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Abstract. I give a brief overview of the resolution of the apparent problem of reconciling time
symmetric microscopic dynamic with time asymmetric equations describing the evolution of macro-
scopic variables. I then show how the large deviation function of the stationary state of the micro-
scopic system can be used as a Lyapunov function for the macroscopic evolution equations.

——————————————————————————

Gather ye rosebuds while ye may,
Old time is still a-flying;

And this same flower that smiles today,
Tomorrow will be dying.

Robert Herrick, 1591-1674

——————————————————————————
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TIME’S ARROW

Every bit of macroscopic matter is composed of an enormous number of atoms which act
as quasi-autonomous units. Taking these atoms as classical particles moving according
to non-relativistic Hamiltonian equations the complete microscopic (or micro)state of an
isolated classical system ofN particles is specified by a pointX in its phase spaceΓ ,

X = (r1,v1, ...rN,vN), ri ∈V ⊂ Rd, vi ∈ Rd (1)

andX(t) = φtX(0), whereφt is the evolution operator corresponding to the solution
of the Hamiltonian equations of motion. These have the well known time reversal
symmetry: setting,RX= (r1,−v1, ...,rN,−vN) then

RX= φtRφtX, t ∈ (−∞,∞) (2)

Suppose now that some property of the system, specified by a functionf (X(t)), behaves
in a particular way ast increases, then there is also a trajectory in which the property



behaves in the time reversed way. Thus, for example, if particle densities get more
uniform, say in a way described by the diffusion equation, then there will also be
evolutions in which the density gets more nonuniform. So why is one type of evolution,
corresponding to “entropy” increase in accord with the second “law”, common and the
other never seen?

This problem was clearly stated by W. Thomson (later Lord Kelvin) who wrote in
1874 [1]:

“The essence of Joule’s discovery is the subjection of physical phenomena to dynam-
ical law. If, then, the motions of every particle of matter in the universe were precisely
reversed at any instant, the course of nature would be simply reversed for ever after.
The bursting bubble of foam at the foot of a waterfall would reunite and descend into
the water; the thermal motions would reconcentrate their energy, and throw the mass
up the fall in drops re-forming into a close column of ascending water. ... And if also
the materialistic hypothesis of life were true, living creatures would grow backwards,
with conscious knowledge of the future, but no memory of the past, and would become
again unborn. But the real phenomena of life infinitely transcend human science; and
speculation regarding consequences of their imagined reversal is utterly unprofitable.”

The explanation of this apparent paradox, due to Thomson, Maxwell and Boltzmann,
is based on the great disparity between microscopic and macroscopic scales—with
the consequent exponentially large ratios between the number of microstates (phase
space volume) corresponding to the different macrostates—and the fact that events
are determined not only by differential equations, but also by initial conditions. These
provide the ingredients for the emergence of definite time asymmetric behavior in the
observed evolution of macroscopic systems, despite the total absence of such asymmetry
in the dynamics of individual atoms. (For a more detailed discussion and references see
[2],[3].)

Macrostates

To describe the macroscopic state of a system ofN atoms in a boxV, sayN & 1020,
we make use of a much cruder description than that provided by the microstateX. We
shall denote byM(X) such a macroscopic description of a macrostate. As an example
we may divideV into K cells, whereK is large but stillK ≪ N, and specify the number
of particles, the momentum and the amount of energy in each cell, with some tolerance.

Clearly there are manyX′s (in fact a continuum) which correspond to the sameM. Let
ΓM be the region inΓ consisting of all microstatesX corresponding to a given macrostate
M and denote by|ΓM| its Liouville volume.

The equilibrium macrostateMeq is defined as that state for which|ΓMeq| ∼ |ΓE|, the
area of the whole energy surface. WhenM(X) specifies a nonequilibrium state,|ΓM(X)|
is much smaller. Thus if the system containsN atoms in a volumeV then the ratio of
|ΓMeq|, for the macrostateMeq in which there are(1

2 ±10−10)N particles in the left half
of the box, to|ΓM| for a macrostateM in which all the particles are in the left half is of
order 2N. For any macroscopic value ofN, this is far larger than the ratio of the volume



of the known universe to the volume of one proton.1

Boltzmann then argued that given this disparity in the sizes ofΓM, |ΓM(X(t))| will
typically increase in a way whichexplainsand describes the evolution towards equilib-
rium of isolated microscopic systems. ’Typical’ here means that for anyΓM the relative
volume of the set of microstatesX in ΓM for which log|ΓM(X(t))| decreases by a macro-
scopic amount during some time periodτ, (no bigger than the age of the universe) goes
to zero exponentially in the number of atoms in the system.

ENTROPY AND LYAPUNOV FUNCTION FOR ISOLATED
SYSTEM

To make a connection with the Second Law of Clausius, Boltzmann defined the entropy
of a macroscopic system with microstateX as

SB(X) = k log|ΓM(X)| (3)

and showed that (for a dilute gas) in the equilibrium macrostateMeq, i.e. X ∈ ΓMeq, SB
is equal (to leading order inN) to the thermodynamic entropy of Clausius. Following O.
Penrose, I shall callklog |ΓM(X)| the Boltzmann entropy of a system in the macrostate
M(X).We can make Boltzmann’s argument quantitative if we suppose (assume) that the
time evolution ofMt satisfies an autonomous deterministic equation, such as the Navier-
Stokes equation or the Boltzmann equation. This means that ifMt1 → Mt2, then the
microscopic dynamicsφt carriesΓMt1

insideΓMt2
, i.e. φt2−t1ΓMt1

⊂ ΓMt2
with negligible

error. The fact that phase space volume is conserved by the Hamiltonian time evolution
implies that|ΓMt1

| ≤ |ΓMt2
| and thus thatSB(Mt2) ≥ SB(Mt1) for t2 ≥ t1.

We have thus derived an “H -theorem” or Lyapunov function for any deterministic
evolution of the macro-variables arising from the microscopic dynamics of an isolated
Hamiltonian system[3].

Example: For spatially uniform equilibrium systems the thermodynamic entropy is
extensive

S(E,N,V) = Vs(e,n). (4)

s(e, .) is a concave function ofe.

∂s
∂e

=
1
T

,
∂
∂e

(
1
T

) = −(1/T2)
∂T
∂e

≤ 0. (5)

For systems in “local thermal equilibrium” (LTE) with local densitiesn(x),e(x),u(x)

SB(n,u,e) =

∫

V
s(e(x)−

1
2

mn(x)u2(x),n(x))dx = Sl .e (6)

1 This is the reason why properties of an equilibrium system, such as the fraction of particles in a given
velocity domain can be obtained, forN ≫ 1, as an average over the microcanonical ensemble. N.B. This
does not depend on the system being ergodic in the mathematical sense as long asN is large enough.



Consider now an isolated system in LTE (withu = 0 andn constant) in a regionV
with boundary surface∑ and an energy density profilee(x) satisfying the macroscopic
conservation equation

∂e
∂ t

= −∇ ·J (7)

whereJ(e) is the heat flux. When this is given by Fourier’s law,

J = −κ∇T, κ(T) ≥ 0. (8)

we then have a closed autonomous equation foreor T. This yields,

dSl .e

dt
=

d
dt

∫

V
sdx

= −

∫

V

1
T

(∇ ·J)dx= −

∫

∑

1
T

J ·d∑+

∫

V
J · (∇

1
T

)dx ≥ 0,
(9)

sinceJ ·d∑ = 0 andκ ≥ 0.
We next consider what happens when the isolated system is not in local equilibrium.

(Following that we shall consider situations when the system is not isolated.)
Following Boltzmann, we refine the thermodynamicM used for systems in LTE by

noting that the microstateX = {ri ,vi}, i = 1, ...,N, can be considered as a set ofN
points in the six dimensional “µ-space”. We then divide up thisµ-space intoJ̃ cells∆̃α ,
centered on(rα ,vα), of volume|∆̃α |. A macrostateM̃ is then specified by the number
of particles in each̃∆α ,

M̃ = {Nα}, α = 1, ..., J̃ << N. (10)

For dilute gases one canneglect, for typical configurations, the interaction energy
between the particles. The coarse grained energy of the system in the stateM̃ is given,
up to terms independent off , by

1
2

m∑
α

Nαv2
α = E (11)

with
∑Nα = N (12)

The phase space volume associated with such anM̃ is then readily computed to be

|ΓM̃| = Πα(Nα !)−1|∆̃α |
Nα (13)

Stirling’s formula then gives

SB(M̃) ∼−k

{

∑
α

(
Nα

|∆̃α|

log
Nα

|∆̃α|

)|∆̃α |−N

}

(14)



UsingM̃ we can associate with a typicalX a coarse grained density
fX ∼ Nα/|∆̃α | in µ-space, i.e. such thatNα =

∫

∆̃α
dxdv fX(x,v). The Boltzmann entropy

is then given by

SB(X) = Sgas( f ) = −k
∫

V
dx

∫

R3
dv f (x,v) log f (x,v) (15)

The maximum ofSgas( f ) over all f which satisfy the constraints,

∫

V
dx

∫

R3
dv f (x,v) = N (16)

∫

V
dx

∫

R3
dv

1
2

mv2 f (x,v) = E(17)

gives the equilibrium distribution, which is readily seen to be the Maxwell distribution

feq =
N
V

(2πkT/m)−3/2exp[−mv2/2kT] (18)

wherekT = 2/3(E/N). In this caseSB coincides with the Clausius entropy

Sgas( feq) = S(E,N,V) = Nk[
3
2

logT − log(N/V)]+Const. (19)

When f 6= feq then f and consequentlySgas( f ) will change in time. The second law,
now says thattypical X∈ΓM̃, at the initial timet = 0, will have anM̃t = M̃(Xt) such that
SB(M̃(Xt)) ≥ SB(M̃(Xt ′)), for t ≥ t ′. This means thatSgas( ft) ≥ Sgas( ft ′), for t ≥ t ′. This
is exactly what happens for a dilute gas described by the Boltzmann equation for which

d
dt

Sgas( ft) ≥ 0, Boltzmann′s H −theorem (20)

i.e. Sgas ( f ) is a Lyapunov function,
As put by Boltzmann: “In one respect we have even generalized the entropy principle

here, in that we have been able to define the entropy in a gas that is not in a stationary
state”[4].

Remark: It is important to distinguish between the empiricalµ-space density profile
fXt(x,v) and another object with the same name, the marginal one-particle (probability)
distributionF1(x,v, t) obtained from anN-particle ensemble density evolving according
to the Liouville equation. An instructive example is a macroscopic system ofN nonin-
teracting point particles, moving among a periodic array of scatterers in a macroscopic
volumeV. Starting with a nonuniform initial densityfX0(x,v) the time evolvedfXt (x,v)
will approach anf which depends only on|v| and which will have a largerSgas( f ), while
∫ ∫

F1 logF1dxdv remains constant in time. The obvious evolution equation forfXt for
this system, namely the one-particle Liouville equation, in fact does not describe the evo-
lution of fXt for times after whichF1(x,v, t) has developed structure on the microscopic
scale.



The Boltzmann Entropy of Dense Fluids Not in LTE

Consider now the case when the interaction potential energyΦ between the particles
is not negligible. The regionΓM̃ will then include phase points with widely differing total
energies. The set of microstateX of a system with a specified energy,H(X) = E will
then correspond to a small fraction ofΓM̃(X). In fact a little thought shows that most ofΓf

corresponds to the largest energies compatible withf (x,v). The macrostateM specified
by both f andE will then have a Boltzmann entropy consisting of a momentum part and
a configurational part. For a system of hard spheres whereE = K the Boltzmann entropy
can be written as the sum,

Shs( f ) = S(m)( f )+S
(c)
hs (n) (21)

whereS(m) is the momentum part

S(m)( f ) = −

∫

V

dx
∫

dv f (x,v)log[ f (x,v)/n(x)] (22)

andS
(c)
hs (n) is the configurational part of the entropy of an equilibrium system of hard

spheres kept at a nonuniform densityn(x) =
∫

f (x,v)dv by some external potential
U(x).

Shs( f ) was proven by Resibois (in a different form) to be a Lyapunov function for the
modified Enskog equation c.f.[3],

d
dt

Shs( ft) ≥ 0 (23)



The decrease ofS(m)( ft) and increase of the totalS( ft ,E) is shown in Fig. 1. Based
on molecular dynamic simulations for different number of particlesN in a periodic box,
Fig.1 shows the time evolution ofS(m), of the potential and kinetic energies and of the
total entropyS for a Lennard-Jones system started att = 0 in a state where the kinetic
energy is “too high”[5]. This corresponds to a situation considered by Jaynes, c.f.[3].

OPEN SYSTEMS

For an open system, say one in contact with a “heat bath” at a specified temperatureT̄,
the entropy of the system alone is clearly no longer an increasing function, e.g. we can
start the system at an energyEo corresponding to a temperatureTo > T̄. In terms of the
macroscopic equation for the energy density or temperature the entropy is no longer a
Lyapunov function since the energy flux across the boundaries no longer vanishes, and
can be either positive or negative.

So what do we do for a Lyapunov function?
A simple way which works for the case when there is only one heat bath is to observe

that thetotal entropy production in system plus reservoir can be written as, see (9),

dStotal

dl
=

dSl .e

dt
+

∫

∑
(1/T̄)J ·d∑ (24)

=
d
dt

[Sl .e− (1/T̄)El .e] =
d
dt

(−F ) (25)

=
∫

V
J ·∇(

1
T

)dx ≥ 0 (26)

whereF , given by the terms in the square brackett in (25), is now the “Lyapunov
function”.

This procedure fails when the system is in contact with more than one heat bath and
T̄ is not constant on the boundary∑ in which case the entropy production is not zero in
the stationary state.

To proceed we now recall that, as noted by Boltzmann and Einstein, the relative
Boltzmann entropyS (M) ≡ SB(M)−SB(Meq) is equal to the log of the probability
of finding the system in the macrostateM = {e(x)},

P(M) ∼ exp[SB(M)−SB(Meq)] = exp{−F (M)} (27)

This probability is with respect to the uniform (microcanonical) measure on the en-
ergy surface of the isolated system, which is stationary under the microscopic Hamilto-
nian time evolution.

S (M) thus coincides, in the limit of large system size andM macroscopically distinct
from Meq (the latter includes states which only differ by “normal” fluctuations) with
the negative of the usual large deviation functional (LDF) of probability theory for
µst(X)∼ δ (H(X)−E), i.e. for the microcanonical ensemble.



The same is true for the Lyapunov functionF for the system in contact with a single
heat bath at temperaturēT, where

F ({e(x)}) = [E− T̄Sl .e]/T̄ (28)

is again the LDF of the stationary measure for the system in contact with a heat bath.
This is now the canonical ensemble at temperatureT̄.

µst ∼ exp[−H(X)/T̄] (29)

The above analysis can be readily generalized to the macrostateM = {e(x),n(x),u(x)}
whose time evolution is governed by the Navier-Stokes equations. In fact one expects
that the LDF for the stationary measure will always be a Lyapunov function for
the macroscopic equation [6, 7]. An example which exploits this fact to derive new
Lyapunov functions is given in the next section[8].

LYAPUNOV FUNCTION FOR A SYSTEM IN CONTACT WITH
SEVERAL PARTICLE RESERVOIRS

Letσ be a smooth increasing function. We consider the PDE on a regular domainV ⊂R
d

∂ρ(t,x)

∂ t
= ∇2

(

σ
(

ρ(t,x)
)

)

, (30)

with Dirichlet boundary conditions onΣ specified by the reservoirs, i.e.ρ(t,x) = ρ̄(x)
for x∈ Σ whereρ̄(x) is the stationary profile in all ofV. Let

Fu(v) =
∫ v

u
dzlog

σ(z)
σ(u)

. (31)

We define the functional

F (σ) =

∫

V
dxF(u)(σ(x)). (32)

A straightforward but lengthy computation then shows that∂F (ρ)
∂ t ≥ 0 where we used

the fact that on the boundaryρ(t,x)
ρ̄(x) = 1.

The functionF defined in (32) is the LDF for the “zero range process” in contact with
particle reservoirs at different densities. For this model the NESS is known explicitely
and thus permits the explicit computation of the LDF [8].

The same computation will go through with a field

∂ρ(t,x)

∂t
= ∇2σ(ρ(t,x))−E∇σ(ρ(t,x)). (33)

One could also treat mixed Dirichlet/Neumann boundary conditions.
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