)

The inequality (2.38) can be strengthened by using the fact that f(p, 0),
being the limit of a sequence of convex functions, is convex. Because of this
(2.38) implies

f(p,0) < CE{f°(p) — ap?} (2.39)

2. Lower bound on the free energy

We again divide the cube Q into cubical cells w, ... w,,, each of side s + ¢.
The partition function may be written

Z(N,Q, y) = y ZN Z(N,,...,N,), (2.40)

where the sum is over all sets of M non-negative integers adding up to N
and Z(N,,...,N,,) means the contribution to Z from configurations with
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exactly N, particles in cell wfi = 1,2... M). Since there are (N + M — ny

N (M — 1)! terms in the sum it has the upper bound

ZIN,Qy) <[(N+M - DYNM — 1] max Z(N,,... N,). (2.41)
-NM

Ni..

the maximum being taken over all sets of non-negative integers N 1--- Ny
which add up to N. The combinatorial argnment which led to (2.29) gives,

when applied to Z(N,, . .., N,,), the formula

Z(Nl,...,NM)=H[(1/Ni!),1‘”Nf}J J e fdr,...dry (242

where the first N, of the N integrations are over the cell w;, [not w} as in
(2.29)] the next N, over w,, and so on.

To obtain an upper bound on the integral in (2.42) we separate the potential
energy U into three parts:

U=Q+0+W (2.43)

where Q' is the contribution to U from short-range interactions between
particles that are in the same cell, § the contribution from short-range
interactions between particles that are in different cells and W is the total
contribution from long-range interactions. If § ., and W,_,_ are lower
bounds on § and W, then (2.42) and (2.43) lead to the inequality, analogous
to (2.31),

Z(Nl’ M NM) < {H Zo(Ni’ CO)} eXp [_ (Q min + IJ{nin )/kT]’ (2'44)

where Z°(N,, w) is the partition function for N, particles of the reference
system in a cube of side s + .
We now make use of the condition that g(r) > 0. This implies Q = 0 or

0 in= 0. A simple lower bound on W, the total long-range interaction, is
given by

W 2—21 E E NiNjw i(kij) (2.45)
i
where

Wmin(K;;) = min w(x — y, y) = min wk;; + 2r, y). (2.46)
These formulas are analogous to (2.32) and (2.33) but the i = Jj terms are now
included. Since NN, < IN? +1N7, and w,, (k) <0, we may deduce
from (2.45) the inequality ‘

t ]

W > %ZZ(%NIZ + %Nf) Wi (Kj) = %ZNIZ Zwmin(kij)' (247)
T 7
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The sum over j may be extended, without destroying the validity of (2.47),
to include the infinite network of cells continuing outside Q the pattern
established inside it by the cells o, ... o,,.

Substituting this into (2.44) and using (2.41) we obtain

F(N,Q,7) = kT log [NI(M — 1)l/(N + M — 1)1]
M
+ min Y {FUN,0) +3N? Y v, K}  (248)

Ni...Npm i=1 k

The second term on the right can be simplified by means of a simple property
of the convex envelope of a function. This property is: for any f(£),

M
M™1 Y f(N) = M7 Y CE{f(N)} = CE{f(M~ 'Y N)}  (249)
i=1 i i
where the first inequality follows from the fact that CE{f} is a lower bound
on f, and the second from the fact that CE{f} is convex. Thus we find
F(N,Q9) 2 kT log [NYM — 1)J/(N + M — 1)1]
+ M CE{F'(N/M, w) + {N/M)*> w_._(k)} (2.50)
k
where CE{ } is the convex envelope of the quantity in braces regarded as a
function of N/M, (using interpolation for non-integer values in F).
To apply the triple limiting process described earlier we first divide (2.50)

by |Q] and take the thermodynamic limit € — oo, using for the factorials
Stirling’s formula which becomes exact in the limits we take. The result is

flo.9) 2 —kT{(s + )" log [1 + p(s + &)’] + plog[1 + p~ (s + )]}
+ CE{(s + )" FOpls + &), ) + 307G+ " Y w,,, (K)} (251)
since
N/M = p|Q|/M = p(s + t)".
Taking the limit y — 0 we obtain
f0,0) = — kT{(s + )" log[1 + p(s + "] + plog[1 + p~ (s + )}
+ CE{(s + ) " F(p(s + 1), ®) — ap®},  (2.52)

where use has been made of the fact, proven in LP, that for a sequence of
functions f,(£) converging uniformly on an interval to f(&), lim CE{f(®)} =

CE{f(&)}. Finally, taking the limit s — oo, where the convergence is again
uniform we obtain

f(p,0) = CE{f°(p) — ap®}. (2.53)
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Combined with (2.39) this gives (2.16) for the cases considered here.

3. Lower bound on f for non-negative definite Kac potentials

The proof of the upper bound (2.39) remains unchanged when ¢(x) is not
negative. We give a lower bound on the free energy when ¢(x) defining the
Kac potential (2.11) is non-negative definite: that is to say, when its v-
dimensional Fourier transform

oK) = J $(x) exp (2nik - x) dx (2.54)

is non-negative. In this case it is possible to find a lower bound W, on the
long-range contribution )

W= Z P olnx; — Xj)]
= %Z Z Yolrx; — x)] - NY'$0) (2.55)

to the total potential energy U, and by substituting such a lower bound into
the basic definitions we obtain

F(N,Q,7) > FN,Q) + W, (2.56)

To find a suitable W, we use the Fourier inversion formula in (2.55),
obtaining

in®

W = —3N7'$(0)
i exp (2miyk - X)) 2. (2.57)

j=1

+ 37 | dkP(k)

Using (2.57) it was shown by LP that there exists a sequence of lower bounds

on W, call then W, , with the propertyt
Jim W, /1Q] = —207"$(0) + 36(0)p?
. = —307"$(0) — ap”. (2.58)
This result enables us to take the thermodynamic limit of (2.56), obtaining
flo,7) = £%p) — 3p7°$(0) — ap? (2:59)

TA proof of (2.58) for systems with periodic boundary conditions was given by Lieb (1963). We
also note here that using (2.19) it is sufficient to obtain a lower bound on {W)/|Q| and this can
be obtained by using the form (2.23) and noting that (from the definition) n,(r,, r,) — n,(r,(r,) +
n,(r,)3(r, — r,)is nonnegative definite.
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for non-negative-definite potentials. In the van der Waals limit this formula
reduces to

f(p,0) > f%p) — ap® (2.60)
which gives (2.15) for non-negative-definite Kac potentials.

E. Some consequences and extensions of theorem 1
1. Grand canonical pressure

Equation (2.16) can be used directly to obtain the van der Waals limit of
the pressure p(u,y) expressed as a function of the chemical potential u (at
fixed T); p(u, y) is the thermodynamic limit of the grand canonical pressure
pu, Q, y). Quite generally, cf. Fisher (1964),

P, 7) = max [up — f(p, )] (2.61)

In taking the limit y — 0 in (2.61) we may interchange the maximum and the
limit operation because, as we have shown, f(p,y) — f(p,0) uniformly on
any interval [0, p'], p’ < p_ . This yields

max”

p(u, 0) = max [up — CE{f°(p) — ap®}] = max [up — f°p) + ap?], (2.62)

where the last equality follows from the definition of the convex envelope,
cf. Gates and Penrose (1969). Equation (2.62) can also be derived directly
by the methods of the last section and is a consequence of the more general
results by Gates and Penrose which will be discussed later.

2. Lattice gases and Ising spins

The methods used in the last section for continuum systems carry over
directly to lattice systems where the positions of the particles are restricted
to be on some regular lattice in R”. The interparticles potential u(r), with r
restricted to lattice vectors, is now a sum of a short range part g(r), (4(0) = o)
and a long range Kac potential

wir, 7) = ay)y" ¢ (yr), (2.63)
where «(y) is chosen so that «(y) — 1 as y = 0, and
o)y Y, Plyr) = —2a, (2.64)

independent of y. With this choice eqns (2.14) and (2.62) remain valid for
lattice gases. They thus apply also to Ising spin systems which are isomorphic
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to lattice gases (Lee and Yang, 1952). Thus for an Ising spin system with an
interaction energy

U =13 2. lal) + a)y"olr)loi0; — b Yo, o;=xl (2.65)

where h is the magnetic field, the free energy per site in the thermodynamic
limit W(h, y), has the van der Waals limit, y — 0,

W(h, 0) = max [hm — £°(m) + am?] (2.66)

Here m is the magnetization and f°(m) is the free energy per site of the reference
system at fixed magnetization.

3. Mixtures

The analysis leading to Theorem 1 for a one component system can be
generalized in a straightforward way to mixtures. For a system containing
n species the appropriate pair potential between a particle of species « and
a particle of species  will have the form

Ug(F) = GugT) + VP 657 (2.67)

with g,, and ¢,, satisfying the same conditions as g and ¢ in the one com-
ponent case and

jqbaﬁ(x) dx = — 2aaﬁ' (268)

Let p = (p,,..-p,) The thermodynamic free energy density f(p,y), is
jointly convex in all the p,, cf. Griffiths (1972). Defining the convex envelope
of a function of several variables in a manner analogous to (2.9), ie.
CE{®(p,| ..., p,)} is the maximum over functions, jointly convex in all the
p» Which lie belowt ®(p), we readily find that when all ¢, ;s are either non-
negative definite or non-positive then

lim fip,7) = (0.0 = CE(f%0) = T agpupp}  (269)

y—

all pairs

4. Periodic boundary conditions

It was shown by Fisher and Lebowitz (1970) that the thermodynamic limit
of the free energy density for a classical system in a parallelepiped domain
Q with “periodic boundary conditions” is the same as that obtained from

FCE{®(p,, ..., p,)} may also be defined by saying that the n + 1 dimensional set of points
{Pys--p, ¥} such that y = CE {®(p,....,p,)} form the convex hull of the n + 1 dimensional
set {py,--..p, 2z} such that z > ®(p,,..., p,). The convex hull of a set X is defined as the set Y
which includes every point on the line connecting any two pointsin X.
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rigid wall boundary conditions whenever u(r) “falls off” faster than r—+1+2),
Hence when both ¢(r) and ¢(x) have such a fall off then Theorem 1 and its
consequences remdin valid when periodic boundary conditions are used.

5. Quantum systems

Lieb (1966) generalized the LP results to quantum systems for the cases of a
non-negative-definite and non-positive ¢(x). In addition to the conditions
(24) and (2.12) (like LP, Lieb assumed a hard core condition instead of
(2.4a)) the proof for quantum systems requires an additional assumption
about the effect of boundary conditions on the thermodynamic limit of the
free energy density.

For classical systems boundary conditions affect the partition function
and thus the free energy only by modifying the expression for the potential
energy of a given configuration in the integrand of (2.2). For quantum systems
on the other hand boundary conditions enter also in the conditions imposed
on the wave functions on the boundaries of the domain Q.

Lieb considered the three customary ways of imposing homogeneous
boundary conditions on the wave function (he did not consider any periodiciz-
ing of the potential but this can be handled for quantum, as for classical
systems, by the methods of Fisher and Lebowitz (1970) mentioned earlier);
(1) vanishing (¥ = 0) boundary conditions; (2) normal (n-V¥ =0, n a
unit vector normal to the wall) boundary conditions; (3) Periodic (¥ is
periodic) boundary conditions. Calling FO(N,Q), i = 1, 2, 3, the reference
system free energy with these boundary conditions Lieb assumed that

1
lim
Q—co lQl

= f%p) (2.70)

exists and is independent of the boundary conditions used. As pointed out
by Lieb it is easy to show that

F,(N,Q) = F4(N,Q) > F(N,Q) @.71)

80 it is the equivalence of ¥ = 0 and n-V¥ = 0 boundary conditions in the
thermodynamic limit which requires proof. At the present time (2.70) has
been established rigorously only in special cases. It is strongly conjectured
however (Griffiths and Robinson, private communication) that it is true
in all cases of interest.

Lieb’s method for generalizing the LP results to quantum systems con-
sists in proving the upper bound (2.39) for vanishing boundary conditions
and the lower bound (2.53) with normal boundary conditions. This proves
(2.16) when (2.70) is assumed to hold.
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6. Microscopic structure: correlation functions

The expression for the free energy density in the van der Waals limit, eqn
(2.16), and the methods used in deriving it strongly suggest the following
picture of the state of the fluid in the limit y — Q. (a) For values of the density
and temperature at which %) — ap? coincides with its convex envelope
the microscopic structure of the system is unchanged from what it is in the
reference system with potential g(r). The Kac potential y*¢(yr) acts, in the
limit y — 0, as a uniform external field contributing an additive (temperature
independent) term —ap?® to the energy while leaving the entropy and the
structure unchanged. (b) When however CE{f%p) — ap?} < f°(p) — qu
the free energy f(p,0) is given by the Gibbs double tangent construction
corresponding to a linear combination of the free energy at densities p, and
p,, the end points of the linear portion of f(p, 0), cf. Fig. 2. Thus

o, —p)

160 = (Pz

[fo (py) — apl] o [fo (py) — apz]

(
Py Sp<py, (272)

which suggests that the Kac potential causes the system to separate into two
phases with densities p, and p,. Within each phase we again expect the
microscopic structure to be the same as that of the reference fluid.

To get an understanding of the microscopic structure of the system in
the van der Waals limit LP investigated the behaviour of the space averaged
pair correlation function n, (r; p|Q], Q, y) defined in (2.24), in limit Q — oo
followed by the limit y — 0. It is readily seen that

s

where f(p;Q,7,nq'(r)) denotes the free energy density in the domain Q
when the interparticle potential has the form g(r) + 5nq'(r) + y'¢(yr) with
q'(r) an arbitrary bounded function and # a parameter. Assuming the limits
Q — oo and y — 0 to exist we find that

[y 2T
Y

%j fi,(x; p, 0)g'(x) dr = %f (0,0, 1g' @), = o- (2.74)

Considering now Kac potentials for which (2.16) is valid, LP found that
for values of p corresponding to case (a) discussed earlier

fi,(r: p, 0) = A3(r; p), (2.75)
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the pair correlation in the reference system, while in case (b)

%:Tp))ﬁg(r; py) Hﬁgﬁ; p2), 2.76)
2 1 2 1

n,(r3 0, 0) =
a linear combination of the pair correlation in the reference system at
densities p, and p,. This behaviour of the pair correlation function is in
agreement with the picture of the fluid structure given earlier.

In the case of Kac potentials (satisfying the conditions for the validity
of (2.16)) for which a < 0f(p, 0) is given by (2.15) and thus cannot have a
straight portion. This system will therefore not undergo a first-order phase
transition. A paradoxical situation arises now if the reference system has a
phase transition since by (2.75) the pair distribution function has then the
form characteristic of a phase transition, yet there is no phase transition
in the thermodynamic sense. The explanation is that the result, which indi-
cates the coexistence of two phases, was obtained using the limit y — 0 and
may therefore be relied on only when r < 7y~ 1. On the other hand, the term
—ap? in f(p,0) indicates that on the length scale where the Kac potential
operates (distances > y~!) the system is uniform since there is no transition.
It appears, therefore, that the repulsive Kac potential causes the distinct
liquid and gas phases of a normal first-order transition to break into droplets
or froth whose characteristic length is > r, but <y~!. Similar type of
behaviour occurs in cases where the Kac potential is oscillatory and there-
fore does not satisfy the conditions leading to (2.16). This will be discussed
in section G.

F. Metastability

Wehave seen that a rigorous analysis of the equilibrium properties of a system
with “long range” attractive potentials yields below T, a range of densities
m which the free energy is given by the Gibbs double tangent construction
(and the pressure by the Maxwell construction) applied to f°(p) — ap?,
see Fig. 2.

No significance at all is attached by our theory, based on the statistical
mechanics of large systems in equilibrium, to the function f°(p) — ap? for
values of p where it does not coincide with its convex envelope. Maxwell,
however, interpreted the parts of the curve where f%(p) — ap? is convex,
Le, f"(p) — 2a > 0, to represent the metastable states observed experi-
mentally in conjunction with the liquid—gas transition. The question there-
fore arises of how to deal with these states in our formalism.

Indeed the whole problem of metastable states represents something
of an embarrassment to rigorous statistical mechanics at the present time.
For while the van der Waals—Maxwell theory suggests that these states are
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the “analytic continuations” of the equilibrium state there are many who
argue (Langer, 1967; Fisher, 1967), that this is one of the qualitative features
of the infinite range potential limit which does not persist for finite range
potentials. It is argued (Fisher, 1967) that in the first order phase transitions in
real systems there is an essential singularity blocking analytic continuation.
Even if this argument should turn out to be incorrect the question still
remains of how to define (with or without analytic continuation) metastable
states precisely, with some justification from first principles.

A theory of metastability should describe the familiar experimental facts
about the large variety of metastable states occurring in nature. These include
supercooled vapours and liquids, supersaturated solutions, and ferromagnets
in the part of the hysteresis loop where the magnetization and the applied
magnetic field are in opposite directions. They generally arise when some
thermodynamic parameter of the system, such as the temperature or magnetic
field, is changed from a value for which the stable equilibrium state has a
single thermodynamic phase, to one for which it has at least part of the system
in some new thermodynamic phase. Instead of making the appropriate
phase transition, however, the system may go over continuously into a
one-phase state, called a metastable state, which appears, while it lasts, to
stationary in time in the same manner as a stable equilibrium state. The
properties of the metastable state are found to be reproducible; that is,
they “appear” to be completely determined by the values of the thermo-
dynamic parameters, in just the same way as those of a stable equilibrium
state. The distinguishing feature of a metastable state is that, eventually,
either through some external disturbance or a spontaneous fluctuation which
nucleates the missing phase in some small part of the system, the system
begins an irreversible process which leads it inexorably to the corresponding
stable equilibrium state. Thermodynamically, the irreversibility of this
transition corresponds to a decrease in free energy or an increase in entropy.

This indicates that we may characterize metastable thermodynamic
states by the following properties:

Only one thermodynamic phase is present. (@)
A system that starts in this state is likely to take a long time to

get out. (b)
Once the system has escaped, it is unlikely to return. (c)

One might add the statement that thermodynamics applies to the meta-
stable state—for example, the usual theory would apply if a substance in
such a state were taken around a Carnot cycle.

A complete theory of metastability must then describe both the static
properties of these states as well as the dynamics of their persistance and
decay. Some of the basic ideas underlying these dynamics are already con-
tained in Maxwell’s discussion of metastable states: Maxwell recognized
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the importance of nucleation; he saw that to set up the metastable state we
must be sure that none of the new phase is present.

The relationship between the static equilibrium-like view of the metastable
state that comes from the van der Waals—Maxwell-like theories and the
kinetic time-dependent view coming from nucleation and similar theories
is very central to an understanding of the metastable state. Unfortunately
we do not yet know how to construct such a theory of metastable states for
systems with short range potentials. For systems with long range potentials,
the case we are dealing with here, Penrose and Lebowitz (1971) (PL) have
shown how one can define, in the limit y — 0, through an extension of the
formalism of equilibrium statistical mechanics, restricted equilibrium states
which satisfy the above criteria of metastable thermodynamic states. The
remainder of this section summarizes their results.

PL begin by making precise the notion, inherent in the previous discussion,
of imposing a restriction on the system which keeps its density roughly
uniform. In general, such a restriction may be represented by confining the
configuration of the system to a suitable region R in configuration space.
In order for this region to correspond to a metastable state, the restrictions
defining it should correspond to the imposition of a roughly uniform density,
in accordance with the criterion (a), and it should also have properties cor-
responding to the conditions (b) and (c) mentioned earlier: If the dynamical
state is initially in R, it is unlikely to escape quickly, and once it has escaped,
it is unlikely to return.

To compute the conditional probabilities implicit in (b) we shall, as is
usually done in statistical mechanics, use the Gibbs ensemble made up by
taking an equilibrium ensemble and selecting from it at some initial time,
t = 0, all those systems whose configurations are in R. PL call this ensemble
a restricted equilibrium ensemble. The conditional probability p(f) of the
configuration being outside R at time ¢ is then equal to the fraction of the
members of this subensemble that are no longer in R at time t.

To avoid the complications arising from the walls of the container, where
nucleation of the new phase may proceed at a different rate from that in the
bulk liquid, the calculations were done for a system with periodic boundary
conditions. The escape rate we estimate will therefore be the homogeneous
nucleation rate, proportional to the volume of the system. The effect of walls,
which is a special case of the nucleation of a new phase at the surface of a
foreign substance, is also discussed. PL find that perfectly elastic walls do
not facilitate the formation of liquid droplets in a supercooled vapour but
may play an important réle in serving as loci for the formation of vapour
cavities in superheated liquids. (A similar effect is observed for real walls.)

This treatment of metastable states hinges on finding a suitable region R in
configuration space. The ideal choice would, perhaps, be the one minimizing
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the escape rate—that is, the probability per unit time for the configuration
of the system to move out of R. PL did not attempt the difficult task of
optimizing the region R. Instead, they made their choice on physical grounds
and showed that this choice leads to a very small escape rate (so that the
minimum escape rate must be at least as small). The basic idea of the method
is the following: We take the cubical region Q of volume |Q| in which our
system containing N particles is confined and divide it up as before into M
cubical cells w;;i = 1,... M, || = o = | Q|/M.
Let n; be the number of particles in w,,

td 1
i§1 n; = N, p; = n;/w, szi=p-

We may consider now the space {p,}. A point in this space corresponds to a
specification of the average density of each cell. We define the region R in
the configuration space by restricting the p; to a certain region in the {p,}-
space. PL chose in particular the constraints

p- <p;<p*, where p <p<pt. 277

At ¢t = 0 we assume that our system is represented by a canonical ensemble
restricted to R, i.e.

(h*N1Z )"t e PH®) xeR
ux,t =0) = ' (2.78)
0, otherwise

1 - x
ZR =WJ € ﬁH()dx
- R

We let

pt) =1 —J ulx, t) dx;
R

dp(t)/dt is the escape rate and it is readily shown that for all ¢,

al) _ [9&}
t=0

A
dt dr

We want to show that we can choose R in such a way that 1 can be made
arbitrary small in a certain limit even though the probability that the equi-
librium system will be in R, Z/Z is vanishingly small. It turns out that this
can be accomplished if we can show that the free energy for a given set of
densities p;, F({p,}, w, M) has the property that

[F({pi} @, M) — F({p}, w, M)] > |o|[C + o(1)], (2.79)
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where {p;} is a point on the boundary of {p,}-space, as specified in (2.77)
and C is some positive constant. Here o(1) means a quantity which goes to
2e10 as |w| — oo in the limit considered. When (2.79) holds, PL shows that,

1< kB exp (ol + o) 050)

where K is a constant which remains finite in the limit and v is the dimen-
sionality of the space considered. One has therefore to arrange things in
such a way that as || and |w] = oo, the ratio &= 1n || - 0 and the in-
equality about the free energies, eqn (2.79) remains valid.
To accomplish this PL had to consider instead of the previous triple
limit,
ro < wl/v < ,y-—l < ‘Q,llv’

where each of the last three quantities went to infinity in succession, a limit
m which

roln Q] <fo| <y~ <@,

with all quantities going to infinity.
The limits are therefore not taken independently any more. With this

way of taking the limit everything goes as before for equilibrium systems

G. Oscillatory Kac potentials; Gates and Penrose theorem

The results of LP summarized in Theorem 1 yield an expression for f(p, 0)
if and only if the lower and upper bounds in (2.14) coincide, This will occur
when either of the situations discussed in Remark (i)~(iv) holds in which

Penrose (1970b) who showed that there were some Kac potentials ¢(x) for
which (2.16) was definitely incorrect. More precisely they proved (Theorem 2
of their paper, in our notation):

Theorem 2 (Gates and Penrose), If Poin<Oand § < —4g = 2¢(0) and
the function f %) + ﬁ(ﬁmin p? is not convex in p (for some temperature), then
there are values of p Jor which f(p,0) < CE{f°p) — ap®}, ie., the free
energy is less than that given by the van der Waals—M. axwell theory.
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We note that the condition of Fp) + 4. p* will always be satisfied
if the reference system undergoes a first order transition at some temperature
in which case f %(p) has a linear portion. It will also be satisfied for a system
of hard spheres at sufficiently low temperatures since £°(p) for such a system
1s proportional to 7.

The proof of Theorem 2 is based on finding an upper bound on f(p,0)
which is stronger than that given in (2.14), when the conditions of this
theorem are satisfied. This upper bound has the form

f(p: 0) < CE{ME[fO(p) + %&minpz] - (a + iémin)pz}’ (2'81)
where ME £, the mid-point envelope of £, is defined for any function f by
MEf(p) = inf3[ fp + ) + f(p — )] (2.82)

The function ME f has the following properties:
(@) CEflp) < MEf{p) < f(p) for all

The inequalities apply for all p if fis convex.

(b) If CEf < f in some bounded open interval, but not at the end points,
and p, is the mid-point of this interval, then

MEf(p )= CEf(p) (2.83)

(¢) A function f is convex in any interval where it coincides with MEY.

Theorem 2 then follows from the upper bound (2.81) and these properties
of the MEf.

To obtain the upper bound (2.81) Gates and Penrose make use of their
earlier work (Gates and Penrose, 1969) where they prove, by a refinement of
the methods of LP discussed earlier, that

f(,0) = inf G{n} (2.84)

nez(p)

where the functional G(n) is given by

G(n) = |T l‘lf dx{ f°[n(x)] + in(x) j dx’ n(x’) p(x — x')}. (2.85)

The integral with respect to x’ being over all y-dimensional space. z(p) is the
class of functions n that (i) are bounded by 0 and Pomax (the close-packing
density permitted by the reference potential g(r) which is assumed to have
a hard core part), (if) are Riemann integrable over any bounded region, (1)
are periodic with unit cell " (I" itself is not fixed, it depends on n), and (iv)
have space averages p, Le.

|F[_1f dx n(x) = p. (2.86)



138 P. C. Hemmer and J. L. Lebowitz

The upper bound (2.81) now follows by choosing as a test function in
G{n}

n(x) = p + hsin(27k, - x) (2.87)

where h is a positive constant, 0 < p + h < p_, and k, is the value of k
for which @(ky) = ¢, With this choice of n the unit cell T has length
k,|™" in the k, direction while its other dimensions are arbitrary. (For a
symmetric Kac potential, ¢(x) = ¢(x), the direction of k, is arbitrary.)
The choice of this form of 1 is based on the expectation that for an oscillating
Kac potential the free energy of the system will be lower when the density
has a spatial ordering (on the same scale as the variation in ¢(x)) than it
would in a system separated into just two regions of different densities.
The latter is, as already discussed, what happens when the van der Waals—
Maxwell theory holds and CE{f°(p) — ap?} < f°(p) — ap>. '

The fact that the periodic density n of (2.87) does indeed lead to a lower
free energy does not actually prove that the density which minimizes G{n}
is in fact periodic. It is possible that a non-periodic function n (e.g, an
almost periodic function) will give a lower value for G{n} than any periodic
function. Still it is clear that when the conditions of Theorem 2 are satisfied
then the system will have some spatial ordering. As already pointed out
however the scale on which this ordering occurs is that of x = yr so that in
the van der Waals limit, y — 0, when the theory applies, this scale becomes
infinitely large compared to the scale of the reference potential T, Or to the
interparticle separation. It is therefore difficult to know how, or whether, one
should ascribe physical significance to this result, i.e., does it remain valid
(qualitatively) for systems with small but finite y and if the answer is yes does
it have any significance for spatial orderings (crystals) in real systems?

lll. Integral Equation Approach

While the results of the preceding section are valid for a general class of
interactions in all dimensions, they are limited in the sense that only the
van der Waals limit y — 0 is considered. In a systematic expansion scheme
where y, the inverse range of the interaction, is used as a small parameter
they correspond to the lowest order results. By considering special model
systems which are particularly amenable to analysis one can go further to
obtain exact results also for small but nonzero y.

What is especially interesting is that by keeping y small, but finite, one
can bring out features which depend upon dimensionality and details of the
interaction (Kac, 1968a, b). For a general point of view on phase transitions,
one might consider it an additional advantage that the mathematical mecha-
nism responsible for the phase transition in the integral equation approach
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which we shall consider here is the same as in the two-dimensional standard
Ising model, namely a degeneracy of the maximum eigenvalue of a linear
operator (Kac, 1968a, b} in an appropriate limit.

A particularly easy system to handle by the integral equation method is a
one-dimensional model system with exponential interaction, originally
introduced by Kac (1959), and this model together with certain generaliza-
tions of it is the subject of this section. While losing generality in this approach,
one gains by the availability of detailed results. In particular one can study
what happens in the critical region where expansions in powers of y fail
(see Section IIL.E).

A. Integral equation for the one-dimensional continuum gas

Consider a one-dimensional gas of N particles in a “volume” L, interacting
via a pair potential of the form given by (2.11)

u(r) = q(r) + 79(yr). (3.1)

We shall assume further that the reference potential g(r) acts only between
nearest neighbours,

0 for r<d
g(ry =<{bounded for d<r<2d (32)
0 for r> 2d.
The long-range potential ¢(x) has the form
ox) = —ae™*, (3.3).
where a is the positive constant
“+ o0
a=— %J ¢(r) dr. (34
In the article by Kac (1959) and by Kac et al, (1963) only the simple hard core
potential
oo forr<d
=< 3.
a) {0 forr>=d (3:5)

was considered, but we do not make that specialization.

By symmetry, each of the N! different orderings of the particles on the
line (O, L) gives the same contribution to the configuration integral Q(N, L, T).
Hence

Q(N’ L’ T) = N!J °c jdtl b dtN exp {_ﬁ Z [q(tij) + 7¢(?tij)]}-
0<t1<ta...ty<L

(3.6)
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With the exponential attraction (3.3) we have

exp[~f ). v¢(wtij)‘ =e Mexp {%avﬁ i exp(—y|t; — tjl)}.

i<j i,

)

The reason why the exponential attraction (3.3) is so convenient is the
availability of the identity

XP{% Z cicjexp(_ylti - tjl)}

ij=1

+w N N-1
=J ...J‘dxl...deexp[z cixi:} Wx,) [T Peeslx;e 584, — 1)
— i j=1

i=1

(38)
where
W(x) = (2r)~* exp(—1x?), (3.9)
and
— -2
P(x ¥y t) = [2TC(1 — 6—271)]_%6Xp{ — %:—_272-)—} . (310)

There is no difficulty in proving the integral representation (3.8) as an
exercise in multiple Gaussian integrals (Cramer, 1946). The original motiva-
tion (Kac, 1959) for using the exponential potential came, however, from
the observation that exp(—y}ti — tj|) is the covariance of a Gaussian
stochastic process with mean zero, namely the Ornstein—Uhlenbeck process
(Wang and Uhlenbeck, 1945), and the possibility of taking advantage of the
Markoffian character of this process (Kac, 1959). We show in Section IV
how partition functions in general can be represented as expectation values
of Gaussian stochastic processes, but for the present purpose the identity
(3.8) is all we need.

The integral representation (3.8) (with ¢; = (ayp)?), together with the fact
that the short-range potential g(r) acts only between nearest neighbours,
reduces Q(N, L, T) to a form where only nearest-neighbour distances enter:

+
LT _ g [ [ e

N 1 ---dxyexp[vix, + ... + x)]W(x,)

—®

N-1
X Jj de, ... dey ] P(>cj]xj+1;tj+1 —t)exp[—Balt;., — t))]
. j=1
O<ty;<...<ty<L

(311
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with
v = ayp. (3.12)

Rather than proceeding with the evaluation of the Q(N, L, T) it is more
convenient to compute its Laplace transform, which is the configuration
integral in the isobaric ensemble,

g,(N) = J dLe™*"Q(N, L, T), (3.13)
0
where
s = p/kT. (3.14)
The equation of state in the isobaric ensemblet follows from Q,(N),

0
v=—o N 'In Q,(N), (3.15)

where v = {L}/N = “volume” per particle. Introducing relative distances
7, by

Ty =1
T, =1t —t 2<i -1
Ty = L — ty, (3.16)

(3.13) becomes

Q,(N)=s2e ‘LN”J fdx dxy e)szp[\/"(x1 X)W (xy)
H d7: exp[ —st — Bq(0)]P(x;|x;, .57 (B.17)
i=1 JO

The integral in eqn (3.17) is clearly related to iterations of the kernel (here
in a symmetrized version)

K(x,y) = exp[5(x + YWV]{W(x)/ W(y)}fj dt exp[ —st —

(3.18)

The advantage obtained from the use of the exponential interaction is
that the partition function (3.17) is of the same form as obtained by the

1 For proofs on the equivalence of the ensembles, see the article by R. B. Griffiths, Vol. 1,
Chapter 2.
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transfer matrix method, which in general is applicable only when the inter-
action is of finite range.

For any fixed s > 0 the kernel (3.18) is positive definite and of the Hilbert—
Schmidt type (Kac, 1959) so that the corresponding Kac integral equation

j " Ay Ko yW0) = v (3.19)

has a discrete set of positive eigenvalues A (s) > 4,(s) > 4,(s) > ... Hence

As)]

S

Fi1G. 4. The general character of the eigenvalye spectrum as function of the pressure variables.

the kernel can be expanded in the (complete) set of orthonormal eigenfunctions

Y x):

K(x, ) = Y, 200 ,0)- (320
i=0
Insertion of (3.20) into (3.17) yields immediately
Q,(N) = sT2eTH N g1 (3.21)
i=0
with
+
= j dxy L[N e, (3.22)
In the bulk limit
lim N"'In Q,N) = —3v + In Ay(s), (3.23)
N—ow
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where 1,(s) is the largest eigenvalue. By (3.15), then, the equation of state is
determined in the thermodynamical limit by this largest eigenvalue alone:

b= —AS)/Aols). (s = p/kT) (3.24)

It is mot difficult to prove (Kac, 1959) that the maximum eigenvalue A(s) is
an analytic function of s for Re s > 0.For sreal and positive A,(s) is a decreas-
ing function, going as s™* when s — 0 and approaching 0 as s — oo (see
Fig. 4). Hence no phase transition occurs for finite y in one dimeunsion. The
point is, however, that the limit y — 0 induces a first-order transition (see
Section III.C).

The relation between correlation functions and the eigenfunctions and
eigenvalues of the kernel is derived in Section IILF. While the equation of
state is given by the maximum eigenvalues only, the correlation functions
will be found to depend on all eigenvalues and eigenfunctions.

B. Integral equations for the lattice gas

The lattice gas (Lee and Yang, 1952) is a cell model of a fluid in which the
interparticle potential depends only upon the relative location of the cells
containing the particles. As a discrete version of the one-dimensional model
discussed in the last subsection take for the short-range potential g(r)
exclusion of multiple occupancy

oo r=0
= 32
a0 {0 o (325)
and the same exponential atiraction (3.3) as before, but now forr =0, 1, 2,
3,.... (The cell size is chosen to be unity). The equation of state can be

obtained either by the isobaric ensembles used in the previous subsection
or by the grand canonical ensembles. In both ensembles the equation of state
in the thermodynamic limit is obtained from the maximum eigenvalue of
an integral equation. The kernels are, however, very different.

Following the same procedure as for the continuum case, merely replacing
spatial integrations by summations, we obtain that the equation of state is
still given by (3.24) where now A, belongs to the integral kernel (with x and y
continuous variables as before)

K(x,y) = exp[2x + WFIIWOWOITE 3, e=Pxlyin),  (3.26)
=1

which is the same kernel as (3.18), except that the integration over t is now
replaced by a summation.

+ The absence of a phase transition for the potential (3.1) follows also from the general theorem
of Gallavotti et al. (1968).
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In the grand ensemble the configurations of the lattice gas 1s described by
occupation numbers &, ¢,,...¢;, Where ¢, = 0,1 denotes the number of
particles in cell no. i. The grand partition function at fugacity z is therefore

1 1
ELT)y= ) ...y 2= exp{—ﬂ Y o[y — i)]sisj}. (327

£1=0 er,=0 i<j

Since again ¢(x) = —ae™* the integral representation (3.8) with t; = j allows
the following representation of =:

+ 0 + o L-1
E =j J dx; ... dx, W(x,) [T P(x|x;,51)
- — 0 j=1
L 1 & + oo
7> l:zexp{—%v +ﬁxi}] =J ...fdxl...deW(xl)
i=15=0 Cw

[1 + Zexp(y/vx,)] LH: Px;|x,, s [1 + 2 exp(y/vx)]  (3.28)
with the abbreviation J
Z2=ze 2 (3.29)
The symmetric kernel associated with (3.28) is clearly
Rix,y) = [(1 + 2e¥™)(1 + 2™ WERYWH)EPx|y; 1) (3.30)

and in terms of its eigenfunctions ¥ (x) and eigenvalues 7, the grand partition
function reduces to (dropping the variable T in the notation)

60 =Y @21, (3D
i=1
with
+ oo ~
a, = dx(1 + 2 &™) W) (x).

-

In this ensemble the properties of the system in the thermodynamic limit are
obtained from-

22) =lim L' InE(z. L) = In J,(z), (3.32)
L—w

with the pressure p and the density p given by
p/kT = x(2); p = zx'(2). (3.33)

Again there is no phase transition fo; finite y (Kac, 1959).
Note the difference between the kernels (3.26) and (3.30): K is a function
of the fugacity and the pressure is given by the maximum eigenvalue of K,
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while K is a function of the pressure and the fugacity is given by maximum
eigenvalue of K.¥

The lattice gas model is mathematically equivalent to an Ising spin
system in a magnet field 5. One can form the magnetic partition function
(Kac, 1959) by replacing z by e~ 2#* in (3.27), and by summing ¢, over +1
(spin up/down) instead of over 0, 1. This leads to a kernel

K p(x, y) = 2[cosh(\/vx + #) cosh(\/vx + H#)W (x)/W(y)]*P(x

y; 1)
(3.34)

instead of (3.29).
The magnetization per spin is given by the corresponding maximum
eigenvalue:
0

BM = — = In(5F). (3.35)

C. The van der Waals limit

In the next section the integral equation (3.19) for the continuum gas is solved
by a perturbation expansion in powers of y, so that the limit y — 0 cor-
responds to the lowest order approximation. Before embarking on that
calculation we find it instructive to show first how the results for the lattice
gas and for y — 0 may be obtained by two simple, but heuristic methods.
(Kac, 1966, 1968a, b; Kac and Helfand 1963 ; Helfand 1964).

1. Operator method

We seck the maximum eigenvalue of the lattice gas kernel (3.30), which can
be written in the form

exp[ —(x — y)*/(4 sinhy)]
\/4nsinhy

exp[ —374(»)],

(3.36)

K(x,y) = exp (37) exp[ —37g(x)]

with
X 2

: tanh% — log[1 + exp(/vx)]. (3.37)

7q(x) =

* T This implies that the lines of singularities closest to the origin in the positive z, e ”*-plane of

the two resolvents R(x, y;z) and R(x, y; e corresponding to the kernels K and K coincide
(for every temperature). The resolvent of a kernel K(x, y) is defined by

R(ey:0) = Kio) + 3, 0 K9, )

where K is the n'th iterated kernel.

A more physical way of expressing the same relation is to note that the grand pressure parti-
tion function Y(z, p, T) can be constracted either from =(z, L, T) or from Q,(N, T). The equation
of state p = p(z, T) is obtained by requiring Y to be singunlar, 1/Y = 0.
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We are interested in studying the eigenvalue problem for y — 0. For that
purpose it is convenient, to introduce the formal representation

400

(4me)™* exp[ — (x — y)*/4e] = (2m) 2 J‘ exp[—su® + fu(x — y)]du

= exp(ed¥dx?)é(x — y), (3.38)
in terms of the Dirac é-function. The integral equation with the kernel (3.36)
is therefore equivalent to
exp(y/2) exp[ —yq(x)/2] exp(sinhyd®/dx?) exp[ —yq(x)/2]¥(x) = AF(x).
(3.39)
The simplicity of (3.39) is only apparent, because of the noncommutivity

of the operators. For small y, however, the exponentials can be combinedf.
To lowest order in y we are therefore led to study the eigenvalue problem

2%

d .
o2 T LE—ax)e) =0, (3.40)

where we have put
1 =exp[4¢ — E)]. (341)

The maximum eigenvalue of the original integral equation is thus given by
the lowest eigenvalue of the Schrédinger equation (3.40).
The minimum of the potential g(x) occurs at

x=(+ afyv™* = + ap)aPy) %, (342)
where £ is the solution of -

2ef—e" ¥ ¢

T o o
and is given by
Qmin?) = (€ + aP)*/4aPy — y~ " In(1 + 2“9, (3.44)

Near the minimum the potential is parabolic, and it is easy to show that the
ground state energy, measured from this minimum is of order V:Ey = g, +
O(y). Hence

lim Indy = —yg..(2) = —(¢ + aP)*/4af + In(1 + £e%%Y).  (345)

y—=0

¢ 1s a function of the fugacity z via (3.43).

T One justifies this by the Baker-Hausdoff theorem ¢4 eB ¢4 = exp(A + B + {5[B,[B, A]] +
higher commutators), where all commutators can be regarded as being of @(y?). This is so
because yg(x) has a constant part of ¢(1), see eqn (3.44), commuting with d2/dx?, plus a difference
7[4(X) — gy, ] that is of O(y) near the minimum.
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For high temperatures (aff < 1), the potential g(x) has only one minimupx,
but for kT < a two minima develop. For one particular value of the fugacity

z,=e (3.46)
the two minima are equal and occur for the two nonvanishing solutions of
tanh3¢ = &/af. (347

For z # z_ one of the minima is always lower than the other.

qmin
A

FIG. 5. The absolute minimum of the potential g(x) as function of the fugacity for subcritical
temperatures.

As a result of this shifting from one minimum to the other the absolute
minimum ¢, (z) is a nonanalytic function of the fugacity (see Fig. 5) for a
fixed temperature kT < a. Since pf = x(z), p = zx'(z) and now lim,_,x(2) =
—Vqmin(2), this limiting equation of state corresponds to a first-order phase
transition at Z = Z.

The limiting equation of state p(T, p) in the one-phase region can be easily
determined using

p=1zx(z)=[1+ 2 "exp(—af — ], (3.48)

and, by (3.43), eliminating z and &. The result is
p= —kTIn(l — p) — ap?, (3.49)

in accordance with the general theorem of Section II since p® = —kT'In
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(1 — p) is the pressure of the reference system with the interaction (3.25).
It is also easy to see that the transition at 2 = 2, corresponds to a Maxwell
construction on (3.49).

One can go further with this method (Kac and Helfand, 1964) to perform
a perturbation analysis for small y. We give no details here, since we present
in Section IIL.D a different approach applicable to both the continuum and

the lattice gas.
2. Trace method

An alternative procedure to determine lim,_, 4, is based upon Mercer’s
theorem

+ o0
2= f dx K™(x, x), (3.50)

where K™(x, y) is the n'th iterate of the kernel of our integral equation. With
the kernel (3.18) one finds straightforwardly (Kac et al, 1963; denoted by
KUH below)

o]

limy ¥, 2 = %I ) Jd& dn {exp(n, o f " ds
-0 ]

i=0

O L G RE GRAL Tl S CE
forn =1,2,3,..., and this suggests
1'111% Ay = max {exp(m /Zaﬁ)fgO dsexp[—st — Bq(r) — (€% + 112)/2]} (3.52)
e &n 0 ‘

The equality sign can be seen to hold by performing a suitable Rayleigh-
Ritz calculation to obtain an upper bound for 4, that differs from the right-
hand side of (3.52) by terms of order y (Kac, 1962).

The result is therefore

lim 4, = max exp(nﬁ?ﬁ)fm dsexp[ —st — Bg(z) — m?/2], (3.53)
o

70 n

and the maximum occurs for that value #(s) for which

V2aB/n

= Jw drrexp[—st — Bq(t) — %th]/Jm dz exp[ — st — Bq(7) — Lwn?].
0 o
(3.54)

Let us first consider those values of s for which #7(s) is an analytic function.
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The equation of state follows easily from (3.24) and (3.53):
a 1
v= — aln Ao(S) = 2ap)/n, (3.55)
using (3.54). Inserting this value for 7 into (3.54) and using that s = pf we find

a 0

v= — b—I;InJ dr exp{—B[(p + av™ )t + g(7)]}. ~ (3.56)
o

If we denote the pressure of the system with short-range interactions onlyt

(a = 0) by p°, then (3.56) yields p + av~2 = p°, or

p=p°—av’? (3.57)

again in agreement with the general theorem of Section II. This does not hold
for those values of s (the pressure) for which the integral in (3.53) has two (or
more) equal maxima.

For those values of s, 4,(s) will in general have a discontinuity in slope
corresponding to first-order transitions. For the hard core potential (3.2)
in particular, eqn (3.53) takes the explicit form

2

lim Z4(s) = A9 = max [exp[m/Taﬁ —d(s + n*/2)] <s + %>—1} ,  (3.58)
=0 n

and it is not difficult to sec that for aff > 27d/8 (subcritical temperatures)
there is always one and only one value of s for which two equal minima exist
(see KUH). In this case (3.57) reduces to

kT a
v—d v’

p=

the celebrated van der Waals’ equation. The complete zeroth-order equation
of state is thus in this case

kT a
p-me( - 2). (3:9)

where MC denotes the Maxwell construction.
For other forms of the nearest-neighbour repulsion g(r) two or more first-
order transitions may occur (Hemmer and Stell (1970): see Section V.C.)

D. Expansion for small y
1. One-phase region
The key to the solution of the integral equation (3.19) by a perturbation

+ Equation (3.56) is then identical with the so-called Takahashi’s formula (Takahashi, 1942).
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expansion in y is the fact already discussed above, that the eigenfunctions
are centered a distance ~y~* away from the origin. One substitutes therefore

x=x+n02HE y =y + nQ2M)3, (3.60)

where 7(s), the solution of (3.54), is assumed unique for the moment (the one
phase region), i.e. # = (2af)*/v, eqn (3.55). In terms of the corresponding

displaced eigenfunction
hx') = Y(x) (3.61)
(3.19) takes the form

exp(1x/aB) f " ay Wiy W) J " P

0

y;t)dr

x exp[—st — Bg(t) — y~'n? tanh Gyr) + 3(aByP(x’ + y)
+ 12y~ tanh Gyr)(x' + Y)]R(G) = Ih(x).  (3.62)

If now the eigenfunction h(x') is centered near x' = 0 then by taking the limit
y = 0 using the P(x|y; 1) — 8(x — y) we get

A= 20 = exp(n\/ﬁ—ﬂ)J drexp[—st — fq(r) —3n*c],  (3.63)
0
in agreement with (3.58).
For later use we introduce into (3.62) a new variable
(=0 —xe ™1 —e 293

instead of y, with the result

I8

exp[n(ap)*(2m)~* J

dz exp(~12) J " exp[—Bafe) — st — 3~ tanhdy]
@ 0

xh[xe™" + {(1 —e ") exp{i(l —e 2")x? — 3xCe” (1 — e~ 2yt
30— e+ 3[x(1 + e77) + (1 — e” )]
x [(aBy)* — n(2/7)* tanh Gy7)]} = Ah(x). (3.64)

We specialize now for definiteness to the hard-core potential (3.5), although
there is no difficulty in keeping g(r) general.

Now the integral equation is prepared for a straightforward perturbation
expansion of the form

h=hO 4 3R 4 @ 4 (3.65)
A= 2001 + pA® 4 2@ 4], (3.66)

By inserting these expansions into (3.64) and developing everything in
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powers of %, one obtains instead of an integral equation a set of second order
differential equations of the form

> 1 Gl L oS [
l:@_i_%_ e :|h —kgoLh , (3.67)
~ where b > 0 is given by
b% =1 —2aB( — d)*v™3, (3.68)
and where
z = xb*. (3.69)

The explicit form of the linear differential operators I for k = 1 and 2 can
be found in KUH. The algebra involved in obtaining the higher-order
differential equations can safely be characterized as tedious.

To zeroth order (3.64) is simply the Schrédinger equation for the harmonic
oscillator. Hence

MY =1p[1 — 2n + 1)b], (3.70)
and
hO(x) = N, D (2), (3.71)

where D, is the Weber function and N, = (b/2n)*(n!)~*%. The next-order
results are

M — 2 = nbT3[ 24?0 v — d)* + 2aPv~ (v — dPF (50 — d?) — o?
+od — 3d*] + (n® + mb [ —La®BPr (v — d)° + a0 5w — d)*
x (250 + 6vd — d*) — aPv 3@ — d)°(4v*> — d?) + v* — vd + 1d*] (3.72)
WY =PD, _.z)+ 0D, ,z+RD,. (2 + S,D,.5(2), (3.73)
where P, Q,, R, and S, are known functions of n, v, d, a and B (see KUH,
Appendix III).
Equation (3.70) shows that to first order in y the degeneracy of the eigen-

values is lifted. The maximum eigenvalue, obtained for n = 0, implies a
first-order correction to the van der Waals’ equation of state:

KT _ U_“Z + 3[kT — kTb™* + a(v* — d*w™ 3], (3.74)

b= v—d
with b given by (3.68).

2. Two-phase region

We turn now to the two-phase region. The above development, based on
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the assumption that the shift (3.60) is unique, must be revised since there now

using that normalization requires the terms mnvolving &y'®/és to vanish.
are two values of 7, 11(s) and #,(s), for which the maximum in eqn (3.58) is

Inserting the linear combination (3.75), and again using the fact that the two
Gaussian functions have a negligible overlap, we obtain

- . . = 42 2
eigenfunction corresponding to the degenerate eigenvalue is (see Fig. 6) U=t + o0, (3.78)
some linear combination of t Web i 1): ‘ 5 . .
1o of two Weber functions (3 ) where v, = (208)¥/7,, the specific volume of the phase i. Hence the physical
2 . L - . . .
Oy} — 3 CIp(e o nt 30 Interpretation is that o? is the mole fraction of phase i. By varying these mole
Vo) i=Zl ibi/2n)" exp[ abilx —n 2%, (3.75) fractions at constant temperature we see that the density interval v, < v < v,

where we have used that Do(x) = exp( —x?/4).

Waals isotherms with horizontal segments.

When the perturbation calculation is continued to higher order in y the
first-order phase transition is retained in every order of the expansion. Since
it is clear that for ? > 0 all singularities are absent (see Section IIL.A), we
are thus in a situation in which an analytic equation of state is systematically
approximated by a sequence of non-analytic functions!

We conclude this section with the remark that the whole perturbation
development hinges on the assumption that the quantity b2, given by (3.68),

s strictly positive. This quantity can be related to the zeroth-order compres-
sibility; since (3.59) vields

$O(x)

dp _ kT
(%>T BCET 8 g

Thus b? is negative only within the spinodal lines of van der Waals’ equation
(inside the two-phase region) and this creates no difficulty. However, at the
critical point b — 0 and this is a rea] difficulty. Note, for instance, how the
equation of state (3.74) blows up. It is therefore necessary to examine how the
perturbation development must be modified in the neighbourhood of the
critical point.

N

711\V2;Y 7]7_ 2 Y

Fic. 6. The zerqth-_order eigenfunction in the two-phase region. The positions of the two maxima
determine the liquid and vapor densities, and their relative weights are given by the square root
of the mole fractions.

. ) . E. The critical region
Normalization of v O(x) requires the coefficients ; and o, to satisfy

o + a2 =1, (3.76)

sincg for small y the overlap integral of the two functions in (3.75) is expo-
nentially small. One may now calculate the specific volume v = A6(8)/Ay(s).
For the derivate we can write

460 = 5 [ 109K o) axay

1. Taming of integral equation

As noted above the perturbation solution of the Kac integral equation given
there breaks down near the critical point. It is therefore necessary to develop
a new asymptotic treatment of the Kac equation, and a systematic perturba-
tion expansion is indeed again possible (Hemmer et al, 1964; denoted by
HKU). The expansion barameter, however, is no longer y, but y*.

The critical point of van der Waals equation (3.59) is determined by

o =3d; s =184; f =27d8a (3.80)

and we want to explore the properties of the Kac integral equation in its

- [wo KD o, g, 677

S
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neighbourhood. It turns out that the interesting temperature and volume
regions are defined by

v =101 + v,(yd)*] (3.81)
B = B.[1 + v,(yd)*], (3.82)

where v,, v, are of ¢(1).
The eigenfunctions in the one-phase region are functions of the variable
b*x [se¢ eqns (3.68) and (3.69)], and since (3.81) and (3.82) implies

b* = G, — v)(d? + 0(d) (3.83)

we are therefore led to try to prepare the integral equation (3.64) for a
perturbation expansion by introducing the new variable

z = (pd)*x. (3.84)

(One may of course choose the power of y in (3.84) at free will, but one can
convince oneself that only (3.84) yields a consistent and non-trivial expansion.)
Making this substitution into (3.64) and developing in powers of (yd)* one
finds to lowest order

dz Z4 . o
-F_Ig*“_z +67%2(Gs; — 1) + ©]H(2) = 0, (3.85)

where H'®(z) is the zeroth approximation to the eigenfunction
H(z) = (yd)~ "*2y(x), (3.86)

and where s, and ® are coefficients in the expansion of the pressure and the
eigenvalue:

s = 5[l = 3v,(yd)* + s5,(yd) + s,(pd)* + ...] (3.87)
A =2001 + 5v,0d)F + 34 — s,)vd + E4v? — 25, — 30)(pd)* + ...].(3.88)

One can go further and obtain a consistent approximation procedure by
introducing the expansion of (3.86),

H(z) = H*(2) + (pdPH"(2) + G HP(2) + .., (3-89)

and corresponding higher-order eigenvalue parameters. For details we refer
to HK'U. Note that in this case we have no explicit expression for the maximum
eigenvalue, but it is, to order (yd)* say, in principle determined as function
of v; and s; through the “Schrédinger equation” (3.85) with a fourth-order
potential. This is sufficient for a discussion of the equation of state.

2. The equation of state
The density is, as always, given by v = — 1. 0(8)/2o(s), where A,(s) now is given
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by (3.88). Using for A;(s) the expression (3.77) and substituting (3.82), (3.84),
(3.86) and (3.87) we obtain

+©
~Jgfs) = A {3d — d6} () J dzz[ HO()]* + @[(vd)%]} . (390)
By compéring with (3.81) one obtains as the lowest-order result:
+ 0
v = —(2/3)’3"J dzz[ HY(2)]?, (3.91)

and this equation determines the connection between the scaled thermo-
dynamic variables s, v, and v, (the critical equation of state).
Note that the potential energy in eqn (3.85),

V(2) = F52* — 3v,2% + L6735, — 4z, (392)

is symmetrical for s; = 4, and the integral (3.91) therefore vanishes for
ground-state eigenfunction by symmetry. Hence this corresponds to the
critical isochore. The slope of the isotherms at the critical density can now

be calculated by perturbation theory, using the linear term in V(z) as pertur-
bation. This yields

<%>Trv=vc= (’yi)dfT/ I:J‘dZZH(O)(Z)H(O)(Z)] (@ _ ®0) 1 (3 93)

- where the eigenfunctions and eigenvalues refer to the unperturbed symmetric

potential (s; = 4). The main lesson from (3.93) is that the slope of the iso-
therms is always strictly negative. In other words, in the critical region pertur-
bation theory does not predict a phase transition for y > 0!

The behaviour of the isotherms is quantitatively very different, though,
for subcritical and supercritical temperatures (within the critical region!).
For supercritical temperatures, v, <€ —1, the potential V(z) is approximately
harmonic. One can show that the equation of state calculated by treating the
fourth-order term as a perturbation, joins the equation of state (3.74) in
the one-phase region.

For subcritical temperatures (v, > 1), on the other hand, the potential
V(z) has two minima, at z = % (6v,)* for the symmetric potential (see
Fig. 7), and this leads to the well-known near-degeneracy of the ground state
(for rigorous proofs, see Thompson and Kac, 1969). Hence the first term in
the sum (3.93) dominates completely, leading to

kT,
<%> =" (yli) T @) exp[ - @v)*]. (3.94)
T.v=v¢

The slopes of the isotherms are therefore exceedingly small when the two-phase
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region is approached. Moving away from the critical isochore by letting
the first-order term in (3.92) be non-zero (still for v, > 1), it is clear that the
ground state wave function switches swiftly from one minimum to the other,
and the first moment in (3.91) consequently changes between values close to
+(6v,)%, the positions of the minima. This means physically that a small
change of the pressure causes the specific volume to vary between v, =
—2v} and v; = +2v7 so that the isotherm is very flat in this range. These
values of the density are in agreement with the coexisting liquid and gas

Mz)
)
‘m Vv, ] z
T I
i !
1 |
I |
t |
f ! PR
7 N
Nl Ll \91

FiG. 7. The potential V(z) of eqn (3.92) for subcritical temperatures, together with the lowest
eigenvalues.

densities predicted by the Maxwell construction on van der Waals’ equation
when the critical point is approached, so that also in this case does the
equation of state in the critical region in a certain sense join the non-critical
equation of state.

The near degeneracy of the eigenvalues,

T — T\ 1
Ay — Ao ~exp| —2v ¥ | =exp| — [=——] —|, (395
e p[ ( 1)] p[ < 3T >vd] )

which develops into an asymptotic degeneracy when y — 0 (for fixed T < T)),
indicates how the well-known phenomenon of eigenvalue degeneracy acts
also in this case as the mathematical mechanism for a phase transition.
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F. Correlation functions

The more detailed description of a many-particle system furnished by the
correlation functions can also be studied in detail on the one-dimensional
model, both in the one-phase, the two-phase and in the critical region. While
the equation of state was connected with the classical van der Waals theory,
the pair correlation function is related to the Ornstein—Zernike theory of
critical opalescence (Ornstein and Zernike, 1914, 1918), as we will see.

We first present the general expressions for the correlation functions
(part 1) and then the explicit results obtained in a perturbation development
in powers of y (part 2). Finally the critical behavior is discussed in part (3).
The general reference for the parts (1) and (2) is Uhlenbeck et al. (1963),
denoted by UHK, for part (3) Hemmer et al. (1964).

L. Distribution functions in terms of eigenfunctions and eigenvalues

The k-particle distribution functions n,(r, ..., ¥,; v, T) in an infinite system
depend on all the eigenvalues A (s) and eigenfunctions ¥, (x;s) of the Kac
integral equation (3.19). In fact we have for k = 2 and 3:

Afs + o)

UL dxe™"n,(x) = ,Z:o £0,s|n,s + o) m(n,s + ¢|0,s)
(3.96)
and
G - 2,65 + 9)
UL JO dxdye Y ny(x,y) = MZ=O 0,sn,5 + o) 0 — i1 o
A(s + o)
x {n,s + ¢ln,s + ¢ = ', s + o'|0, s, (3.97)

Ao8) — A (s + o)

wherex =r, —r, > Oand y = r, — r, > Oare relative distances and where
the notation

+ oo
{n,s|n, s = J dx i (x; s, (x; ') (3.98)
is used. An alternative formulation is in terms of the resolvent of the Kac
integral equation (see UHK).
We indicate the proof of (3.96) and (3.97): Introduce an extra artificial
attraction in the configuration integral (3.6):

L L
0(e) = J J de, ...dey exp{—ﬂ Y oult)+ey e_‘""f} , (3.99)
0 0

i<j i<j
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where u(t;)) is the pair potential (3.1). It follows that

OlnE L
< O > - %L Jdtl dt, e™ ", (t), 1, 2, T, L) (3.100)
o

=0

where symmetry and the definition of the grand-canonical pair distribution
function is used. For L — oo we have L~ ! InE — Bp(z, &) = s(z, ¢), so that

(3.100) goes into
l:as(z, e):l _ %J die™"n,(t; 2, T). (3.101)
68 =0

0

On the other hand the artificial attraction is of the same form as the long-
range attraction, and as is shown in Section IILI, the partition function for a
sum of two exponential attractions is again related to the maximum eigen-
value A, of an integral equation, now in two variables,

JM J dydy'® (x,x";y, y)¥(, V) = A¥(x, x"), (3.102)
with '
. | W)W(x)[* 1ok v
ik, = I:V—V(V)T(V')] eXPl::i(aﬂ) (x + y) + 363" + )’):|-
X on dt exp[ — Bq(t) — sT]P,(x|y, )P (x'|y, 7). (3.103)
0
In fact

InAy(s,e)=3v+ e —Inz (3.104)

This defines s(z, ¢). Since we need only the first-order term in (3.102) we may

solve the integral equation (3.102) by perturbation in ¢, noting that for
¢ = 0 the equation is separable with eigenfunctions

W, X, 8) = (x;s + ma)N, D _(x') (3.105)

and eigenvalues
A(s) = A (s + ma). (3.106)

By a straightforward calculation the Ay is found to first order in ¢, and via
(3.104) the Ieft-hand side of (3.101) can be evaluated, with the final result (3.96).
The proof of (3.97) goes along similar lines, but is more lengthy (see UHK).
Note that for ¢ — 0 the Laplace transform (3.96) of the two-particle distri-
bution function diverges as — Ao(8)/aA4(s) = (ve)~ ! as it should be since the
asymptotic value of n,(x) for x — oo is v~ 2.

2. Systems with Weak Long-Range Potentials 159

Note further that the behavior of the eigenvalues 4,(s) (shown in Fig. 4)
implies in general a number of simple poles for real negative o, the one nearest
to the origin occurring at ¢ = — o, where

Aols) = Ay(s — ). (3.107)

_ This implies that the asymptotic decay of the pair correlation function is

exponential,

ny(x) =072 ~ e (x> o). (3.108)

The smaller the difference between the two largest eigenvalues, the longer
the range 1/o, of the correlations, a conclusion emphasizing the connection
between asymptotic degeneracy and phase transitions from a slightly
different point of view. ‘

2. Perturbation expansion

There are two natural length scales in the problem, corresponding to the two
parts of the potential, and one must be careful to distinguish between these
ranges when the behaviour of the distribution functions is under investigation.
We denote the ranges x = O(d) and x = O(y~1!) the short and the long
range, respectively. For the long range we replace ¢ by oy in the Laplace
variables in order to work on the proper scale. In both cases one simply
develops the right-hand side of (3.96) in powers of y, after first having per-
formed the shift (3.60) in the eigenfunctions.

To O(1) in the short range one obtains Zernike and Prins’ result (1927)
for the pair distribution function of hard rods,

vf dxe™ ™ ny"(x) = {[1 + o(v — d)] e** — 1} 1. (3.109)
0 .
To first order in 7y the following result holds in both ranges
—d*
n,(x) = ny™(x) + yﬂv——)e_“‘" + OF?). (3.110)

v*b
The next order was also computed by UHK, with the result
Pla;yxe™ + a, e70% 4 g e 20] (3.111)
with
a; = (@B’ — &~ 1°b~3[vd(3d — 2v) + 2aP(v — d)?]
a, = —2(ap)*(v — d)*v~ b~ [v8d(2v — 3d) — saf — dy*v3(4v* + 18vd
— 27d%) + Hap)o — dy(11? — 120d + 1843)]
a; = Haf)yv" b5 — d)b(p — 3dy*[3v* — 8aBv — d)*].
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All these results are obtained by straightforward but very lengthy calculations.
They can be checked against the equation of state (Section II1.D) via the virial
and fluctuation theorems.

In the same way the three-particle distribution function may be evaluated
(UHK), with the result

na(x,y) = n3"(x, ) + yapo — o™ b{e P 4 o7 4 ¢TI 4 0(y?).
(3.112)

The most interesting feature of these results is the connection with the
Ornstein—Zernike theory, or rather its one-dimensional version. We have
already noted that the parameter b determining the range of the correlation

(see (3.110)) 1s connected with the compressibility of the fluid (see eqn (3.78)),
and this dependence,

g(x) ~ exp{—const.[ —(p/dv), ]*x} (3.113)

is precisely what the Ornstein—Zernike theory predicts in one dimension.
The connection with the Ornstein—Zernike theory will be discussed later on
(Section IV) in a more general context.

3. Critical correlations

When the Van der Waals’ critical point is approached the distribution
function (3.110) blows up. This is remedied by the same critical perturbation
method that cured the divergencies in the perturbation expansion of the
equation of state.

The range of the pair correlation function in the one-phase region is
(by)™*, and since b is of the order y? in the critical region one might expect
the correlation length in the critical region to be of order y~#%. This turns in
fact out to be the case. With this motivation one replaces the Laplace variable
o by ay(yd)* in the basic formula (3.96) for the pair distribution function,
introduces the scaled eigenfunctions (3.86) and develops in powers of y*.
After a considerable amount of algebra one finds to lowest order the pair
correlation function equal to an infinite sum of exponentials,

M) — 02 = 357204} 3 A2 exp[—(®, — O], (.114)

where ©, are the eigenvalues of the Schrédinger equation (3.85), and where
the amplitudes are given in terms of the eigenfunctions of the same equation,

+
A, = J dzzHY (2)HO(2). (3.115)

—
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As a check, insertion of the correlation function (3.114) into the fluctuation
theorem yields the previously derived compressibility (3.93).

While the critical correlations, according to (3.114), are stronger and of
longer range than the one-phase correlations, their range is still finite for
y finite in this model.

The results in the critical region are not dependent upon the special
expornential form of the attraction. By the methods of Section IILI one may
show that for a generalized attraction w(r) consisting of an arbitrary finite
sum of exponentials one obtains the same results with y replaced by ¥, where
the inverse range ' depends only upon the zeroth and first moment of
interaction,

[ee] o]
572 = %j r2w(r) dr/J w(r) dr. (3.116)
0 0
It might be of interest to investigate whether the results also depend upon
very general features of the short-range interaction g(r). By the method of
Section TILA it seems a feasible task to replace the hard core potential by
a general nea,rest-neighbowr potential, and the result might give a clue to a
rederivation of the one-dimensional critical behaviour by techniques that

are applicable also in three dimensions.

G. Mixtures

The integral equation approach outlined above can be generalized to multi-
component systems (Carter, 1966). A slight technical complication arises
in that the integral equation in this case is a matrix integral equation in
several variables. The simplest case is a binary mixture of components for
convenience labelled “0” and “1”. We restrict ourselves to pair interactions
with hard cores and long-range exponential attractions

¢, {r) = {

where a,, = a,,, and d,; = 3(dy, + d,,), ie. bona fide hard rods. This
corresponds to an attractive interaction energy

oo for r < d

3.117
—ya,.e” " otherwise, ( )

ﬁU = - Z)’ CXP(Iti - tjl){allsisj =+ alo[ai(l -—81) + 81(1 — 8[)]
+ alll(]}» —&)(1 —g)} = — Y 3vexp(|t, — t;|)(4%8E; + B%), (3.118)
i#]

where the species variable ¢, specifies the nature of the ith particle,

_ {0 if the ith particle is type 0
©7 11 if the ith particle is type 1,
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and where 4% = fla,, — 2a,, + a,,]), B* = Bla, ay, — a3 )/A% and & =
& + Pla,, — ay,)/A*. We assume the matrix (a,) to be positive definite,
which implies 42 > 0, B > 0.

When U is of the form (3.118), the factor exp(— BU) can be ordered by
means of the identity (3.8) as in the case of a single-component system, but
each of the two terms in (3.118) requires a separate representation (ie. two
independent Ornstein—Uhlenbeck processes). The reduction of the partition
function to the solution of an integral equation follows closely the derivation
for the one-component model. In the present case we are led to the matrix
integral equation

1
Y | d Ay K, (o v XYWL () = Al ) e y). (3119)
£=0

The kernel has the form

K, = (20)***) exp[3y¥(4éx + By + AZx' + By)]

X f dee™ [ W)W (y)/ W (x'YW (y)]*P(x|x'; T)P(y ly'; 1), (3.120)

d,

e

where the W and P fanctions are given by (3.9) and (3.10) and where © =
exp[3B(ay, — a,,)]- One can show, just as in the one-component case, that
K. is a positive definite Hilbert-Schmidt kernel. The maximum eigenvalue
A(s, z) determines the equation of state:

6InA,/és = —1 (3.121)
6InA,/0lnz = x, (3.122)

where x is the mole fraction of-component no 1, and s = p/kT.
For the simple case of no attraction the matrix kernel (3.120) reduces to

K, =s"1z23" exp(—sd_)d(x — x)o(y — V), (3.123)

with only one non-zero eigenvalue A, = s™ [z exp(—sd,,) + exp(—sd,,)]-
By (3.121)~(3.122) one obtains the following equation of state

p° = kT[v — xd,, — (1 — x)dyo] ™" (3.124)

When 2d,, # dy, + d,, the equation of state of the “reference system” is
more complicated.
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With attraction present the discussion of the equation of state for y — 0
can be carried through in the same way as in the one-component case. One
finds to lowest order

p=p° — [a,,;x% + 2a,,x(1 — x) + ago(1 — x)*]p* (3.125)

where p° is given by (3.124).
When the maximum- eigenvalue is degenerate (to lowest order in y) the

. result (3.125) does not hold. In this case A, can be two- or three-fold degener-

ate, corresponding to two or three coexisting phases. Carter shows that this
precisely eliminates the thermodynamically metastable and unstable state of
(3.125), and corresponds to a tangent plane construction on the free energy
surface (with x and v as independent variables).

With this qualification the zero-order equation of state (3.125) is precisely

 the form considered by van der Waals in collaboration with his students

(van der Waals, 1912) as the generalization of the van der Waals equation
(3.59), and enabled him to give a qualitative account of most of the phenomena
observed in binary mixtures.

Distribution functions may be discussed in much the same way as for one
component. We give no details since all results in the one-phase region may
be derived more easily by the heuristic methods of Section 1V (Hauge 1966).
It suffices to mention that the pair correlation functions n,4(x), ny,(x), 7, ,(x)
are, for small y, dominated by the hard-rod mixture correlations in the short
range x = 0(d,,.), and by a sum of two exponentially decaying functions in
the long range x = O(y~*). However, only one of these exponentials becomes
large and with a range approaching infinity when the critical state is ap-
proached. One expects that the critical properties of mixtures may be
discussed by methods similar to those for the one-component system
(Section- IILE). The critical behaviour, which at present cannot be derived
by any other available technique,is apparently not worked out yet.

H. External fields

Following Kac and Thompson (1969b) we now investigate the behaviour
of the one-dimensional model (3.1) in the presence of a gravitational field

V(z) = mgz. (3.126)

This model furnishes an explicit example of how the gravitational field must
be scaled down in order to obtain a proper bulk limit, and the evaluation of
the partition function leads to an interesting mathematical problem of
iteration of a “slowly varying” integral operator. Also, for y — 0, the spatial
separation of the gas and liquid phases can be observed in this model.
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Kac and Thompson study the density as function of height z, given by the
first distribution function,

n,(z) = <N'1 % é(t;, — z)>, (3.127

i=1

or rather its Laplace transform

r dze™*n,(z) = <N‘1 % e“s“>. (3.128)

0
The averages are canonical averages with a density

1 N
p(tl...tN)=m—)exp[—ﬂ Y u(N,ti—tjl)—ﬁigl V(tl.):l. (3.129)

1g i<j<N

In this model the pair potential u(r) is given by (3.1), with the exponential
attraction (3.3). The scale factor N, inserted into the pair interaction potential,
is one way of introducing the scaling necessary for a nontrivial thermo-
dynamic limit to exist. (For a homogeneous system with V(x) a box potential
this is equivalent to the standard prescription for taking the thermodynamic
limit.)

As before the exponential potential allows the representation (3.8).
Introducing this, selecting one of the N ! equivalent orderings of the particles
along the line, and integrating over all particle coordinates, we are left with

J " dzemn, () = NI (s)/1(0), (3.130)
0

where

N 1 + o N—-1
1) = z—_J_ ...fdxl...dxm(xl) 1

k=15 + BmgN n=N-k+1
) N-k
K(x,15%,5 (s + nBmg)N™?) x ] K(x,.1,%,;nmgN""d(xy).  (3.131)
n=1

Here K(x, y;s) is the same kernel (3.18) as before (where the variable s was
not shown explicitly in the notation), $(x) = expExv¥)[W(x)]?, with v and
W(x) defined by (3.12) and (3.9).

For s = 0 the sequence of iterated kernels in (3.131) is especially simple,
and the limit behavior follows from the following theorem, proven by Kac
and Thompson to be valid for any differentiable (in 7) positive definite
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Hilbert-Schmidt operator K(£), whose largest eigenvalue 4,(f) is uniformly
(in ?) non-degenerate with corresponding eigenvalue y,(z):

N
lim (6, KN" KN HKGN™Y... K(1)$) / 1 Z(/N)
n=1

Noow
= (8, ¥o(0)(9, ¥ (1)).  (3.132)

When K(f) is independent of ¢, this clearly reduces to a trivial theorem.

For I(s) a trivial extension of the theorem is needed. Now (3.130) leads
to, in the limit N — oo,

- o1 X A=t 3 l(s + nmgB)NT!
J dze ¥n,(z) = lim 5 > 11 ol ]

0 Noow ‘Y k=1 n=N-k+1 lo[nmgﬁN—l]

= lim % ‘Z exp[ Nil {lnA,[(s + nmgBN~1] — lnlo[nmgﬁN'l]}:l.

N0 k=1 n=N—-k+1
For large N the curly bracketted term becomes
SN~ Jg(nmgBN~2)/4o(nmgBN~1)

and the sums over k and n become integrals so that in the limit N — oo

© . 1
j e %n,(2)dz = Jl do exp|: SJ du%(umgﬂ)/lo(umgﬁ)]. (3.133)

0 0 a
Introducing the height z(x) at which the fraction of particles above is «,

Jw nfx)dx = a,

(a)
so that

@© 1
J e™%n,(z)dz = J do g™ 5@,
0

0
we obtain from (3.133)

1
2() = —J dudy (umgB)/A.o(umg ). (3.134)
Now, by (3.24),
— Ao(8)/Ao(s) = v(s) = 1/n,, (3.135)
with s = Bp, gives the local equation of state, so that we have
mgp
2(o) = — (Bmg)™?! J ds/n,. (3.136)
mgfa
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This is merely a slightly disguised form of the hydrostatic equilibrium
condition

d
= = _pmgn,, (3.137)

dz
and it is thus shown that (for this model) that the scaling prescription leads
to a macroscopic description in terms of a local equation of state and hydro-
statics.

The limit y — 0 induces a phase transition as before, and it is clear from
(3.135) that the jump discontinuity in A)(s) for subcritical temperatures implies
a jump continuity in the density n,(z). The corresponding value of z is the
position of the meniscus dividing the liquid and the gas.

I. Generalized interactions in one and higher dimensions
1. One dimension

Generalizations of the one-dimensional model, in which the exponential
attraction (3.3) is replaced by a sum of exponentials

P(x) = i a. e, (3.138)
k=1

@, > 0; 6, > 0, can be treated by closely related integral equation methods.
For finite m one can in this way investigate to what extent the previous results
depends upon the precise form of the attraction (Kac et al, 1963), but no
qualitative new features occur in this case. If, however, the limit m —» oo is
taken, something qualitatively new might happen. The point is that in this
case the range of the attraction, defined by

j x¢p(x) dx / J‘ o(x) dx, (3.139)
0 0
may be infinite for finite y. Note that stability requires
J dx)dx = Y a,/o, < . (3.140)
0 k=1

Ruelle (1968) and Dyson (1969a) have in fact proved (for the lattice gas) that
when the range (3.139) is finite there is no phase transition. Moreover, Dyson
has shown that a phase transition does occur when

T x 3 [p] " Intn (x + 4) < oo, (3.141)

x=1
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a condition which impliest infinite range in the sense (3.139), i.e.

00

Y x¢(x) = oo. (3.142) -
x=1
The present integral equation approach is a useful supplement to the more
general methods because one may be able to gain additional information
about low- and high-temperatore expansions and, hopefully, be able to
estimate the location of the exact critical point by a small-y perturbation
(Kac 1968b; Kac and Thompson 1969a).

The evaluation of the partition function for the continuum and the lattice
gas models follows the pattern of Sections IIT A and B, with a generalized
version of the crucial identity (3.8), in which the scalars x; are replaced by
m-dimensional vectors x,:

N m
, exp{% 2 266 oxp(= ot — tjl)}

ij=1k=1

+ o0 N N-1
=J ...jul...hNeXp[z cixl} Wx,) [T Plx; — x;.;0(t;,, — 1)),
i=1 j=1

-0

(3.143)
where
Wix) =[] W(x) (3.144)
k=1
and "
P(x|y;ot) = [] P(x; |y 0,0 (3.145)

k=1
The probabilistic interpretation refe}rs to a set of m independent Ornstein—
Uhlenbeck processes. ‘
For the continuum gas model this leads to the problem of determining
the largest eigenvalue 4 (s) of an integral equation in m variables:

f " A Ke W) = M) (3.146)

-

where

m

K(x,y) = exp [% 2 (apfyFx; + yi)} [Wx)y W)
i=1

i=

x J dre” " POP(x|y; 61).
0

1. The condition (3.142) is not sufficient for the existence of a transition. Dyson proves that if
lim (Inln N)~* Z¥_, x¢(x) = 0, there is no transition.

N
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The equation of state (in the thermodynamic limit) follows from Ao(s) as
before (see eqn (3.24)).

The previous perturbation method still applies and yields qualitatively
the same results as before, including van der Waals equation as the zeroth
approximation. No details are given here. We just mention the interesting
feature that the dominating critical behaviour is completely determined just
by the zeroth and the second moment of the potential (3.138).

We will now briefly comment upon the more interesting case of infinitely
Inany exponentials in the potential (3.138). Kac (1968b) presents the following
heuristic argument for the existence of a phase transition (for the spin system
in zero field) when the potential has infinite range in the sense (3.142). The
argument (3.36)—(3.41) can be repeated and to the lowest order in 7 one is
led to calculate the ground state energy in a potential in m dimensions

7q(x) = 3 3x7 tanh (yo,) — logcosh [vy)* '} afx,]. (3.147)
k=1 k=1
This generalizes eqn (3.37). For high temperatures g(x) has one minimum,
and for low temperatures two minima. Using the harmonic approximation
near the two minima, one has to lowest approximation two eigenfunctions
located at each minimum, each given by a product of m Gaussian functions
of some suitable variables. The corresponding two eigenvalues are separated
by a distance essentially determined by the overlap integral, here a product of
m overlap integrals in each variable, of the order of exp(—c,/y), with ¢, a
constant. Asymptotic degeneracy of the maximum eigenvalue, which implies
long-range order, could previously only be achieved by taking the limit
¥ = 0. Now, however, the product may vanish. In fact, Kac shows for the
special choice a, = k%m~<"1 and 0, = k/m in (3.138) that the sum XTe,
diverges as m — oo when a < 1, in which case the range is infinite. For g > 1
the range (3.139) is finite, and the sum Xc, stays finite.
Although this argument is Vvery suggestive a proof along these lines of the
low-temperature asymptotic degeneracy for the infinite-range case (a < 1)
is lacking,

2. Two and three dimensions

For one-dimensional systems it is, as discussed above, necessary for the
existence of a phase transition that the limit of infinite interaction range is
taken in some way or other. Two-dimensional systems exhibit, in contrast
and more realistically, phase transitions already with interactions of finite
range. A technique similar to the one of part 1 above enables one also in
this case to reduce the evaluation of the partition function, now for a system
of sizem x oo, to the problem of finding the largest eigenvalue of an integral
equation in m variables. The limit m — oo necessary to have a proper two-
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dimensional system is again the limit which can induce asymptotic de-
generacy of the maximum eigenvalue at low temperatures (Kac and Helfand
1963; Kac 1968b; Kac and Thompson 1969a).

Kac and Helfand consider several two-dimensional interactions for
lattice systems: (i) Kac potential interaction horizontally, nearest-neighbour
Ising interaction vertically,} (i) an attraction which is the product of two
Kac potentials, one involving the horizontal and the other the vertical
separation, and (iii) Kac potential interaction with particles in the same and
the nearest neighbouring rows,

e, y;x,y) = — Jy exp (—y|x — X', + T, 1+ T8, i) (3.148)

The last model is mathematically the simplest one. By Griffiths’ theorem
(Griffiths 1967) it has a phase transition for t > 0,J > 0. Note also that by a
suitable limiting procedure (involving y — oo0) the nearest-neighbour Ising
model is a special case of (3.147).

By again using a multidimensional generalization of the basic identity
(3.8) to represent the exponential interaction in {3.147), Kac and Helfand
express the free energy per lattice site, S, for a spin system on a m x oo
lattice with periodic boundary conditions by the largest eigenvalue of an
integral equation. In fact, for m — 0,

Bf=—-In2+ vy - Ji_l};lolo, (3.149)
where J, is the largest eigenvalue of an-integral equation (3.146), where now
K(x,y) = [F&)F@) W(x)/WE)]* P(x|y; 1), (3.150)

with —
Flx) = kl_ml1 cosh [(m)*(&¥x, + (1 — & x,, )], (3.151)
& =11 — 1), (3.152)

and the definitions (3.144) and (3.145). From this point on the same heuristic
argument as for the above one-dimensional many-exponential model
applies, leading to a low-temperature transition.

The natural extension of this model to three dimensions, in which the
interaction (3.148) extends to the nearest-neighbour rows in the third
direction, was studied by Kac and Thompson (1969a). In this case a lattice
of sizem x m x N is considered, and the limit N — oo is taken first. The
limit m — oo involves qualitatively the same features as in one and two
dimensions. In view of the heuristic nature of the arguments involved no
detailed account of these developments is given.

T Baker (1963) has also considered this model.
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IV. Systematic Expansions

While the results reported in Section Il provide all the desired information
about a fluid or a magnet (in terms of the properties of the reference system)
when the range y~* of the Kac potential becomes infinite, they do not apply
when y~! is fixed at some finite value. In Section III this situation was
remedied by the introduction of a perturbation scheme where 7, the inverse
range of interaction, was used as a small parameter. The analysis was,
however, limited to one-dimensional model systems particularly amenable
to analysis. It is clearly desirable to have methods which for finite v yield
results in higher dimensions, thus being applicable to real physical systems.
It was first suggested by Brout (1960) that one should aim at a systematic
perturbation expansion in powers of the inverse interaction range. Brout
considered the Ising ferromagnet for which the reference system interaction
is particularly simple and produced by a diagrammatic method corrections
to the Weiss mean-field theory of ferromagnetism. Subsequently, several
workers established related perturbation schemes for magnets and for
continuum fluids. Some of these developments are reported below.

The price one has to pay for generality in all these approaches is lack of
rigour. It is not known whether the perturbation series converge for any
temperature and density. On the other hand one can infer from the straight-
forward expansions themselves that they fail in the vicinity of the Curie
point (or its equivalent, the van der Waals critical point) where terms below

lowest order diverge individually. One could expect, in analogy with the
critical behaviour of the one-dimensional model (Section IILE), that another
perturbation expansion exists in the critical region, and we comment in
Section E upon the “renormalization procedures” that have been proposed
in order to climinate the critical divergences.

A. Graph expansion. Introduction
We restrict ourselves here to considerations of a classical continuum one-
component fluid of particles, although the general formalism is easily
extended to lattice gases and magnetic systems (Stell et al,, 1966). Several
related but different graph expansions have been developed especially for
lattice systems (Brout 1959, 1960, 1965; Horowitz and Callen 1961; Englert
1963; Coopersmith and Brout 1963; Stillinger 1964; see Wortis, Vol. 3,
Chapter 3).
The pair-potential u(r) is assumed to consist of two parts,

u(r) = q(r) + w(r), (4.1)
where u(r) and the short-range potential g(r) are separately assumed to
ensure stability (see article by Griffiths, Vol. 1, Chapter 2), and w(r) is the Kac

potential (1.5). The properties of the reference system (with w = 0) are
supposed to be known.
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The present graph expansion (Hemmer 1964; Lebowitz et al., 1965) ta¥<es
as a starting point the standard diagrammatical Mayer cluster expansion
(Uhlenbeck and Ford, 1962; see Domb, Volume 3, Chapter 1) for the free
energy and for the correlation functions. The terms are represented by graphs
with vertices representing either one-particle distribution functions n,(r)
(virial expansion) or the fugacity (fugacity expansion), and with Mayer
functions

f) =e P — 1 4.2)
as graph bonds. Corresponding to the separation (4.1) we have
f) =10 + [1 + £°0)] ;@"‘(r)/m!, (4.3)
with
O(r) = — pw(r), (44)
and where
£or) = € ] 4.5)

_ 1s the Mayer function corresponding to the short-range potential g(r).

The main idea of the perturbation scheme is very simple: Using (4.3) each
original Mayer graph generates an infinite set of composite graphs m Wthh
each f-bond of the original graph is replaced by one of several possibilities,
either by a short-range bond £°(r) (represented by a dotted line), or by one or
more long-range bonds ®(x) (represented by a solid line), with or without
a short-range bond between the same two vertices. (The first graph n
Fig. 8 is a composite graph.) The weakness of the Kac potential implies a
reduction in the contribution of a graph-with a factor of y* per ®-bond. On
the other hand, the long range of the Kac potential implies that each “free
integration”, i.e. one not tied down by short-range bonds, brings in a factor
97", and an ordering scheme in powers of y for the composite graphs ’fhus
follows. The next step is a resummation of all graphs of a given order in 7,
atask that has been performed explicitly for the first few orders of y (Hemmer,
1964; Lebowitz et al., 1965; Hauge and Hemmer, 1966). .
Lebowitz et al. (1965) observed that certain resummations of the composite
graphs were advantageous. The resummations can be taken in two steps,
in the first step yielding graphs where all bonds are ®-bonds and the vertices
hypervertices representing short-ranged functions. Secondly, one introduces
graphs with chain bonds and with hypervertices at least of order 3. (See
Fig. 8 for an example and Section IV.B for details.)

The advantages of these resummations are that they admit a simpler
characterization of the general term in the expansions, and that the number
of terms of a given order in y is smaller since a whole set of composite graphs
of the same order in 7 corresponds to one of the new graphs.
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B. Graph expansion. Results

We give here the results for graph expansion of the correlation functions for
one-component fluids. From these the thermodynamic functions follow
via the fluctuation or the virial theorem. For the complete proofs, in which

the only problem is to verify the combinatorial factors, the reader is referred
to the article by Lebowitz et al. (1965).

(@)

ts)

Fic. 8. The chposite graph (2.1) is contained in the graph (b) with hypervertices, which in turn
Is contained in the graph (c) with chain bonds. (Graph notation is explained in the text.)

1. Composite graphs

The Mayer expansion of the cluster functions 1fr s, - - 1) (Ublenbeck and
F‘o‘rd, 1962), together with the decomposition (4.3), yields immediately the
virial [fugacity] expansion:

(T, .. 1) = the sum of all irreducible [connected]
composite graphs with n, (x)-vertices [z, (r)-vertices]

: 49
and [ root points labelled 1,2, ... 1L
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Here the unlabelled vertices, coloured black, represent field points over
which integrations are performed, while the root points are represented by
white vertices. In the fugacity expansion z,(r) = z exp [ — fu(r)], allowing for
the presence of a possible external one-body potential u(r). Each graph is
associated with the corresponding integral over the field point divided by
the symmetry number of the graph and by I1(z;;!) where ¢;; is the number of
 long-range bonds between each pair of points i and j.

The cluster functions y, are defined in terms of the distribution functions
n/r,,...r;) which are probability densities for finding distinct particles at
the positions r,, . .. x;. Another useful set of distribution functions A(r,, . ..r)
give the probability densities for finding particles, not necessarily distinct,
at positions r, .. . r; (Lebowitz and Percus, 1963b). Thus,

ﬁl(r) = n1(r)
ﬁz(rp rz) = ”2(1'1’1'2) + nl(rl)é(r1 - 1‘2), (47)

etc. The corresponding cluster functions 7(r,,...r;) are defined to be the
same functions of the #,’s as y, is of the n,’s. Thus,

1) = ﬁ1(r) = n,(r)

22(1'1’1'2) = ﬁz(rla 1'2) - ﬁl(r1)ﬁ1(r2) = Xz(l'l,l'z) + X1(r1)5(r1 - 1‘2). (48)

The composite graph expansion of these modified cluster functions is given
. by a modification of (4.6):

%,(r, ... 1) = the sum of all irreducible [connected] composite
graphs with n,(r)-vertices [z, (r)-vertices] and at
most | root points. The [ numbers 1, 2,... [ are
used as labels on the root points, so that each root
point has at least one Iabel.\

4.9)

A root point with the labels 1,2,...k is associated with the function
n,(r,)[z,@,)] times a product [[f_,&(r; —r;) of delta functions in the
argument differences.

The order in y of a given composite graph is determined as follows:
Count the number of o of ®-bonds. Erase all these and count the number
of remaining disjoint components (graphs or isolated vertices) not containing
any root point. The graph is then O[y"=~#].

The observation that any short-range graph insertion between long-range
bonds give the same order in y as a single point motivates the expansion in
terms of graphs with hypervertices.

2. Graphs with hypervertices
A hypervertex of order [ represents a function jj(r,, ... r;), and is pictured as a
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large circle with ! points attached to the circumference. The points are either
labelled root points, or field points. To each of these field points is connected
precisely one ®-bond going to another vertex. The weight of a graph is
determined as before except that each hypervertex now represents a function

¥, and is treated as one point for the symmetry number determination. As
an illustration

10—_—_0»2

1 6
= fo@“34)‘1’(45><I>(36)2;(562) ] dr,

i=3

The function %j(r, ...r;) (s for short range) is defined as the subset of all

composite graphs in #,(r,,...r,) in which a path of short-range bonds alone
connects all root points.

Then the composite graph representation of §, (virial version) is equivalent
1o the following prescription:

Ju(xy, ... 1) = the sum of all irreducible graphs with ®-bonds and

hypervertices, and with ! root points. 4.10)

In the fugacity version of (4.10) “irreducible” is replaced by “connected”,
and the hypervertex represents another function Ziry,... 1), equal to the
subset of §; in which there is a path of short-range bonds between all vertices.
3. Graphs with chain bonds

Introducing a chain bond 4(r,, r,) (dot-dash line), by

nen, (£,)8(x,,1,) = 10 ————— 0 =
10——02 + 0—0(1 HZ -+

it follows immediately from (4.10):

%(ry, ... 1)) = the sum of all irreducible graphs with hypervértices
and ¥-bonds, and with ! root points. Hypervertices with two

points must have at least one root point. (4.12)

Denoting by « the difference between the number of € bonds and the number
of root-point-free hypervertices in a graph of (4.12) one has that the graph
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is of O(y™), and it is therefore natural to order the graphs in (4.12) according
to increasing powers of o (the I'-ordering). Thus,

= Oy ¢ Ony 4

I + O—=CEZ

@4.13)
@b @5 OO St Odu @t O 1L SRS

=T, +T, +T, +...

and x,(r,, 1, 1,) =

1 1 1 2
Ly + [ Oyt OOy e = Opf - g

etc.
Note that the ordering schemes above apply to any division of the inter-
molecular potential into two additive parts g(r) and w(r).

4. Explicit expressions -

There are two length scales in the intermolecular potential, one determined
by the characteristic range of g(r), the other by y 1. It is necessary to treat the
corresponding two parts of the correlation functions, the short—ragge part
%; and the long-range part § = %, — 7}, on a different footing. Since the
spatial variations in y7 are on the scale y~* we introduce into them new
variables R, = yr, before any further expansion in y.

We restrict ourselves now to an infinite spatially homogeneous system
with a density n,(r) = p.

It is clear that the hypervertices to lowest order in y are equal to the subset
of graphs with merely short-range bonds. Thus,

@) = To) = 15@) + 0¢") (4.15)

where 3? is a reference system cluster function. Similarly, by (4.11) and (4.13)
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ER) = (y/2n) f exp(—krR)K)[1 — SA)L k)]~ * dk

= (/2ny f exp(—kR) M1 — 1°B0)]* dk + 0G™Y),  (@l6)
where
dk) = f exp((kR)OR) dr, 4.17)
and
_ .
1° =kTp / <FP_>T = J 75(r) dr, 4.18)

the last equality by the fluctuation theorem for the reference system.
For the long-range part of the correlation function,

GR) = LR) + LR) + 0G°), 4.19)

one finds easily

LR) = (y/2m)” fexp (&R [T, ()]* € (k) dk

= (/27" («°)? J exp(kR)SK)[1 — 1°Bk)]~* dk + 6(**?) (4.20)

and
LR) = 2(kT)*(0*1°/6p%)7 2(y* /2 J [1 - x°3K)] 2 Tik)

x exp(—ikR) dk + O *1). .21

Here T'(k) is the Fourier transform of TR) = ¢°R).
One can also study the direct correlation function C(r), whose long-range
part to lowest order simply equals (— B) times the long-range potential,

CHR) = OR) + O(y"+). 4.22)

This relation for systems with long-range forces was first noted by Lebowitz
and Percus (1963a).

5. Thermodynamic quantities

The thermodynamic quantities may be determined by starting directly
with a composite graph expansion for the free energy or the pressure (Hem-
mer, 1964; Hauge and Hemmer, 1966), or by using one of the several
connections between thermodynamic functions and the pair distribution
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function studied above (Lebowitz et al,, 1965). The result for the Helmholtz

free energy per particle is

BE = BF°® + 1Bap (4.23a)
1 -
+ y”{%CI)(O) + % (2n)‘”fdk In[1 - x(k)di(k)]} (4.23b)
1 P 2°Bk) " B(x)
— 92— (2n)"" | dk d = =
g 2P J g { % =800 - 28],
2 <5_x°>2 PR B(|k — x|)x°B(x) }
33°\ 90 1 = 3@ — "8k — <[] — 3]
+ (9(,))2v+ 1).
where a is the integral (1.7) over the potential, and with the abbreviation
2 ="73(K): 4.24)
The corresponding pressure expansion starts out as
p=p°— ap? (4.25a)
0 -
+ y%kT(2n)‘”< P i 1> J dk Inf1 — y&)d(k)] (4.25b)
+ 06>,
and the specific heat per particle as
C,=C° (4.262)
Vv [ o ST 9®aB°/2B T | p80*(By°)/0B>
Nl - - = 4.26b
S 2p<2n> fdk l[ (=80 | T = am (42

+ @(Yv+ 1)_

When g(r) is the simple hard-core potential the last term in {4.26b)
vanishes.

One may evaluate eqn (4.25) explicitly for the one-dimensional model of
Section III to check with the one-phase equation of state (3.74).

6. Near-critical behaviour. Range of kzlidity

It is clear that the terms of the y-expanded thermodynamic quantities,
eqns (4.24), (4.25) and (4.26), exhibit singularities. Under the assumption
that &(k) has its maximum at k = 0 the divergences occur when

1 — 2°3(0) = 1 — 2afy° = 0. 4.27)
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By means of (4.18) this corresponds to

ap°® — ap?)/dp = 0, (4.28)

which is satisfied at the spinodal lines,-including the critical point, of the
van der Waals-type equation of state (4.25a). The divergences will get
increasingly worse for higher-order terms of the expansion, so the expansion
can not be a meaningful one in a “critical region” around the zero-order
critical point where the compressibility is large.

Approaching this critical region from the one-phase region the long-range
part (4.20) of the correlation function is easily seen to approach the form
(now for v = 3)

With ¢ components the pair potential is a ¢ x ¢ matrix
Uij(r) = qij(r) + wij(r)7 (433)

_ again made up of a short- and a long-range part. We consider only the
spatially homogeneous case with number densities p,, p,, ... p- In. complete
analogy with the one-component case one has the virial expansion of the
two-point cluster function y(r) referring to two particles of species i and j a
distance r apart

%3(r,,) = the sum of all irreducible composite graphs with two
root points, labelled (1, i) and (2, ). (4.34)

Each point in a graph now carries a species label k and is associated witk} a
factor p,. The sum in (4.34) goes over all possible assignments of species
labels to the field points. A bond (long/short-range) between two vertices
with species label i and j represents a Mayer function of the potential
(long/short-range) between the species i and j. .

For the long-range part of the correlation function Hauge finds by summing
all chain graphs the following lowest-order result, generalizing eqn (4.20),

e—bR

L(R) = ¢y® R

(4.29)

with an inverse range

b _ @oldp)y 6

= =, 4.30
@°/op); R 30
and an amplitude parameter

oo 31
" 3273aR’

Here the range R of the Kac potential is defined by

R= l:f r2w(r) dr / Jw(r) dr:l%, 4.32)

I AY _ — OBk 0 B(k)y° v (4.35)
R)={-=) | exp(—kR)[I — °®(k)]™ 'y’ Pk)r" dk + OG""7).  (
4.31) 1(R) <27z> f

This is to be read as a matrix equation in which x%, x°, (TJ; arec x ¢ matricfes
with the species labels as indices. I is the unit matrix, @;;(k) is the Founer
transform of —fw,(r), and the elements of the matrix ¥° are given by
(Hauge, 1965, 1966)

P 2,0 -1
and py(p, T) is the zero-order equation of state (4.25a). This asymptotic X?j:’ <@J—> = [ﬁl + Ej dp 66 g ] s (4.36)
form is precisely that predicted by Ornstein and Zernike (1914, 1918), as 0By, P Plo PiOP;
far as the dependence upon interparticle distance and compressibility is where the integration is performed at constant composition, and where
concerned. p=p, + P, )

The range of validity of the expansions obtained above is not known. The expansion of the equation of state reads
Comparing with the exact results of Sections II and ITI we can of course ' o %
conclude that the expansions can not possibly be valid when the exact p=p = _Z_aijpipj (4.372)
zero-order result of Section II differs from the results (4.23) and (4.25a), i

Le. in the two-phase region and when the system prefers an oscillating density
(see Section II). The possible range of validity is thus restricted to that part
of the one-phase region where the isothermal compressibility is not too large.

v ¢ a
+ %<%:> Y (pka—p; - 1) jdk InDet[I — y°®k)]  (4.37b)

k=1

+ (9(,))\’+ 1)’ —
7. Mixtures
Hauge (1965, 1966) has shown that multicomponent systems can be treated
by similar diagrammatic methods, and he has obtained explicit results to a; = —%J wr)dr. (4.38)
lowest order for the correlation function and to 0(y*) for the equation of state.
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The zero-order equation of state (4.37a), which checks with the exact
result for the one-dimensional binary mixture

as the generalization of the

binary mixtures, including
such striking phenomena as retrograde condensation and the barytropic
effect.

C. The Coulomb interaction
The Coulomb interaction

wi(r) = z,z,e%/r

(4.39)

between particles with charges z,e and z,e is of course the most important
long-range interaction in physics. Rewriting (4.39) as e3(zl.zj/er) we see that
the Coulomb interaction is of the Kac form (1.5) with the parameter y
replaced by the electronic charge ¢ and an atiempt to base the treatment of
the Coulomb system on the y-ordering scheme presented above could seem
natural. However, the Coulomb potential does not fulfil the requirements
(2.12) of being finite and Integrable, and therefore one cannot take over the
previous results without modifications. In fact, graphs with multiple long-
range bonds in the ordering scheme (4.10), or multiple chain bonds in the
ordering scheme (4.12), diverge due to the divergence of the Coulomb potential
(439 atr = 0. Nevertheless, Stell and Lebowity (1968) have shown, at least
as far as the lower-order terms are concerned, that these difficulties can be
overcome by means of suitable resummations,

The complete intermolecular
core part g,(r) in addition to the Coulomb potential,

uij(r) = qij(l') + Wij(r)s (440)

otherwise the classical partition function diverges. (The situation in the
quantum treatment is different, see the fundamental article by Lieb and
Lebowitz, 1972.) The simplest choice for 9;; Mayer’s “primitive model”,
corresponds to a system of hard-sphere ions. In all cases we can define an
effective range R;; of the short-range potential q;; by

Rfj = (3/4n)fdr|1 — exp(~ fg,(r)]. (4.41)
There are thus three lengths which characterize the system; the Landau
length Be? a mean distance between neighbouring particles ~p~*% and an
average effective core diameter R. By taking ratios of these characteristic
lengths two independent dimensionless parameters p*e?B and p*R can be

(Section IT1.G), is precisely

pair potential u, {r) must contain a repulsive.
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formed. The standard treatment (see Friedman, 1962, for a Teview) is essenti-
ally an expansion for small densities p. In the Stell-Lebowitz treatment, how-
ever, p*R is not considered small. This is in accordance with the central
idea behind the methods under consideration in the present review that
effects due to short-range forces are taken into account in a formally exact
manner.

The lowest-order contribution I3/R) to the long-range correlation functions
'xg(R), the chain graph with hypervertices consisting of short-range bonds
only, is easily evaluated by specializing Hauge’s expression (4.35) to the
Coulomb case. Thus,

5ij(k) = —dnzz,p/k?, (4.42)

where the Fourier transform (4.17) now is performed on the scale R=er

This leads to
‘ __mpBrzxlep;
k2 +4nﬂzmznxgmpmpn

I,K) = (4.43)

with summation over repeated indices, and where X,% Is given by eqn (4.36).
Upon inversion the following modified Debye-Hiickel form

LR) = — vivjﬂ e exp( —KR)/R 4.44)
emerges, with
v, =2, Z 5P (4.45)
and with a screening length K1 givlén by
K*=4nBy pygz,. (4.46)

At low densities AP; = 0, and the correlation function (4.44) reduces to
the standard Debye-Hiickel form, with the usual expression for the inverse

Debye shielding length,
eKpg = [4ne*B Y. 20,1,

and with v, replaced by the charge z,. Also in the symmetric case, defined by
the requirement that p; and g;; are independent of the species indices, the
shielding length K~ 1! in eqn (4.44) reduces to the Debye length.

The effect of the short-range interactions in (4.46) is to increase the shield-
ing length for an nonsymmetric mixture. Note also that the presence of
charged particles in a fluid induces long-range correlations I;; between
uncharged particles (i.e. with z; = z; = 0). This indirect effect is, as one would
expect, of higher order in the density.

The result (4.44) is the lowest-order expression for the chain graphs,

4.47)
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because the hypervertices have been approximated by hypervertices com-
posed of short-range bonds only. The higher-order corrections to this result

pose intricate problems of renormalization, classification and evaluation.

We do not pursue these questions further here, but refer the reader to the
~article by Stell and Lebowitz (1968) which contains a detailed (though not

complete) analysis.

D. Functional integral approach

The functional integral approach, first suggested by M. Kac (1957) and
developed in particular by A. J. F. Siegert and coworkers, is based upon a
representation of the partition function as an average over random variables
(in the case of magnets) or random functions (in the case of fluids). In this
representation a suitable part of the interaction is replaced by auxiliary
fields, over which one subsequently averages with a Gaussian probability
distribution specified by the interaction. (The representation (3.8) of Section
I is an example.) Since the starting point here (in contradistinction to the

graph method) is exact, this approach could be made a basis for obtaining
exact results.

1. Spin systems
The partition function of an Ising spin system in zero magnetic field,

Oy = Z CXP[ Z 'uk'ulq)kl:l

{u} 1<k<I€N
can be expressed as an average over a set of auxiliary (“random™) variables
®1,--. Py as follows

N
Oy = CXP(_%N(I)OO)Z <eXP > :uk¢k>

{u} k=1

4.48)

N
= exp(—%N(I)OO)ZN< [T cosh ¢k>, (4.49)
k=1
provided the average is taken with the probability density
4.50)

P({¢}) = (2n)" ¥ (Det d)~* CXP[ _% Z ¢ P(D™ 1)kl:|

k.1
for the auxiliary variables (Siegert, 1963; Siegert and Vezzetti, 1968). This
follows directly from the integral identity

(2m) ¥ (Det @)‘*J ? ...Jexpl:—% > G D@ Ny + > ykqﬁk] do,...doy
- k1 k

= eXp l:% ) 'ulaulq)kl:l . (4.51)
kL
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Herey, = +1and —kT®,; = w;;is the spin-spin interaction, assumed ferro-
magnetic, symmetric in the indices and elements of a negative definite matrix.
The arbitrary quantity ®,, can be chosen so that the latter requirement is
fulfilled.

The representation (4.49) shows that the partition function of the interacting
spin: system is transformed into a partition function of non-interacting spins
in a random magnetic field! This representation is exact and provides the
starting point for approximate evaluations in the case of weak long-ranged
Kac potentials

Q; =y Jpy- (4.52)

The interaction matrix p,;, whose diagonal elements p, are arbitrarily
normalized to unity, is assumed to be a function of y(r; — r)).
By a change of variables the partition function (4.49) now takes the form

Oy =2V 3V f...de exp [—% x{p™1)X; + In Y cosh(xinf)] (4.53)

1

where

n=y"J. 4.54)

In the light of the exact result of Section IT that the Weiss mean-field theory
becomes exact in the y — 0 limit, it is interesting to note that approximation
of the integral in (4.53) by the maximum of the integrand yields the Weiss .
mean-field result. One finds by differentiation that the extrema of the inte-
grand occur for

x; = 7Y p,; tanh(n¥x). (4.55)
J

One solution of these equations is obvious x = 0. For sufficiently low
temperatures, viz. when

ny.py<l, (4.56)
J

it is easily shown to be the only solution. Note that the inequality (4.56)
becomes an equality precisely at the Curie-Weiss critical point

Jew = [Z vaij]_l'
i~

For temperatures below the Curie~Weiss critical point the two solutions
of (4.55) x, = +x (all j), where x is the positive root of

x = tanh (7¥x)* Z Pip

4.57)

4.58)
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yield two maxima of equal magnitude. These Weiss field maxima are larger
than other maxima (Siegert and Vezzetti, 1968). By observing that a constant
external magpetic field 5 enters the partition function merely through an
additive term f§ 5 in the argument of the hyperbolic function in eqns (4.53),
one deduces straightforwardly that the magnetization is proportional to
the random field variable x. Equation (4.58) is thus equivalent to the well-
known Bragg-Williams formula for the mean-field approximation to the
spontancous magnetization. (See article by Burley, Vol. 2, Chapter 9).

The Weiss-field maxima correspond, then, in this way 1o the zero-order
term @ansmn of the free energy for small values of the parameter 7.
A complQe expansrgn of the free energy spin, f, was obtained by Siegert
and Vezzem\L1968) ‘They first reduced the partition function to yield the
following expw for the free energy:

n
R(n)
—Bf =2 -1y J REdE +1 2 111 4R
+lim N 'lng,  (4.59)
N-ow
Here
3 (@) do
Ro) = @ | . [ Hede 460
1 — nglw) (460
glw) =Y exp(ior,) p, .,
N = (Zn)—iNJ- - J dx exp [—3x* ~ dm® Y x,5,,%,]
m#*n
x [Tlexp Gu*)cosux,],  (4.61)
u=(1+npy) %, (4.62)
and the modified interaction matrix g is defined by
I+np=I~-np)?, (4.63)

I being the unit matrix.

Siegert and Vezzetti show that the last term in eqn (4.59) is of O(y**), and
give a graphical expansion of it (useful for small y) closely related to the
graph expansions described above (Section IV.B). Also here the higher-
order terms of the expansion diverge when the Curie-Weiss critical point is

approached. Further comments on the critical behaviour are given below
(Section IV.E).
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2. Fluids

. For the spin models considered above (as well as for the corresponding
lattice gases) the auxiliary random fields were needed at discrete lattice sites
only. It is not surprising that the generalization of this technique to con-
tinnum fluids requires random functions defined on the fluid container
(Jalickee et al, 1969). The corresponding representation of the partition
function is a functional integral over these random functions.

The starting point is again the basic identity (4.51), now with all spin
variable u, replaced by unity and with ¢, — @(r,):

exp [36 ), wir,, — 1,)] = <exp ; Ll )2 (4.64)
For representations in terms of real functions ¢(r) one must assume the
interaction w(r) (as kernel of an integral equation) to be positive definite,
and that w(0) is finite. An explicit construction of random functions with the
desired property (4.64) is in terms of the eigenfunctions u, and eigenvalues w,
of the kernel w(r — r’) on the fluid container Q,

J wr — r)u,r)dr = wu (1), (4.65)
Q

as follows:

d() = Y. c (Bw )t u,fr). (4.66)

The coefficients ¢, are independent random variables with probability
density

plc,) = (2m)™* exp (—3¢0)- (4.67)

The average on the right-hand side of eqn (4.64) refers to this probability
distribution. A convenient choice of boundary conditions for a cubic con-
tainer is to assume periodicity in each of the v cartesian directions. The
principal eigenfunction is then a constant corresponding to the eigenvalue

Wy = J w(r) dr = 2a, (4.68)
Q

using the definition of a (eqn 1.7).

It is a straightforward demonstration that the construction (4.66) indeed
produces the basic identity (4.64).
For a fluid whose pair interaction potential u(r) consists of two additive
parts,

R —

u(r) = g(r) + w(r), (4.69)
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the Boltzmann factor of one of these potentials w(r) (to be identified with the
weak long-ranged Kac potential) is transformed into the random function
representation (4.64). Abbreviating the potential energy of the reference

system (in which q(r) is the sole interaction) by U o, r

... Ty), we have for
the grand partition function S(Q, T, z) at a fugacity z

EQ,T, ) =< > Z [ epl-pvo+ 3 g 11 drj> (4.70)
. N=0N' a k=1 j=1
with

z = zexp [—3Aw(0)]. @.71)

The right-hand side is recognized as an average partition function of the
reference system in the presence of an additional random one-body potential.

The representation (4.70) of the grand partition function is exact and the
fluid analog of the representation (4.49) of the spin partition function.
Siegert and coworkers show that the van der Waals—Maxwell equation
corresponds to an extremum of the integrand of (4.70), and for a w(r) of the
Kac form (1. 5) they derive a systematic y-expansion of the partition function
(Jahckee,/epakl 969) and of the correlation function (Jalickee, et al., 1970) in
terms of long—range potentlal bonds and hypervertices consisting of short-
range /bonds enly (fca’r definitions of terms see Section IV.B). Their explicit
results confirm the results quoted in Section IV.B.4. above.

Nofe ﬁnally thattwhlle the derivations of the different graph expansions
reporteq in this section are all heuristic, the zero-order term of these expan-
sionsis of course exact for | that class of interactions for which the Lebowitz-
Penrose ‘Eheorem of Sectlo?n JI holds. Siegert (1972) has, by means of the
represefltatlo in terms f random variables, obtained a lower bound for
the free,_ energy\ of\the_ferromagnet which together with an easily available
upper bo\und (Muhlschlegel and Zittartz, 1963) shows that when the tem-
perature is \bounded away from the Bragg—erhams critical temperature,

the fi rst—order term'in the y-expansion is exact in the sense that it agrees with
both bounds'to 0(;").

E. The critiéé‘l region

As shown above straightforward expansions of thermodynamic quantities
and of correlation functions in powers of the inverse range 7 of the Kac
potential can be brought about by several methods. These expansions suffer
from the drawback that individual terms in the series diverge at the critical
point of the zero-order (mean-field) equation of state. This is a drawback
because the d1vergences are unphysical (the one-dimensional model results
of Section IIT sho&r that clearly), and the question remains as to the nature
of a workable perturbatlon scheme in the region around this critical point.
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everal workers (Vaks et al, 1966; Siegert and Vezzetti, 1968; Thompson
et al, 1970; Stell and Theumann, 1969; Thouless, 1969a) have proposed
ritical perturbation schemes, or at least their dominating terms. Although
,the”ﬁroblem\is tackled in different ways in these studies, many results are
ntlca1/0r closely related.

'Thempson et al. (1970) took the random-field representation (4.59) for
su%ercnt temperatures as their starting point. They found that if and
only if the urdex of d1vergence of the integral R(x), eqn (4.60), vanishes, i.e.
NN In R(r)

Ny hm = 0,

4.72)
it (T = T,)

sum the ‘most d1vergent graphs in the stralghtforward y-expansion of the
free energy. and found that the sin gulanty was shifted away from the Bragg-
Williams critical point by a small amount to a new critical point. In particular
they found for exponential mterac\txlons in two- and three-dimensional spin
systems the following shifts of the critical temperature

1, - TBW = (0(72 Iny)
'Tc— Ty = 00°).

(v=2)

4.73)
v =3)
This is in agreement with the other studies referred to above.
Stell and Theumann (1969) rely on a self-consistency argument in their
determination of the critical behaviour of the spin correlation function.
Using the graph therminology of Section IV.B we can easily explain the
crux of their reasoning. To be definite we consider the one-dimensional
case with an exponential Kac potential.
From the results of Section IV.B.4. one knows that the one-phase pair
correlation is dominated by the chain graph %(r). The hypervertices of order
two that enter the chain graph contain terms that vanish as y — 0, propor-
tional to yF, say, and it is precisely these small terms that prevent the chain
graph (4.11), (4.16) from diverging at the zero-order critical point. In fact one
finds from eqn (4.16) in the one-dimensional case and at the zero-order
critical point
Gr)ocy T k= 0@ @.74)
Using the chain bond graphs of eqn (4.13) and.the result (4.74) for the chain
bond one can now estimate the order of all gr\dphs in the expansion of the
long-range correlation function #5(r). A graph with n chain bonds and m
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hypervertices (excluding the two hypervertices with root points) will be of

the order

@[-y(l —ipn—(1 +»}p)rHl

four. This implies

> Yam + 2). 4.76)

Now selfconsistencyij lenters. One notes that hanging graphs occurring in
%% on the hy ervertex| 79 consisting of only short-range bonds generates

graphs tha } accondlnz\to our initial assumption should be precisely of
O("), or hlzher Hénce,

p = min [(1 + ipm] = mm [(1 —30)2m + 1) — (1 + ipm],
tn, m) @.77)
using eqn: nd (4 76). For p > 2 no minimum exists and for p < 2
the minim\mp p is ob\tamed for m = 0. Hence selfconsistency requires
i\,‘ i ‘ H p= 1 - EP,
or \| | |
, j p=2 (4.78)

i

For this value J

;

I
p 11,)/ aﬂues of m in (4.77) yield the same result. In other
words, a whéle set of graphs with fourth-order hypervertices, together with

T

the chain graph, dommates the critical long-range correlation function. One
deduces that i ]

”

i

o ’;—(r).: P2 Y dhexp (—by ¥,
1

to lowest order, whe e?ﬁ/fm byare cor}stants This result can be compared
with the critical correl&tuons in the one-dlmensmnal model of Section III.
It chetks on. three /coun)?&‘ he range of the correlations is correctly of
O(y~43); the' strength is of O(y*");jard an infinite sum of exponentials occur.
However, g he fiemonstratlon ;that the coefficients a,, b, are identical to the
coefficients obtained by the integral equation methods of Section III is
lacking. A, pm/zef of 1dent1ty ould connect graphs with fourth-order vertices
with the elgenvalues of the Schrodmger equation containing a fourth-order
potential. '

The advances reported here shed considerable light on the question of the
critical behaviour when the range of the forces is finite, but very large. We

consider, however, the problem to an open one at present and anticipate
further interesting work.

4.79)

4.75)
Since the hypervertices of order three can easily be shown to vanish when
y — 0 at the critical point, the order of the root-free hypervertices is at least
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V. Applications

It is bardly possible to survey all applications of the theory, in particular
_because of the close connection with the mean-field theories, which have
cen applied to a wide variety of physical systems. We have, therefore,
restricted ourselves to some important features connected with transitions
one-component fluids.

A. The'liquid—-gas system

It is well known that the famous van der Waals equation gives a qualitative
description of the liquid—gas transition, but fails in two completely different
Tespects when compared with experiments on simple fluids: the details of
the critical behaviour, the critical exponents, disagree since the van der
Waals critical point is of classical type, and in addition the equation of state
is not quantitatively successful. As shown above the van der Waals equation
corresponds to a one-dimensional model with hard core and a weak attrac-

tive tail (in the van der Waals limit). A fairly obvious question is whether
the three-dimensional version

p = p° — ap? (plus Maxwell’s construction), (5.1)

where the pressure p°® refers to a hard sphere gas—while still yielding a
classical critical point—gives a quantitatively better equation of state. Since
the model is still somewhat schematic in that the steepness of the repulsive
potential and the range of the attractive potential are treated as infinite
rather than finite, too much should not be expected.

The required pressure p° of a hard sphere gas is not known exactly, but
there are several excellent representations for it, all agreeing to better than
one per cent up to the critical density of eqn (5.1): machine calculations
(Alder and Wainwright, 1957; Wood and Jacobson, 1957), the seven-term
virial series or Padé-approximants for this (Ree and Hoover, 1964), or the
solution of the Pércus—Yevick equation (Thiele, 1963; Wertheim, 1963),

first obtained in the scaled particle model (Reiss et al., 1959). The last result
is particularly simple:

2 3
o _ Ey + y +3y , (5.2)
Vo (1 - y)

where y = pv, is a dimensionless density, and v, = nd>/6 t\he sphere volume.
The use of the representation (5.2) in eqn (5.1) allows the critical parameters



190 P. C. Hemmer and J. L. Lebowitz

of the generalized van der Waals equation (5.1) to be found analytically,
with the result

p. = (J73 = T)2nd® = 024642

p, = 00159 ad~® 53
kT, = 0180 ad ™3

x, = p/kTp, = 0-360.

These zero-order resuits, or values close to these, have been obtained by a
number of authors (Happel, 1906; Guggenheim, 1965; Hauge and Hemmer,

T
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FiG. 9. The isochore v = 2v, for the van der Waals equation, the generalized van der Waals
equation (5.1) and for Argon (Michels et al. 1949; Levelt 1958). Temperatures have been reduced
with the Boyle temperature T, volumes with the Boyle volume » = [dB,(T)/dIn T]T:TB' The
isochore terminates at the coexistence curve (black circle). (From Hauge and Hemmer, 1966.)
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1966; Lebowitz et al., 1965; Moller, 1966; Carnahan and Starling, 1970).
The last authors use a slightly more accurate analytical form for p°, differing
from eqn (5.2) by an added term (—y*) in the numerator). If one measures
the performance of the equation of state by the critical ratio x, one can only
say that the improvement is in the right direction since the experimental
values for simple fluids are x, = 0-29-0-30 while the van der Waals equation
gives k, = 0-375. However, from the results in Section III and from heuristic
approaches (Stell and Theumann, 1969) one expects near the criticai point
the largest corrections because of the finite range of the attraction. However,
the equation of state (5.1) is a surprisingly good approximation to the
equation of state away from the critical point. As an example we show in
Fig. 9 an isochore of (5.1), compared with experimental results for argon. As
. one approaches higher densities where the properties of the reference system
are crucial considerable discrepancies develop.
The important point is that the result (5.1), which has a remarkable simple
_ form, may serve as the “ideal fluid”, a model that may do a similar service
for the liquid state as the ideal gas does for the gasous state and the harmonic
crystal for the solid state. On this ideal fluid one can by perturbative pro-
cedures calculate better and better approximations for realistic interactions.
The finite range of the attraction can be naturally taken into account by
using the higher-order terms in the y-expansion (see Section IV). The softness
of the potential core must also be corrected for. Haye (1973) has shown that
with-a Lennard-Jones (6, 12) potential (treating the positive part as the
reference potential) this kind of perturbation theory can reproduce the
machine calculations of the equation of state very accurately. Stell (1971)
has pointed out that there is a close connection between this approximation
procedure and other recent perturbation schemes for hquids.

Lebowitz et al. (1966) used eqn (5.1) to test an idea due to M. E. Fisher
that-comparisons of the specific heats of lattice gases with continuum fluids
near the critical point should be made on the basis of their values divided
by the volume at close packing, C* = pC__./p_ ., where C_ . is the con-
figurational heat capacity per particle. They calculated the specific heat
discontinuity AC* at the critical point for several hard core potentials g(r),
viz. the trivial lattice gas for which ¢(0) = oo and zero otherwise, and for
continuum hard core systems in one, two and three dimensions, using Pade
virial equations of state (Ree and Hoover, 1964) for v = 2 and 3. The results
are given in Table I. The constancy of AC*/k is striking and unexplained.

B. The solid-liquid transition

Longuet—Higgins and Widom (1965) used the zeroth-orqrer equation of

state (5.1) for another purpose, viz. as a model equation for the melting
transition including the triple point. The well-known transition in the hard-
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TasLe L Critical Specific Heat Discontinuity AC*.

as/liquid transition of part a, resulting in a triple point. As shown in
(From Lebowitz et al., 1966.)

s happens at a very low pressure. By eqn (5.4) this corresponds to a
t temperature close to

System . £/ P max AC*/k
v kT, = 0096 ad™3. (5.5
Lattice gas . . . . o
arbitrary v 05 1-5 well construction yields a triple-point liquid volume
Continuum gas
v=1 0-333 1-5 v = 121 ds, (56)
::g gf;é %igg g with a solid phase volume v, = 101 d°>. The low triple-point

can be determined by equating the fugacities of the liquid and gas
Longuet-Higgins and Widom calculated the former by means of the
ynamic relation

P
kT1nZ = J 513[<@> - kT]
P Jo p L\%/;
representation (5.2) for p°. Since the gas is almost ideal at the triple
can be set equal to p/kT. This yields
p, = 000023 ad~°. : (5.7

thermodynamic quantities can also be calculated easily, e.g. the
py of fusion follows.at once from (5.5) by the Clausius-Clapeyron

sphere gas predicted by molecular dynamics (Alder and Wainwright, 1957)
and Monte-Carlo calculations (Wood and Jacobson, 1957) is reflected in
the equation of state (5.1) as a high-density transition at every temperature.
Longuet-Higgins and Widom assumed the hard-sphere transition to be of
first order with coexistence volumes v, = 1-15d® (fluid phase) and v,

1-104° (“solid” phase). The Alder-Wainwright result for p° yields the melting
line p,(T) via the Maxwell construction required by eqn (5.1). The pressure
at the hard-sphere transition is given by p°/kT ~ 8243, and the Maxwell
construction has the effect of subtracting an almost constant term

2 2
ra|l—————
(”1"‘”1)

ppd® ~ 82kT — 0-79ad 3. (54

This linear melting line must of course intersect the vapour pressure curve

from this pressure: . . . o .
L Properties of the triple point. (After Longuet-Higgins and Widom, 1965).

ple point quantity Model predictions Experiments on argon

/v, 119 1-114
In (p,v,/kT) —-59 —588
pd% . AS/Nk 1-64 169
U/NKT —86 —853
051 ,
L e comparison with experimental values for argon exhibited in Table II
| . a really remarkable agreement. Predictions of second derivatives of the
sdlid nergy, such as specific heats, compressibilities and thermal expansion
ficient, are less successful.
|iquid/;0 < 0 - -
0 . oK 3 3/'c1 everal phase transitions

xplained in the previous section, a pair potential with a hard core plus

F1G. 10. Phase transitions predicted by the generalized.van der Waals equation (5.1). ac tail seems to yield an equation of state with two phase transitions in
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two and three dimensions. There is another class of pair potentials capable
of producing more than one transition, even in one dimension (Hemn?er an_d
Stell, 1970; Nagle, 1971). The crucial feature of these Poteptlals is their
soft repulsive core, as exemplified by the potential shown in Fig. 11a.

explicit calculation of the equation of state and of VE(A), shown in
b, must be done numerically, but the existence of the two transitions
ily established by considering two limiting cases, either V, large (Stell
Hemmer, 1972) or T = 0. The zero-temperature calculation is par-
1ly simple: The energy of the reference N-particle system equals

uc) 0.5 KSR Two. transitions . o X [l=0— d)/di] (5.10)
Vgd/a K \ k=1
Vor 0.4 5 witholt ™ 1.p.Skwith t.p. €1y, Iy, ... 1, are the n nearest-neighbour distances less than d(1 + 1),
o 1) 2 n >
he ground state energy is the minimum of this. At a “volume” v per
0.3 cle we must have
No =3 n + (N = n)d+ Ad), (5.11)
0.2 ; !
" ing in the ground state energy
One transition
01 o0 for v<d
[ r T J©) =< Vold + di — v]/dA for d<v<d+ id (5.12)
05 1.0
R ®) 0 for d+id <o,

action of the contribution a/v from this yields a non-convex function.
(d) > f(d + Ad), that is, for

a,_4a V- ai
d"d+id T A Frad

Fic. 11. (a) The potential (5.8) with a weak Kac potential .attached. (b) The range of potential
parameters for which two transitions exist (t.p. = triple point).

8 (5.13)

In one dimension the equation of state of the reference system corres-

ponding to the repulsive potential convex envelope construction gives a linearly decreasing free energy in

o for r<d interval d < v < d + Ad, corresponding to a constant and positive

essure. By continuity f; — a/v is non-convex at low non-zero temperatures

q) =< Vo[l —(r —a)ydr] for d<r<d+dl (58) 0, showing that the first-order transition persists at finite 7. This is the
0 for r>d+ di, transition that appears in addition to the ordinary van der Waals

sition in which the vapour pressure always vanishes at zero temperature.
hen the condition (5.13) is violated the second transition may still occur,
shown in Fig. 11b. A triple point is then necessarily present.

or further details, generalizations to other models and to more than two
insitions, we refer to Stell and Hemmer (1972) and Stell ez al. (1972).

In magnetic systems analogous phenomena occur (Nagle, 1971 ; Theumann
nd Hoye, 1971). In these spin models the weak long-range potential is
rromagnetic and the Lebowitz—Penrose theorem of Section II applies.
1oye (1972) studied a related model in which the long-range interaction
cting merely between spins on each sublattice does not necessarily en-
ourage ferromagnetic ordering. He found that a one-dimensional spin

of Fig. 11a is given by Takahashi’s formula (3.55) as long as A < 1 (nearest-
neighbour interaction). The result

kT )+ KT/p%d
W= W, T T = 0 dAv, T exp [4p°d — VoJkT]

defines a monotonously decreasing function p°(v) to be used m eqn .(5_.1).
For each value of the width parameter A, however small, there is a critical
value V* of ¥, such that for ¥, > V§ the equgt_ion of state has two first-
order phase transitions each terminating in a critical point of classical type.
For V, < V§ only one transition occurs.

(59)
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lattice with an additional nearest-neighbour interaction exhibits transitions
between ferromagnetic and antiferromagnetic orderings. Both first- and
second-order transitions occur.

nsionality, to perform a first-order perturbation calculation of the

tions Ap, = p, — P, etc., from the classical critical point.
¢ result is

. 3
b= pfp =TT =1 ———-A=1-0

pc/ﬁc pt/pc c/ c 4\/nﬁ§dA 1 067Aa (5'17)
n the value (5.3) for the classical critical density 5, is inserted. In one
ension the corresponding first-order result equals 1 — 0-42A.

D. Quantum corrections to the location of the critical point

Under the assumption that the intermolecular pair potential is of the form
&(r) = ey(r/c), where Y(x) is a universal function, and ¢ and ¢ are parameters
characteristic for each substance, classical statistical mechanics predicts
that all substances for which the assumption holds have the same equation
of state

p* = p*(p*, T%) (5.14)

in terms of the reduced number density p* = po>, temperature T* = kT/e,
and pressure p* = po>/e. In particular the reduced critical parameters
p¥, T*, p¥ are universal.

Quantum deviations from this law of corresponding states occur, and a
measure for the quantum nature of a fluid is the dimensionless parameter

A = hpimkT)™* ~m™%, (5.15)

Do HD Ho He* He®

- cx/\e -dimensional model

~

where the superscript
m > oo limiting value).

Burke et al. (1966) proposed that one could use the quantum hard-core
gas with a weak long-range attraction to study the functions p¥(A), T*A)
and p¥(A). As shown in Section II, the equation of state in the limit y — O is
still

denotes the corresponding classical value (or

three-dimensional model o
{first order)

¢ 12. The reduced critical temperature, density and pressure for simple fluids. The classical
lues have been determined by requiring the experimental curve to fit the data for xenon.

p(p, T) = p%p, T) — ap?,

where p°® now is the pressure of the quantum hard-core gas, and where the
Maxwell construction is implied. Burke et al. pointed out that in one dimen-
sion is p°, the pressure of a quantum system of hard rods known exactly,
and they used this to calculate the critical parameters as functions of A. The
critical ratio k, = p,/hT,p, was also considered and was found to be remark-
ably independent of the quantum nature of the fluid, it varied only 22%
while A increased from 0 to co.

In three dimension much less is known about the properties of the quantum
hard sphere system. Nilsen and Hemmer (1969) used the known first-order
expression (Hemmer, 1968; Jancovici, 1969)

he prediction of eqn (5.17), that \/p /p,, p./p,, T./T. decrease with A, to
first order linearly and in the same way, is well born out by experimental
ata on light fluids (inert gases and hydrogen isotopes). However the data
vour a coefficient of A close to the one-dimensional version rather than to
e three-dimensional version! (see Fig. 12).

. The conclusion is that a model, which fails in the description of the nature
of the critical point, may still be qualitatively successful in describing its
quantum displacement.

vA 0
B =+ 51 - p2) o + oy (516

where A = h(2mmkT)™* is the thermal de Broglie wavelength and v the
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