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The Velocity Autocorrelation Function
of a Finite Model System

J. L. Lebowitz' and J. Sykes?

Reccived November 22, 1971

4

We investigate in detail the dependence of the velocity autocorrelation
- function of a one-dimensional system of hard, point particles with a simple
velocity distribution function (alt particles have velocities 4:¢) on the size of
Y the system. In the thermodynamic limit, when both the number of particles N
) and the length of the “box” L approach infinity and N/L — p, the velocity
autocorrclation function (1) is given simply by ¢* exp(—2pct). For a finite
system, the function ¢, (1) is periodic with period 2L/c. We also show that for
more general velocity distribution functions (patticles ¢an have velocities
Log, i o= 1,0, (1) is un almost periodic function of r These examples
illustrate the role of the thermodynamic limit in nonequilibrium phenomena:
We must keep f fixed while letting the size of the system become infinite to
obtain an auto-correlation function, such as yi(/), which decays for all times -
and can be integrated to obtain transport cocflicients. For any finite system,
our (1) will be *very close™ to ¥(r) as long as ¢ is small compared to the
effective “'size” of the system, which is 2L/c for the first model.

KEY WORDS: One dimension; finite system; thermodynamic Hmit;
velocity autocorrelation function.

1. INTRODUCTION

The study of time-dependent correlation functions plays a central role in the
statistical mechanics of nonequilibrium phenomena. These functions are
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158 J. L. Lebowitz and }. Sykes

defined as follows: Consider a classical system of N particles whose positions
and momenta (that is, the configuration of the system) are specified by a point
X, X = (ty 1., TN} P1 oy Pa), in the phase space of the system. The position
coordinates r; are confined to some domain A with volume V(A) by “rigid
walls.” The time evolution of the system is described by a unitary operator
S¢, §¢X = X, being the phase point of the system at time ¢ when it was X at
time zero, and s 5, = St 44, - Letf(X) and g(X) be some functions of X, the
configuration of the system For a given configuration X at time zero, the
value of fat time ¢ is given by s.f(X) = f(X,). We define the correlation of fat
time ¢ and g at time zero as

W) ow = (SXD &XDn 0

= f dX po(X) [(X) g(X)

where uo(X) is some stationary (equilibrium) Gibbsian ensemble density, e.g.,
microcanonical or canonical such that ‘

po(X0) = po(X)
and

f dX polX) = 1 , ()

We have used the subscript N on {f(t) g>n to indicate explicitly that we are
dealing with systems of N particles.

One reason for the importance of time-dependent correlation func,uons
is that linear transport coefficients may be expressed as time integrals over
appropriate correlation functions. For example, Einstein related the self-
diffusion constant D to the integral of the velocity autocorrelation function
by

D = (1/d) }': dt (v() * v 3)

where d is the dimensionality of the system and v is the velocity of some
specified particle in the system,

The function ://(t) = {v(t) * v> appearing in (3) (and different correlation
functions appearing in other formulas of this type) has to be interpreted as
the limit of the velocity autocorrelation <v(t) * vDy for a system of N particles
in a domain 4, when N — o0 and V(4) — oo in such a way that N/V(4) = p,
the density of the system. This limit is usually called the “thcrmodynamlc
limit.”” The taking of such an infinite volume limit is a/ways necessar =since
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for a finite system, the integral of <v(1) * ), if it exists, is equal to zero.tV
This is due to the fact that

[ dr <uey - vow = @A) — o 4)

where r is the position coordinate conjugate to the velocity (momentum) v,
Now, since the right side of (4) is the derivative of a bounded function (since
r is confined to a bounded domain A), it cannot have a limit as { — o0
different from zero. For the model system we shall consider in this paper, the
existence of the limit # — co depends on the type of stationary ensemble
po(X) we choose.

The use of the thermodynamic limit of the correlation functions in
defining transport coefficients forces us to' consider the existence of limits
such as

P(t) = lim V(0 * Von )

While the existence of the thermodynamic limit for different equilibrium
quantities has been established under fairly general conditions, there are
few results for nonequilibrium quantities. Indeed, the only “fluid” system
for which () is known to exist is the one-dimensional system of hard point
particles studied by Jepsen?and others'®~4~*!for which Dcan be found explicit-
ly. (The ideal gas'® and perfect harmonic crystal are the only other dynamical
model systems for which the correlation functions can be computed
exactly.@) It is the purpose of this note to study the behavior of Yn(r) and its
approach to () for this system.

The system of hard, point particles is described in Section 2. Due to the

simplicity of the dynamics of this system, we can readily find a large class of .

stationary distributions. In particular, we can choose p(X) in such a way
that the ensemble density is concentrated in regions of the phase space in
which the velocities of the particles only assume a denumerable (or finite) set
of values. Since the phase space has 2N dimensions and these regions have an
N-dimensional volume, this is only possible because this system is ‘not
ergodic on its energy surfaces, which are of 2¥ — 1 dimensions,

We show in Section 3 that for all stationary distributions of the above
type, Yn(1) will be an almost periodic function of #. It will therefore not decay
as f — oo and therefore the upper limit of integration in (4) cannot be
extended to infinity. To see what happens in the thermodynamic limit, we
study, in Section 4, a particularly simple stationary distribution. For this
distribution, the configuration of the system and hence all time-dependent
correlation functions are periodic functions of the time with a period which
is proportional to the length of the box. We obtain ¢y(r) explicitly for this
po(X) and observe how it approaches its limit (1) which decays to zero as
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1 — oo yiclding a finite diffusion coefficient D. Finally, the cxtension of
these results to some other equilibrium distributions py(X) is discussed in
Section 5.

2. THE ONE-DIMENSIONAL SYSTEM
OF HARD POINT PARTICLES

We consider a system of N hard, point particles of unit mass moving in
one dimension, like a row of beads on an abacus. The particles are confined
to a “box” of length L and we impose reflecting boundary conditions so
that when a particle strikes a wall of the box, it is specularly reflected. Since
all the particles are hard, when two of them collide, they simply exchange
velocities. Thus, any initial distribution of velocities will be preserved at all
later times (apart from changes in sign caused by collisions with the wulls).
This means that any distribution function of the form

N v
po(X) = (/L) [T ho(ve) (6)

i=1
with hy(v) an arbitrary, nonnegative, even function of v normalized to unity,
ho(v) = ho(—v) = 0
and

f“ dohfo) =1 M

is stationary,

The method used for calculating () will follow closcly the paper of
Lebowitz and Percus,! who solved the same problem in the thermodynumic
limit. A formal expression can be obtained for yy(f) by noticing that the i
order of the particles in the box is maintained at all times: If a particle is
initially the ith particle from the left wall of the box, then it will alwuys be
the ith particle because there is no mechanism by which it can pass either of
its nearest neighbors. We can thus calculate yiy(¢) by allowing the particles to
evolve independently on free-particle trajectories provided the correct
ordering of the particles is maintained. The resulting expression is

N N

"/’N(l) = (I/N) Z Z <U,(l) Ui 80,(!).o‘> (8)

fml fmi
Here, o,(¢) is the order of the jth particle at time ¢ and is given by
N
of(t) = Y (rft) — n(t)) &)
{1 w5
]
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where

for x << 0 (10)

0
€(x) = I for 0 < x

and {r,(1), v,(1)} arc the positions and velocitics of a set of free particles (ideal
gas) moving in the box of length L, that s,
v(1) = vy rdt) = ri + v (1)

subfect to the reflecting boundary conditions.
Equation (8) can be handled more easily by writing the 8-function as

Buyi = (1f2) [ O expliflo(6) — o1} (12

Then by using Eq. (9), separating the summations in (8) into two parts
depending on whether / = jor / # J/, using the symmetry properties of the
average, and defining

ER i) = [ 7 oo
X explifle(R — () — «r — 1)) (1)

which from (11) is only a function of R, r, 8, and 1, we find

l L «© 2n
() = g [ dry [ dviho(od o) 0y [ 0 B, ri |

N-—-1 L «© L ©
+ ( Y LE _) jo dry J_ dvy ho(vy) fo dry f_m dvg hy(vy) ve(t) vy

X de a0 exp{ible(ry(t) — ry(1)) — elry — ro)l} Eolry(t), ri | ON2
0 (14)

When ¢ = 0,
ER,r|0) = 1+ iin O)[(R = r)/L] — (1 — cos 6| R = r )
and from Eq. (14),
IO = [ do o) 02 =

as expected.
We note here that these formulas remain valid when the particles have

hard corest® (rigid-rod system). If the minimum distance of approach between
the centers of two particles is a then we merely have to replace L by L — Na
everywhere,

822/6/2(3-7
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3, DISCRETE VELOCITY DISTRIBUTIONS

In order to discuss the dynamics of the system, we follow Jepsen'® and
construct a phase diagrum. A simple diagram showing the motion of two
particles with velocities +¢, ¢ > 0, is given in Fig, 1. The trajectory which
starts at position a with velocity ¢ passes through L — a with velocity —c at
t = Ljc and returns to a with velocity c at = 2L/e. Similar results hold for
the trajectory which started at b with velocity —c. It is clear that after a time
t = 2L/c, the two particles have returned exactly to their initial r =0
configurations. The particles then follow the same trajectories as before,
Thus the time dependence of the functions r,(r) and v,(r) in (11) is periodic
with a period Ty = 2L/[ vy | .

Consider now the case in which the equilibrium velocity distribution
function hy(v) is purely discrete, i.e.,

hot) = 4 Y KIS0 — ) + 80 + )] (15)
[

with 0 < ¢ <e¢p < ¢y Ky >0, and Sy K = 1. We assume further
that the mean energy per particle is finite,

Wy =Y Kie < o (16)

i=1

Fig. 1. Phase dingram for two particles,
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The velocity autocorrelation function can be written in the form (as can be
inferred from the appendix)

Yn(t) = Z Z Ky o Ky P (T e 7)) (17
1y=1 In=1

where
”‘: Ty = Cif/ZL == f/Tj
‘ and Fia, is a continuous, symmetric, periodic function in the T,
Fl]"'lN(Tll + 'nll 1reey TlN —*— "“N) == Fll"-IN(TIl 3y TlN) (]8)
with {m,‘},r'= l,., N, a set of integers. The function Fj ..., (7 ».. r,N)
; (which'is of the type called “quasiperiodic”’ by Moser¢” and “Bohl function”
i by Bohr®) is the velocity autocorrelation function of a system of N hard,
: point particles on a line segment of length L in which there is exactly one
. particle with velocity e, one particle with velocity +c,, etc, cor-
: responding to a stationary distribution

N
po(X) = (1N S /LYY TT #8( — 1) + 8(vi + )] (19)
. 1=1
where § stands for symmetrization in the /;. Hence, Fi ..., is bounded by its
value at r = 0,3
N
i IFl,-'-IN(Tl, yerry Tl~)| < (I/N) Z sz, (20)
3 i=1
and the series in (17) is uniformly convergent. It follows now from the general
theory of almost periodic functions® thut yy(f), obtained from an arbitrary
discrete velocity distribution, is almost periodic and therefore, in particular,
cannot decay to zero as f — o,
The situation is quite different when Ay(v) is an absolutely continuous
5 function of v. In that case, the summations in (17) are replaced by integrals
and we expect Yy(f) to decay as 1 — co. When hy(v) contains both a discrete
and a continuous part, then Yiy(#) should also have an almost periodic part
and a decaying part,

4. EXPLICIT RESULTS FOR hy(v) = {[8(v — c) + 5(v + ¢)]

In order to see in detail the effect which an increase in the size of the
system has on its nonequilibrium properties, we shall now compute Ynlt)
explicitly for the case in which all the particles have the same speed, i.e.,

ho(v) = v — )+ 8+ )}, ¢>0 @2n
3 This follows from {f(1)f> < UM IN = (I,
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Since the period of all the particles is now the same, we have
Y@+ T) = ¢n(1), T =2Lfc (22)

and we need only calculate (1) for times  in the range 0 < ¢ < T.

Let us now consider the trajectories in Fig. 1 during the first cycle. If the
trajectories are reflected in the line at t = L/e (= T/2), then the first trajectory
starts at g with velocity —c and the second at b with velocity c. The motion
of two particles along the reflected trajectories in the forward time direction
from { = 0 to ¢ = T is exactly the same as the motion of the two particles
along the original trajectories in the backward time direction from # = T to
t = 0. Since Y(¢) contains an average over all possible velocities (as well as
positions), both the original and the reflected trajectories give contributions
to Yx(?). If the contribution of the original trajectories in Fig. 1 is An(?), then
the reflected trajectories give An(T — f) and the total contribution is
hn(t) + ha(T — 1). As all possible configurations can be arranged in pairs as
the above simple example, ¥y (¢) must be of the form

Pn(t) = Hy(t) + H(T — 1)

Thus, for 0 <t < T,
(T— 1) = () @3)
which means we need only determine 5(r) in the range 0 <1 < T/2.

This is as far as we can go with general arguments and we must return
to Eq. (14) to obtain an explicit expression for ¢iy(f). As the calculation is
simple but rather long, we give the details in the appendix and quote the
result here:

Yn(t) = (Il — (1 = 2% = (12N)[1 — (1 =27} (24)

where _
x=cfL=2T 25)

and 0 < x < 1 or 0 < ¢ < TJ/2. Outside this range, ¥n(?) can be found by
using Eqgs. (22) and (23). In particular,

dn(0) = Pn(T) = ¢*
For small values of N, yn(r) is very simple. For example, when N = 1,
() =¥l —2x) for 0<x <

or
IO ©0) =1 — (4YT)  for 0 <1< T)2 e
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1 W 1} 29 (0}
t

Fig. 2. Plots of ¢,(1)/{n(0) for N = 2 and 4 and {1)/{{0) for p = 4/L
as functions of x = ¢t/L for hy(v) given in Eq. (21).

Thus, when f increases from 0 to 772, ,(t)/4,(0) decreases linearly from 1
to —1 and when 1 increases from 772 to T, y,(t)/4,(0) increases linearly
from —1 to 1. The first cycle has now been completed and the system starts
again from its initial (r = 0) state. For N = 2, Yn(t)/n(0) is still exactly
periodic with period 7, but it no longer decays linearly in the first half-
period. The results for N = 2 are shown in Fig. 2in the range 0 < x < 1.

When N > 4, ynu(1)/Yn(0) has turning values at x = 1/2 and
x = N/(N + 1). At x = 1/2, the ficst N — 2 derivatives of ry(f) vanish, and
at x = N/(N + 1), ¢n(t) is negative and has a maximum for odd values of ¥
and a minimum for even values of N. Finally, when x = 1/2,

In(T[A)/PnO) = —1/2N
and when x = |,
YN(TI2)[n0) = —(12N)[1 — (—1)"]

Therefore, Y (f) passes through zero and becomes negative somewhere in the
range 0 <t < 7/4 and then remains negative through the remainder of the
half-period until ¢ = T/2, The largest negative value ¢, (f)/¢~(0) can achieve
is —1/N, so that

—1/N < n()/dn0) <0
for TJ4 < t < TJ2.
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166 J. L. Lebowitz and J. Sykes

To investigate the thermodynamic limit, we put p = N/L and express
Yn(r) as a function of 1, p, and N, Then,

o) (e - 2y [ (- BT o

for 0 < pet < N. Now, in most problems in statistical mechanics, we are
interested in the long-time behavior of a many-particle system of fixed density
p. If we hold N fixed, then the limit f — oo is not defined because yiy(r) is a
periodic function in . Thus, we must keep t fixed and take the thermodynamic
limit first. Since

lim [1 + (/)" = e*

we find from Eq. (26) for fixed ¢ and p,
lim (1) = 4()

— Cze—apcl (27)
which is just the result obtained by Lebowitz and Percus. If we now let
t — oo, then yi(¢) — 0, as expected.

In Fig. 2, we compare yn(1)/¥n(0) with Y(1)/y(0) for N = 4. Clearly,
these functions are identical near ¢ = 0 and differ as # (or x) increases until
one becomes negative and the other remains positive. However, in the
thermodynamic limit, only the initial part of the x axis is important and in
this region, yix(f) decays monotonically toward zero.

Since 5(f) is a periodic function and

T/2
f dt' Yyn(t) =0
¢

then [, dt’ x(t') is also a periodic function, so tl}at the limit of 1 — oo does
not exist. However, in the thermodynamic limit, fo dt' (') isa monotonically
decreasing function; the limit f — oo exists and the self-diffusion coeflicient is

given by
H ¢ d I 1
D=]l!‘q3JO 1 (")
= ¢/2p

It is seen from Fig. 2 that even for N as small as four, there is an interval
near f = 0, proportional to L, in which (1) is very close to its limiting value
Y(t). As N increases, this interval becomes larger. It is quite reasonable to
assume that from the measurement of the velocity autocorrelation functjon in




L G A B S B il AV n i AR R » P S e W R b N R A i SR T Bl v Vs s s 0 £ v

The Velocity Autocorrelation Function of a Finite model System 167
a finite system over a fixed time interval ¢, (as is done in the machine com-

; putations of Alder, Rahman, Verlet, and others'®) one can extrapolate to
! find the infinite volume (¢) with good accuracy.

5. DISCUSSION

: Other correlation functions of interest, such as the Van Hove self-
i distribution function, can also be calculated for v, = +c¢ by the methods
i used in the appendix. It again is exactly periodic, but is much more compli-
L cated than iy(¢) and so will not be given here.
| There is no reason why the ensemble density should be limited’ to that
: given in (6). Another simple possibility is
L X Hw) N
f /‘LO(X - 'I—V— LN Z ho(U H I'O(vl) (28)
If we now choose
i ho(v) = 8() )
i.e., all particles but one are initially at rest, then

D) = 4 fL dr ,m dv H @) o)y e[L — {r(t) — ri{]¥?
. N NIV, 0, 0

: (30)
i This modet suffers from the drawback that ¢in(t) ~ /N, but if we notice

that

I = (IN) [ de Hyo) o

then ¢ (1)/4n(0) will approach a nonzero value in the thermodynamic limit.
In order to illustrate the role of py(X), let us briefly consider two choices
for H,(v) in the above model and reflecting boundary conditions: (a) for the

first choice,

Hy(v) = §[8(v — ¢) + 8(v + ¢)] @3N
Ya(t) is periodic with period 2L/c as before and in the thermodynamic limit,
Pa(0)/hn(0) — ot
(b) For the second choice,

Hy(v) = (af2) eI (32),.

M
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Yn(t) is no longer periodic. As t — o,
Yn(r) ~ =1/t
in such a way that

¢
limf dt’ Ya(t') = 0
{+x 0

These two cases illustrate the two possibilities discussed in the introduction:
either lim,,. o df’ Yx(t') does not exist (case a) or if it does exist, it must be
zero (case b).

APPENDIX
In this appendix, we calculate Yn(1) for times ¢ in the range
0 <t < T/2 = Ljc and hy(v) given in Eq. (21).

Fnrst of all, we must use the reflecting boundary conditions to spccnfy
the equations of motion. In the time interval [0, T/2}, each trajectory makes
one and only one intersection with the walls of the system. For a trajectory
which starts at r with velocity ¢,

W)=¢ r)=r+c for 0t <<(L~—r)e
and
o) = —c, r(t)=2L—r—ct for (L — r)fe <t < Lfe

At this point, it is convenient to define a length A by ¢ = Ale so that
0 < A < L. Then, the previous equations can be written as

ot) = +c, r) =r+2A for 0<r<L—A (A1)
and ‘
o) =—¢c, r()=2L—r—2A for‘ L-A<r<L (A2
Similarly, for a trajectory which starts at r with velocity —c,
o) = —¢, ri)=r—2~A | for A<r<L (A.3)

and
v(t)=¢, ri)=Ar—r for 0<r<a (A.4)

In calculating the statistical average of any quantity, we first do the
velocity integrals which determine whether the trajectories start with, veloci-
ties ¢ or —c. The integrals over positions are then divided into ranges

'
‘
'
i
i
{
1
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according to Egs, (A.1) and (A.2) or Egs. (A.3) and (A.4) and the correspon-
ding equations of motion are used. As an example, from Eq. (13),

EdR, r | Ne) = (1/2L) [ dy [eQh — y) etensv-
0
+ ey — N) eBBIN (L — X — y) el R=-D)
+ e(y + A — L) elo:(R+A+y—lL)] e—19ur=y)

where ¢ is the step function defined in Eq. (10). When the integrals are
evaluated, we find

EO(Rv I'-I A/C)
= 1 + I(sin O)[(R — r)/L)
—(l=cos O)A/LYA + e«(R=A=r)R=-A=r) + e(r-=A= R)(r-A-R)

—eA=R~PA-R-r)- €A+ R+ r-2L)A + R+ r-2L)]
(A.5)

so that
Ef(R,r|Alc) = E(L —r,L — R|Ac)
= Eo*(r, R| Ac) (A.6)

We now go back to Eq. (14) for yin(f), substitute hy(v) from Eq. (21), do
the velocity integrals, divide the position integrals into ranges, and use the
equations of motions and the properties of E, above. Then we get

e = S [ a0 [ dy ety = B Eily = by | eyt
— A — ) EoO\ = %y AN

cd

4+ (N —1 an f dej dyj dz {e(y — N)

X [—eA — z) e~t8elv=s=0) | (L — X — 2) etOleledd—y)—ely=e=A)

— €(z — N) effletHs-N—dyti-0] | ¢(z 4 ) — L) eftetdL-a-y-1]

+ €A — M[—ed — 2) + (L — A — z) effetvts-

—_ E(‘-‘. _ )\) el0uls—A-y) -+ e(z +- A — L) 0(0[¢(v+l—,\)—¢(v+-+,\—lL)]]}

X Eo(z, y | Me)M* (A7)

The curly bracket in the second term of this equation can be reduced to

—e(y+A—2)elz+A—p)e(y+z—NeL—y—z— X1 —¢9) -

Lt

]

B T T DT M 0 e (G e R T T R P AN B B L0 7 s v o0

]
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so that when Eq. (A.5) is used for E; and the step functions eliminated,
Yn(A/c) becomes

C2
InNe) = 17 5 f d [(L — AL = A+ ANt

- f dx [L — A+ (A — x) e - xe N1
o
— (N — Il — cos B}(L — A)
X Jd dx (L — A + (A — x) e 4- .\‘e““’)"“]. (A.8)
o
If we define '

gny(V) = (1/27) Re j : do f : dx [L — A 4 (A — X) 0% 4 xe=®J¥-1 (A9)

i
then Eq. (A.8) can be written in the compact form , 3
- Un(Ne) = (YLVYAANL — N gnaD]  * (A10) 'j

]

It is now a simple matter to evaluate the integrals in (A.9) and obtain ¢in(A/¢) ;
from (A.10). The result is :

gna(®) = (12N)[LY — (L — 2]

so that i
(@) =ali-0 -3 - b= (- @
If we now put

1 = Ale = xLjc

then
Pu(t) = (1 — )1 — 2081 — (12N)[1 = (1 = 29)"])}  (A.12)

Ao L PPN IR Tl .t T

which is the expression quoted in the text.
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