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Abstract: We analyze the long time behavior of solutions of the Schrödinger equation
iψt = (−�−b/r +V (t, x))ψ , x ∈ R

3, r = |x |, describing a Coulomb system subjected
to a spatially compactly supported time periodic potential V (t, x) = V (t + 2π/ω, x)
with zero time average.

We show that, for any V (t, x) of the form 2�(r) sin(ωt − θ), with�(r) nonzero on
its support, Floquet bound states do not exist. This implies that the system ionizes, i.e.
P(t, K ) = ∫

K |ψ(t, x)|2dx → 0 as t → ∞ for any compact set K ⊂ R
3. Furthermore,

if the initial state is compactly supported and has only finitely many spherical harmonic
modes, then P(t, K ) decays like t−5/3 as t → ∞.

To prove these statements, we develop a rigorous WKB theory for infinite systems
of ordinary differential equations.
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1. Introduction and Overview of Results

The long time behavior of solutions of the Schrödinger equation of a system with both
discrete and continuous spectrum subjected to a time periodic potential is a longstand-
ing problem. Powerful results have been obtained under various assumptions on the
potentials, see [5–8,21,32,34,36,37], and references therein. In particular, there are
conditional results on the ionization of the Hydrogen atom, subjected to an external
time-harmonic dipole field V (t, x) = E · x cosωt if E is sufficiently small, see [43,44].
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In addition,Möller andSkibsted proved the equivalence of absence of point spectrumand
ionization for a large class of such systems subject to periodic fields [32]. There are also
detailed results about the behavior of the wave function for systems subjected to general
time periodic potentials, decaying faster than r−2, under the additional assumption of
absence of point spectrum of the Floquet operator, see [20].

None of these results however prove or disprove ionization of Coulomb–bound par-
ticles subject to time-periodic forcing of fixed amplitude and zero average. In fact,
such results have only recently been obtained even for simple model systems, see [11–
13,15,16,30] and references cited there. For a periodic dipole field of nonzero average
ionization was proved in [33] (we note that the time averaged Hamiltonian has no bound
states in this seetting).

What experiments and simplified models show is that the behavior of systems with
both discrete and continuous spectrum, subject to time-periodic fields of arbitrary
strength, can be very complicated. For amplitudes where perturbation theory is not
applicable (such fields are becoming of increasing practical importance in technology),
qualitative departures from the behavior at small fields are observed. There are even
situations, see e.g. [12], where for small enough fields ionization occurs for all ini-
tial states while for larger fields there exist localized time–quasiperiodic solutions of
the Schrödinger equation, i.e. Floquet bound states. Though these situations are rather
exceptional, constructive methods of analysis are required to determine the outcome in
specific settings.

In this paper we prove ionization for Coulomb systemswith very special (non-dipole)
type of forcings of arbitrary magnitude. This is equivalent to establishing the absence
of point and singular continuous spectrum of the corresponding Floquet operators. We
also obtain the large time behavior of the wave function. The time decay of the wave
function, for compactly supported initial conditions, is of order t−5/6. This differs from
the t−3/2 or, exceptionally, t−1/2 power law found for shorter range reference potentials,
see [15,20]. The nonperturbative methods include the development of rigorous WKB
techniques for infinite systems of ODEs.

1.1. The Coulomb Hamiltonian. In units such that �
2/2m = 1, the Coulomb quantum

Hamiltonian of a Hydrogen atom (more generally a Rydberg atom) is

HC = −�− b
r
, (1)

where b > 0, r = |x |, x ∈ R
3 and � is the Laplacian. It is well known, see e.g. [28],

that HC is self-adjoint on the Sobolev space H2(R3) = D(−�), the domain of−� (cf.
also [28], p. 303). The spectrum of HC consists of isolated eigenvalues En = −b2/4n2,
with multiplicity n2, and an absolutely continuous part, [0,∞).

1.2. Setting. Our starting point is the time evolution of the wave function ψ(t, x) of the
Hydrogen atom described by the Schrödinger equation

iψt = HCψ + V (t, x)ψ; ψ(0, x) = ψ0(x) ∈ H2(R3), (2)

where V (t, x) =
∑

j∈Z

� j (x)ei jωt is real valued and �0 ≡ 0.
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The operator HC + V (t, x) satisfies the assumptions of Theorem X.71, p. 290, in [31]
v.2.; TheoremX.70, p. 285 also applies in our setting. Thus, for any t ,ψ(t, ·) ∈ H2(R3),
and the unitary propagator U (t) for (2) is strongly differentiable in t ; see § 5.1 for a
short proof in our case.

Assumption 1. The � j (x), j ∈ Z are smooth inside a common compact support, cho-
sen without loss of generality to be the ball B1 ⊂ R

3 of radius 1, and
∑

j∈Z
(1 +

| j |)‖� j‖L∞(B1) < ∞.

1.3. Ionization. We say that the system ionizes if the probability to find the particle in
any compact set vanishes for large t , i.e., for any a > 0 we have

P(t,Ba) =
∫

Ba
|ψ(t, x)|2dx → 0 as t → ∞, (3)

where Ba = {x : |x | < a}. To prove ionization, it clearly suffices to prove (3) for all
a > 1.

A simple way in which ionization may fail is the existence of a solution of the
Schrödinger equation in the form

ψ(t, x) = eiφtv(t, x) with φ ∈ R and v ∈ L2([0, 2π/ω] × R
3) time-periodic. (4)

Substitution in (2) leads to the equation:

Kv = φv, (5)

where

K = i
∂

∂t
−
(
−�− br−1 + V (t, x)

)
(6)

is the Floquet operator, densely defined on L2([0, 2π/ω]× R
3); 0 �= v ∈ L2 implies by

definition that φ ∈ σp(K ), the point spectrum of K .
Somewhat surprisingly, in all studied systems, σp(K ) �= ∅ is in fact the only possibil-

ity for ionization to fail. As we will show this is also true for (2). The proof of ionization
also implies that K does not have any singular continuous spectrum. This turns out to
be a consequence of the existence of an underlying compact operator formulation, the
operator being closely related to K . Generic ionization is then expected since L2 solu-
tions of the Schrödinger equation of the special form (4) are unlikely. We prove that for
V (t, x) = 2�(r) sin(ωt−θ),� > 0 on [0, 1] and sufficiently smooth, they do not exist.

1.4. Laplace space formulation. For ψ ∈ H2(R3), the Laplace transform

ψ̂(p, ·) :=
∫ ∞

0
ψ(t, ·)e−pt dt

exists for p ∈ H, the right half complex plane, and the map p → ψ̂(p, ·) is H2 valued
analytic in Re p > 0. The Laplace transform converts the asymptotic problem (3) into
an analytical one.
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To improve the decay in p of the Laplace transform, it is convenient to write

ψ(t, x) = ψ0(x)e−t + y(t, x). (7)

Now, y(t, x) satisfies

iyt−HC y−V (t, x)y=e−t [iψ0+HCψ0+V (t, x)ψ0]≡−y0(t, x); y(0, x)=0. (8)

Standard arguments (see Appendix 5.2) show that the t−Laplace transform of y, ŷ is in
H2 and satisfies

(HC − i p)ŷ(p, x) = ŷ0(p, x)−
∑

j∈Z

� j (x)ŷ(p − i jω, x), (9)

where

ŷ0(p, x) = − 1
1 + p

(iψ0 + HCψ0)−
∑

j∈Z

� j (x)ψ0(x)
1 + p − i jω

. (10)

1.5. The homogeneous equation and the PDE-difference equations. The homogeneous
system associated to (9) is

(−�− b/r − i p)w(p, x) = −
∑

j∈Z

� j (x)w(p − i jω, x). (11)

Note 2. (i) Clearly, (9) and (11) couple two values of p only if (p1 − p2) ∈ iωZ, and
are effectively infinite systems of partial differential equations. Setting

p = p1 + inω, with p1 ∈ Cmod (iω), (12)

we denote

yn(p1, x)= ŷ(p1+inω, x), y0n (p1, x)= ŷ0(p1+inω, x), wn(p1, x)=w(p1+inω, x).
Equations (9) and (11) now become

(HC − i p1 + nω)yn = y0n −
∑

j∈Z

� j (x)yn− j , (13)

(HC − i p1 + nω)wn = −
∑

j∈Z

� j (x)wn− j . (14)

Note 3. Seen as a differential difference equation, the solution ŷ(p, x) is then a vector
{yn(p1, x)}n∈Z and the whole problem depends only parametrically on p1. We have

yn(p1 + iω, x) = yn+1(p1, x), (15)

and the analysis can be restricted to

S0 = {p ∈ H : Im p ∈ [0, ω)},
where H is the closure of H. There is arbitrariness in the choice of S0 and, to see ana-
lyticity in p1 on ∂S0, it is convenient to allow p1 ∈ H, using (15) to identify different
strips of width ω.
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2. Main Results

Theorem 1. Assume V (t, x) = 2�(r) sin(ωt − θ), with�(r) = 0 for r > 1,�(r) > 0
for r ≤ 1 and �(r) ∈ C∞[0, 1]. Then σp(K ) = ∅ and ionization always occurs.
Furthermore, if ψ0(x) is compactly supported and has only finitely many spherical
harmonics, then P(t,Ba) = O(t−5/3).

For the proof, given in § 3.10, § 3.11 and § 4.6, we develop a relatively general rigor-
ousWKB theory for infinite systems of differential equations. This yields the asymptotic
behavior of wn as n → −∞. The argument relies on Theorems 2 and 3 below.

Remark 4. The condition �(1−) �= 0 simplifies the arguments but these could accom-
modate an algebraically vanishing �. (We also note that some one-dimensional models
with rough � such as a δ mass show failure of ionization, see [12,30 and 35].)

We will later derive equivalent systems of integral equations, (22), allowing for a
compact operator reformulation of the problem.

Theorem 2. In the setting § 1.2, assuming spherical symmetry in x of the forcing V (t, x),
ionization occurs iff for all p1 ∈ H, (14) has only zero H2 solutions decaying in n(1).
This is true iff σp(K ) = ∅.

This extends results about absence of singular continuous spectrum of K , [20], to
this class of systems, with Coulombic potential and nonanalytic forcing.

The proof is given in § 3.2 and § 3.8.

Properties of Floquet bound states for general compactly supported V (t, x).

Theorem 3. If there exists an H2 nonzero solution w of (14) decaying in n,1 then it has
the further property

wn = χB1wn for all n < 0 (16)

with χ A the characteristic function of the set A.

The general idea of the proof is explained in § 3.9 and the details are given in § 4.7.

Note 5. (i) The Sobolev embedding theorem implies thatwn is continuous in x . From
(14), wn is piecewise C2, implying continuity of ∇wn up to ∂B1.

(ii) Equation (16) makes the second order system (14) formally overdetermined since
the regularity of w in x imposes both Dirichlet and Neumann conditions on ∂B1
for n < 0. Nontrivial solutions are not, in general, expected to exist.

3. Proofs

Outline of the ideas. As in our previous work [10–15], summarized in [18] on sim-
pler systems, we rely on a modified Fredholm theory to prove a dichotomy: there are
bound Floquet states, or the system gets ionized. Mathematically the Coulomb potential
introduces a number of substantial difficulties compared to the potentials considered
before (for references, see e.g. [15]), due to its singular behavior at the origin and, more
importantly, its very slow decay at infinity.

1 For precise conditions, see §3.4 below and the integral form (22).
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The slow decay translates into potential-specific corrections at infinity, and standard
general methods to show compactness in weighted spaces of the Floquet resolvent, such
as those in [20], or our previous ones do not apply. Instead, the asymptotic behavior in
the far field of the resolvent has to be calculated in detail. The accumulation of eigen-
values of increasing multiplicity at the top of the discrete spectrum of HC produces an
essential singularity at zero of the Floquet resolvent with a local expansion of the form
∑

j,l pl/2ei j A(−i p)
−1/2 for small p when Re p ≥ 0, where A = πb/2. For sufficiently

rapidly decaying potentials the exponentials would be absent. Their presence clearly
makes the analysis at p = 0 of the Floquet resolvent more delicate and is responsible
for the change in the large time asymptotic behavior of the wave function, from t−3/2
to t−5/6.

We introduce an extended parameter X = (p1/2, ei A(−i p)−1/2 ) and prove analyticity
of the solution ŷ in X , whose p-counterpart is p small, Re p ≥ 0, and similarly in
regions near the special points p ∈ iωZ. We reformulate the problem in terms of an
integral operator C, defined in § 3.4, closely related to the Floquet resolvent, shown to
be compact in a suitable space and analytic in a variable corresponding to X . Then, by
the Fredholm alternative, (I − C)−1 is meromorphic, and in fact analytic in X , since we
show absence of eigenvalues of I − C for any p ∈ H.

3.1. The Hilbert space H. Let H be the Hilbert space of sequences Y = {yn}n∈Z,

yn ∈ L2(Ba), with a > 1, and with

‖Y‖2 := ‖Y‖2a =
∑

n∈Z

(1 + |n|)4/3‖yn‖2L2(Ba) < ∞

Note 6. The properties of (I − C)−1 as Re p1 → 0+ ensure that Y (p1, ·) ∈ H ∪ H2 and
is locally integrable in p1 along iR.

We then extend the stationary phase method to such a setting, cf. § 5.7, to evalu-
ate, asymptotically for large t , the inverse Laplace transform of ŷ on iR and obtain the
ionization result and time decay estimates.

To show ionization we then have to rule out the existence of a point spectrum of the
Floquet operator, that is the existence of nontrivial solutions of (14). We use the general
criterion in Theorem 3 to show that, if there exists a nonzero solution to (14), then a
subsequence of {wn}n∈−N would be singular at x = 0, in contradiction with Note 5, (i).

To find the behavior of solutions for large n, we develop a WKB theory for infinite
systems of ODEs and find the asymptotic behavior ofwn in n in detail. The formalWKB
calculation of the behavior is straightforward algebra, relatively easy even in much more
general settings, see § 5.9. Justifying the procedure is however delicate, and a good part
of the paper is devoted to that; cf. § 4.11, § 4.12.

The procedure of introducing an enlarged set of parameters with respect to which
the solution is regular, when this does not hold in the original parameter, should also be
applicable to other problems where complicated singularities arise.

3.2. Proof of Theorem 2. We show that ŷ has a limit in L1loc on ∂H = iR, where it is
smooth except for possible poles and a discrete set of essential (but L1) singularities.
Poles are present iff the integral form (22) of (11) has nontrivial solutions inH. There is
sufficient decay in p at infinity, so that, when poles are absent, the Riemann-Lebesgue
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lemma applies, implying that y decays as t → ∞, proving ionization–since ψ0(x)e−t
obviously goes to zero in this limit. More detailed analysis of the resolvent reveals the
nature of the essential singularity at p = iωZ. Stationary phase analysis shows a t−5/6
decay of the wave function if the initial condition is spatially compactly supported and
contains only a finite number of spherical harmonics.

Proposition 7. Ionization holds for everyψ0 ∈ L2 iff it holds for anyψ0 in a set densely
spanning L2.

Proof. We make use of the standard triangle inequality argument to estimate U (t)ψ0,
where U (t) is the unitary operator associated to the Schrödinger evolution (2). ��

We choose ψ0 in a dense set C∞
c (R

3), the smooth, compactly supported functions in
R
3. Define as usual the angular momentum operators

−L2 = ∂2

∂θ2
+

1
tan θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2

and

Lz = −i ∂
∂φ
.

Let Pl,m be the orthogonal projector on {φ : L2φ = l(l + 1)φ, Lzφ = mφ} for some
m ∈ Z, |m| ≤ l ∈ N ∪ {0}.

Since
∑

l,m Pl,m = I , we can now assume without loss of generality that
ψ0 ∈ Pl,m

(
C∞
c (R

3)
)
if l and m are arbitrary. Likewise, if P(t,Ba) decays like t−5/3

when ψ0 ∈ Pl,m
(
C∞
c (R

3)
)
, then the same decay rate clearly holds for any ψ0 given by

a finite linear combination over (l,m) (but not, in general, for any ψ0 ∈ L2(R3)).

Further notations. As usual we write Dε = {z : |z| < ε}, D = D1 and we denote
D
+
ε = Dε∩{z : arg z ∈ (−π/4, π/4)}.We also letIε = i[−ε, 0],H+c = {p+c : p ∈ H},

�α = {p : Re(p) ≥ 0, Im(p) = α} and for a set A, A\�α = A\�α . We denote
D = H ∪ iR+, and O(D) will denote some small open neighborhood of D.

3.3. Step 1. Compact operator reformulation. To investigate the analytic properties of
ψ̂ it is convenient to introduce a new operator Aβ which is a complex perturbation of
HC , having no real eigenvalues. More precisely, define

Aβ :=HC−iβ(p)χBa (r)−i p; (with the understanding that A0=HC−i p), (17)
where a > 1 and

β = β(p) =
{ c > 0 if Im p ∈ [−ε, pc] and Re p ≥ 0
0 otherwise

. (18)

Here ε < ω/2 is small as required in Proposition 17 below, and we choose pc so that
pc/ω /∈ Z and pc > −E0 = b2/4, the ground state energy of the unperturbed atom.
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Clearly Aβ is defined on D(H0) and A∗
β = A−β + i p∗ + i p. We rewrite (13) and (14) in

the equivalent form
[
HC−i p1+nω−iβ(p)χBa (r)

]
yn = y0n−iβ(p)χBa (r)yn−

∑

j∈Z

� j (x)yn− j , (19)

[
HC − i p1 + nω − iβ(p)χBa (r)

]
wn = −iβ(p)χBa (r)wn −

∑

j∈Z

� j (x)wn− j . (20)

We show next that A−1
β is analytic in p ∈ H\{�pc ∪ �−ε}, and sufficiently regular on

iR. Since the parameter pc is artificial, the non-analyticity at �pc ∪ �−ε of A−1
β is not

reflected in the actual solution ŷ, as discussed in Note 9.

Proposition 8. There exists an open neighborhoodO ofD\ {�pc ∪ �−ε
}
, not containing

the origin 0, such that the operator Rβ = A−1
β exists and is analytic in p ∈ O\(�pc ∪

�−ε). Furthermore, for any p for which Rβ exists, we have Rβ : L2(R3) → H2 (
R
3).

The proof is given in § 4.1.

3.4. Restriction to a ball B; Definition of C. To study ionization, we only need to know
y(t, x) for x in a fixed (but arbitrary) ball Ba ⊃ B1. Henceforth, to simplify the nota-
tion, we write Ba = B. We shall therefore need to study the properties of χBRβχB.

This sandwiched operator (which preserves information about L2(R3) through built-in
boundary conditions on ∂B) is the one that we shall most often use below. We recall that
p = p1 + inω and ŷ(p1 + inω, x) = yn(p1, x). Since � j (x) = χB� j (x), (13) implies
that for x ∈ B,

yn(p1, x) = χBRβ y0n + χBRβχB

⎡

⎣−iβyn(p1, x)−
∑

j∈Z

� j (x)yn− j (p1, x)

⎤

⎦ , (21)

where we may assume that B contains the support of ψ0(x), and therefore of y0n . Note
that Rβ depends on n through p = inω + p1. Corresponding to (21), we obtain the
homogeneous system:

wn(p1, x) = χBRβχB

⎡

⎣−iβwn(p1, x)−
∑

j∈Z

� j (x)wn− j (p1, x)

⎤

⎦ . (22)

The elements of H will be denoted by capital letters, e.g. {yn}n∈Z =: Y , {y0n
}
n∈Z

=:
Y0. We define the operators T on L2(B) by

{TY0}n = χBRβ y0n ,

and C on H by

{CY }n = χBRβχB

⎡

⎣−iβyn(p1, x)−
∑

j∈Z

� j (x)yn− j (p1, x)

⎤

⎦ .

Then, we rewrite (21) in the form

Y = TY0 + CY. (23)
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Note 9. We shall see that for any β satisfying (18), Eq. (23) has a unique solution in H

(call it now Y (β)). Thus, away from the artificial cuts, all these solutions coincide (since
the domain of Y (0) corresponding to c = 0, contains all of the others). Hence, wherever
some Y (β) has analytic continuation, so will Y (0).

The homogeneous system corresponding to (23) is given by

w = Cw. (24)

Note 10. We have shown (cf. § 1.4 and § 5.2) that ψ̂ and the Laplace transform ŷ(p, ·) =
L (ψ − ψ0e−t

)
exist for Re p > 0. The corresponding Y = {yn}, yn = ŷ(inω + p1, ·),

restricted to B, will therefore satisfy (23) for β = 0 when Re p1 > 0. It will be shown
that (23) has a unique solution Y ∈ H for any Re p1 ≥ 0, and that Y is analytic in
p1 ∈ H and has an L1loc limit on iR, with sufficient decay in n. The implied decay and
regularity properties of ŷ(p, ·) on iR show that L−1 ŷ + e−tψ0 (the integration contour
taken to be iR) equals ψ for x ∈ B.

Proposition 11. (Asymptotic behavior ofχBRβχB). IfRe p = 0 and |Im p| → ∞ (see
Note 3), then ‖χBRβχB‖ = O(|p|−1/2) (recall that β = 0 if |Im p| is large). Moreover,
for any ε > 0, χ BRβχ B is analytic in p in an open set containing −i(ε,∞).

For Im p → +∞, the |p|−1/2 decay rate follows from the spectral theorem since we
are outside the spectrum, while for Im p → −∞, the rate is obtained using Mourre
estimates [27], Theorem 6.1. The rest of the proof involving analyticity is given in § 4.3
and relies on an explicit representation of the resolvent for HC , see § 5.4. Using spherical
symmetry, the explicit Green’s function could be avoided, but in view of possible future
generalizations to non-spherical V (t, x), we prefer this more delicate approach.

Lemma 12. WehaveTY0∈H. The operatorsS := Y →{∑ j∈Z
� j (x)yn− j (p1, x)}n∈Z

and C are bounded inH.
Proof. We note from Proposition 11 thatRβ = O

(|p|−1/2) for large p, i.e. O (|n|−1/2)
for large |n|, since p = inω + p1. Therefore, from the expression of ŷ0n in (10),

∑

n∈Z

(1 + |n|)4/3‖ {TY0}n ‖2

≤
∑

n∈Z

(1 + |n|)4/3
⎛

⎝‖χBRβχB‖
[‖ψ0‖L2 + ‖�ψ0‖L2

|1 + p1 + inω|
]

+‖χBRβχB‖‖ψ0‖L2
∑

j∈Z

‖� j‖L2
|1 + p1 + i(n − j)ω|

⎞

⎠

2

≤ C

⎡

⎢
⎣1 +

∑

n∈Z

(1 + |n|)6/7
⎛

⎝
∑

j∈Z

‖� j‖L2
(1 + |n − j |)

⎞

⎠

2
⎤

⎥
⎦ .

Using (7.12) and (7.13) in [15] with γ = 6/7, the above is finite since
∑

j∈Z

(1 + | j |)3/7‖� j‖L2 ≤
∑

j∈Z

(1 + | j |)‖� j‖L2 < ∞.
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The proof thatS is the same as that of Lemma 27 of [15], with γ = 4
3 , replacing absolute

values by norms in x . Since Rβ is uniformly bounded (in the operator norm) and acts
diagonally in n, C is bounded too. ��
Lemma 13. Both TY0 and the operator C are analytic in p1 for

p1 ∈ O
(
H\ ({�pc + iωZ} ∪ {�−ε + iωZ} ∪ {Iε + iωZ})

)
.

Proof. Propositions 8 and 11 imply that Rβ is analytic in p ∈ O\{�pc ∪ �−ε} and in
an open set containing −i(ε,∞). Analyticity of TY0 and C follow from their definition
(we note C is a norm limit of analytic operators: its restrictions to the subspaces with
nonzero components for |n| ≤ N only). ��
Remark 14. As shown later, (I − C) is invertible. Since the solution Y cannot depend
on the arbitrary parameters ε and pc (see Note 9), the non-analyticity of C and TY0 for

p1 ∈ {�pc + iωZ} ∪ {�−ε + iωZ} ∪ {Iε + iωZ}
is not reflected in Y .

Proposition 15. For Re p1 > 0 large enough, (23) has a unique solution in H. The
inverse Laplace transform in p of ŷ(p, x) =: yn(p1, x), where p = inω + p1, solves
the initial value problem (8) in B (see Note 10).

The proof is given in § 4.2.

3.5. Step 2. Regularity of Rβ,l,m at p = 0 and of Cl,m at p1 = 0. Define Rβ,l,m =
Pl,mRβ and Cl,m = Pl,mC.

Note 16. (Compactness versus regularity of Rβ,l,m). The term −iβχB was introduced
in § 3.2 to ensure that Rβ,l,m is bounded in H. Since −iβχB is localized in x , the shifts
in the poles created by the point spectrum of HC are smaller as p → 0 (the size of the
orbitals of the Hydrogen atom grows when the energy approaches zero.) The resulting
integral operators have an essential singularity at p = 0. The factor χB is needed to
ensure compactness, simplifying the analysis.

The poles of the resolvent Rβ,l,m accumulate at p = 0 from −H, along a curve
tangent to the positive imaginary p-axis (see Note 58 in §5.6). As a result, while being
uniformly bounded, Rβ,l,m is not continuous along the imaginary p line at zero but
oscillates without limit. Boundedness of χBRβ,l,mχB (which is not difficult to prove)
does not ensure boundedness of the solution Y . However, we do have analyticity in an
extended, two-dimensional, parameter. Let λ := √−i p (with the usual branch of the
square root, Imλ < 0 if p ∈ H) and let X := (p1/2, Z) with

Z = e
iπb
2λ . (25)

(The dependence of Z on λ reflects the actual behavior of the solution.) The resolvent
is analytic in X and a useful Fredholm alternative can be applied.

For any a > 1 we can choose a c in (18) (see § 4.4 below) such that the following
statement holds.
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Proposition 17 (Analyticity in X ). χBRβ,l,mχB is analytic with respect to X on the
compact set D+

ε × D.2

The proof is given in §4.4.
As a corollary, we have the following regularity property of Cl,m and Tl,mY0. Let

S−ε = {p : Im p ∈ [−ε, ω − ε), Re p ≥ 0}. (26)

Corollary 18. For p1∈S−ε , define X1=
(
p1/21 , Z1

)
, where Z1=exp

[
iπb/

(
2
√−i p1

)]
.

Then, Tl,mY0 and Cl,m are analytic in X1 on the compact set D+
ε × D.

Proof. Note first that Propositions 8 and 11 and the relative arbitrariness in the choice
of pc and ε imply that χ BRβχ B is analytic in p in a neighborhood of p = inω,
n ∈ Z\{0}. Since for large |n|, χ BRβχ B = χ BR0χ B , its expression as an integral
operator involving G in (49) (see Note (28) as well) implies a lower bound of the analy-
ticity radius independent of n. For sufficiently small ε for any n ∈ Z, including n = 0,
then, analyticity of χ BRβχ B in the expanded variable

(√
p − inω, exp

[
iπb

(2
√−i(p − inω))

])

follows in the domain
{

|p − inω|1/2 ≤ ε;
∣
∣
∣
∣exp

[
iπb

(2
√−i(p − inω))

]∣∣
∣
∣ ≤ 1

}

(since Proposition 17 gives analyticity X ∈ D+
ε ×D). Analyticity of Cl,m in X1 ∈ D+

ε ×D

now follows since Cl,m is the norm limit of analytic operators (the restrictions of Cl,m
to the subspaces of H with zero components for |n| > N ). (See Proposition 11 for the
necessary estimates of decay in N .) The analyticity ofTl,mY0 follows from its definition.

��

3.6. Compactness.

Proposition 19. Cl,m is compact inH (cf. Note 2) for p1 ∈ H.

The proof is given in §4.5.

3.7. Step 3. The Fredholm alternative. We can now formulate the ionization condition
using the Fredholm alternative.

Proposition 20. If (24) has no nontrivial solution inH for p1 ∈ S−ε , then
(
I − Cl,m

)−1
exists and the system ionizes (cf. (3)).

2 As usual, by analyticity in a compact set, we mean analyticity in some open set containing the compact
set. Analyticity in D+

ε × D of course, implies that χBRβ,l,mχB is given by a convergent double series in

p1/2 and e
iπb
2λ .
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The first part is simply the Fredholm alternative. Ionization follows from the follow-
ing proposition. We recall that ŷ(p1 + inω, x) = yn are the components of Y .

Proposition 21. Assume (24) has no nontrivial solution when p1 ∈ H. Then, for
ψ0 ∈ Pl,m

(
C∞
0 (R

3)
)
, the solution Y ∈ H to (23) is analytic in p1 ∈ H\{iωZ} and

analytic with respect to X1 in D+
ε × D. In particular Y is bounded at p1 = 0. These

properties imply sufficient regularity and decay of ŷ(p, x) so that the integration con-
tour in L−1 ŷ can be taken to be iR. By the Riemann-Lebesgue lemma, P(t,B) → 0 as
t → ∞.

The proof is given in § 4.6.

3.8. End of proof of Theorem 2. It only remains to make the connection with Floquet
theory. This is done in § 4.8.

3.9. Proof of Theorem 3. Equation (14), restricted to B, follows from the homogeneous
system w = Cw. Multiplying (14) by wn , summing over n, and integrating over Bã ,
where ã ∈ (1, a], we are lead to a nonnegative definite quantity involving wn|∂Bã being
zero for n < 0. Details are given in § 4.7.

3.10. Proof of ionization for spherically symmetric�, Theorem 1. We consider the case
V (t, x) = 2�(r) sinωt , corresponding to�1 = −i� and�−1 = i� (� is real valued).
The proof in the slightly more general case 2�(r) sin (ωt − θ) amounts to replacing t
by t − θ/ω and ψ0(x) by ψ (θ/ω, x) in our proof. Recall Cl,m = Pl,mC.3 We obtain by
projection of (23) to Pl,m

(
L2(R3)

)
,

Y = Y0 + ClmY. (27)

The homogeneous equation associated to (27) is

w = Clmw, w ∈ H. (28)

The Fredholm alternative applies and (27) has a unique solution in H iff (28) implies
w = 0.

Note 22. By separation of variables in spherical coordinates, we see that Cl,m can be
defined in the same way as C, replacing Aβ in (17) by

Aβ,r = − d2

dr2
− 2
r
d
dr

+
l(l + 1)
r2

− b
r

− i p1 + nω − iβχB (29)

and the associated differential-difference systems are obtained by replacing −�− b/r

with − d2

dr2
− 2
r
d
dr

+
l(l + 1)
r2

− b
r
.

Clearly if there exists a nontrivial solution w ∈ H of (28), then, again by elliptic
regularity (see Proposition 8), v defined by w = Yl,mv(r), where Yl,m are the spherical
harmonics, is a nontrivial solution to

Aβ,rvn = −i�(vn+1 − vn−1)− iβχ Bvn implying A0,rvn = −i�(vn+1 − vn−1)
(30)

3 As discussed, it suffices to show ionization on a dense subset of initial conditions.
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Proposition 23. If v satisfies (30), then there exists n ≥ 0 such that either (i) vn(1) �= 0;
or (ii) vn(1) = 0, but v′

n(1) �= 0; let n0 be the smallest such n. By homogeneity, we
can assume that vn0(1) = 1 in case (i) and v′

n0(1) = −√
�(1) in case (ii) (we use the

positivity of �).

The proof is given in § 4.10.

Definition. We define τ to be 0 or 1 in case (i) and 1 in case (ii) respectively.

3.11. Asymptotic behavior of vn in (30) as n → −∞. In view of Proposition 21 we see
that (30) holds the necessary ionization information.

3.11.1. Notation. Let

s(r) :=
∫ 1

r

√
�(ρ)dρ (r ∈ (0, 1)). (31)

By assumption � > 0 is smooth and then so is s. Let

n0 − k, �0 = �(0), �′
0 = �′(0), s0 = s(0), α = 2

√
�0

s0
, ζ = αkr. (32)

Denote

H0(ζ ) :=
√
2
π
eζ ζ 1/2Kl+1/2(ζ ); G0(ζ ) =

√
π

2
eζ ζ 1/2 Il+1/2(ζ ),

where Kl+1/2 and Il+1/2 are the modified Bessel functions of order l + 1/2. It follows
that for small ζ ,

H0(ζ ) ∼ 2−lζ−l(2l)!/ l!.
Let Ȟ(ζ ; k, l) be the unique solution of the integral equation

Ȟ(ζ ; k, l) = G0(ζ )

∫ ζ

0
e−2sG0(s)R(H0 + k−1 Ȟ)(s)ds

−H0(ζ )
∫ ζ

kα
e−2s H0(s)R(H0 + k−1 Ȟ)(s)ds (33)

for ζ ∈ [0, kα], where the operator R is defined by

(R f ) (ζ ) = 2
(

− ω

2α2
+
�′
0(1 + 2ζ )
4α�0

+
τ

2

)

f ′ − b f
αζ
.

Define

H(ζ ) = H(ζ ; k, l) := H0(ζ ) + k−1 Ȟ(ζ ; k, l).
It can be checked that H satisfies

H ′′ = 2
(

1− ω

2kα2
+
�′
0(1 + 2ζ )
4kα�0

+
τ

2k

)

H ′ +
(
l(l + 1)
ζ 2

− b
αζk

)

H (34)
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with the following asymptotic condition4

H(ζ ) ∼ 1 +
l(l + 1)
2ζ

+
b
2kα

log ζ + O
(
log ζ
kζ

,
1
ζ 2

)

(ζ, k → ∞, ζ � kα). (35)

Remark 24. (i) H(ζ ; k, l) ∼
√
2
π
eζ ζ 1/2Kl+1/2(ζ )(1 + o(1)) as k → ∞

(ii) From the expression (33) for Ȟ it is seen that as ζ → 0 we have Ȟ(ζ ; k, l) ∼
const.ζ−l+1 for l �= 1 and Ȟ ∼ const. + const ζ log ζ for l = 1. For τ = 0 or 1,
Ȟ is less singular than H0 at ζ = 0.

Define

mk(r) = s2k+τ�
1
4 (1)H(αkr)

(2k + τ)!� 1
4 (r)H(αk)

exp
[
ω

4

∫ r

1

s(s)ds√
�(s)

]

:= s2k+τ

(2k + τ)! Fk(r). (36)

Note 25. From standard properties of the modified Bessel function Kl+1/2, it follows
that for large enough k, H(αkr) is continuous and nonzero for r ∈ (0, 1] and that as
r → 0, H(αkr) is singular as r−l . Therefore for any k sufficiently large uk ≡ rlmk has
a finite limit nonzero limit as r → 0+.

Definition 26. With n0 as in Proposition 23, we define hk(r) by

wn0−k = i k

r
mk(r)hk(r)Yl,m . (37)

Theorem 4. (Behavior as k → +∞ (i.e. n → −∞) ) For any sufficiently large k,
uk := rlmk(r) is continuous in r ∈ (0, 1] and uk(r) → const �= 0 as r → 0+. Further-
more, if there is a nontrivial solution to (30), then there exists a subsequence k j → ∞
such that for any r ∈ [0, 1],

lim
j→∞ hk, j (r) = 1. (38)

The first part follows simply from Note 25. The rest of the proof is given in § 4.11.

Proposition 27. There is no nonzero solution of (28) inH.

Indeed, Theorem 4 shows that otherwise (rl+1vn)(0) = mn �= 0 for a subsequence of
n < 0. This implies that the corresponding wn(x) ∼ mnr−l−1Yl,m for r = |x | → 0.
This singularity is incompatible with wn ∈ H2, (see Proposition 8). Thus there is no
admissible solution of the homogeneous system and the first part of Theorem 1 follows
from Theorem 2 (i). See also the remarks in § 5.10. The result on the decay rate follows
from the type of essential singularities of ŷ for p ∈ iωZ; see §4.6.

4 As is common, the notation O (a, b) ≡ O (|a| + |b|); similarly O (a, b, c) ≡ O (|a| + |b| + |c|).
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4. Proofs of Intermediate Steps

4.1. Proof of Proposition 8. As mentioned in § 3.3, Aβ and A∗
β are adjoints of each-

other. They are furthermore densely defined and hence (see, e.g [28], Theorems 5.28 and
5.29, p. 168), closed. Once we show that Aβ(p) is invertible in D, analyticity of Rβ in
O\(�pc ∪ �−ε) follows (the spectrum of the closed operator HC − iβχB(r) is a closed
set). Analyticity holds wherever Aβ is analytic, [31], Vol. 1, Theorem VIII.2, p. 254).
(1) Eigenvalues. We first show below that no i p ∈ iD is an eigenvalue of HC −

iβχB(r). Assume we had Aβψ = 0. If β = 0, A0ψ = 0 implies i p ∈ σp(HC ),
but, by construction, these values of p correspond to the region where β �= 0. So
we can assume β > 0. Then

〈ψ, (−�− i p − br−1)ψ〉 + 〈ψ,−iβχBψ〉 = 0. (39)

Taking the imaginary part of (39) we get

Re p 〈ψ,ψ〉 + c〈ψ,χBψ〉 = Re p 〈ψ,ψ〉 + c〈χBψ,χBψ〉 = 0. (40)

If Re p > 0 this immediately implies ψ = 0. If Re p = 0 we get χBψ = 0.
But χBψ = 0 implies 0 = Aβψ = A0ψ . In spherical coordinates the equation
A0ψ = 0 becomes a system of ordinary differential equations

(

− d2

dr2
− 2
r
d
dr

+
l(l + 1)
r2

− br−1 − i p
)

ψn,l,m = 0. (41)

Since χBψ = 0, the solution of (41) vanishes identically on [0, a]; but then, by
standard arguments the solution is identically zero.

If Im p /∈ [−ε, pc], with p ∈ D, then Aβ = A0, and we are, by construction,
outside the spectrum of A0, and thus A0ψ = 0 implies ψ = 0.

(2) The range ofAβ is dense. Indeed, the opposite would imply5 Ker(A∗
β) �= 0, which

leads to the same contradiction as in Step 1 (note that A∗
β is simply Aβ with the

signs of β and Re p changed at the same time).
(3) For any p ∈ D there is an ε > 0 such that ‖Aβψ‖ > ε‖ψ‖.

(a) If Re p > 0 and ‖ψ‖ = 1, then

‖Aβψ‖�
∣
∣〈Aβψ,ψ〉∣∣=|〈A0ψ,ψ〉 − ic〈χBψ,χBψ〉|

� |Re p〈ψ,ψ〉| ≥ Re p. (42)

(b) Let now Re p = 0, and assume Im p is between two eigenvalues of −HC ,
the distance to the nearest being δ > 0. To get a contradiction, assume that
‖ψ j‖ = 1 and ‖Aβψ j‖ = ε j → 0. Then

ε j = ‖Aβψ j‖ �
∣
∣〈Aβψ j , ψ j 〉

∣
∣ = ∣

∣〈A0ψ j , ψ j 〉 − ic〈χBψ j , χBψ j 〉
∣
∣

� c
∣
∣〈χBψ j , χBψ j 〉

∣
∣ → 0, (43)

thus χBψ j → 0, and by the definition of Aβ and A0 we get

‖A0ψ j‖ → 0, (44)

which is impossible, since our assumption and (44) imply noninvertibility of
HC − i p while i p is outside the spectrum of HC .

5 [28], p. 267.



Ionization of Coulomb Systems in R
3 697

(c) In the last case, Re p = 0, Im p ∈ σp(−HC ); then if we assume there is a
sequence ψ j , ‖ψ j‖ = 1 such that ‖Aβψ j‖ → 0 as j → ∞ we get

‖Aβψ j‖ � |〈Aβψ j , ψ j 〉| = ∣
∣〈A0ψ j , ψ j 〉 − ic〈χBψ j , χBψ j 〉

∣
∣

�
∣
∣c〈χBψ j , χBψ j 〉

∣
∣ → 0. (45)

Since ‖A0ψ j‖ ≤ ‖Aβψ j‖ + c‖χBψ j‖, (45) implies ‖A0ψ j‖ → 0. On the
other hand, with P the orthogonal projection on the finite dimensional eigen-
space of HC corresponding to the eigenvalue i p, we haveA0P = 0 ⇒ A0 =
A0(I − P) and then since A0ψ j → 0,

‖A0(I − P)ψ j‖ → 0. (46)

But by definition A0 is invertible on (I − P)L2(R3) and (46) then implies
‖(I − P)ψ j‖ → 0, i.e. Pψ j −ψ j → 0. Since ‖ψ j‖ = 1, ‖Pψ j‖ → 1. Then
Pψ j is a bounded sequence in thefinite dimensional space PL2(R3), hencewe
can extract a convergent subsequence,whichwemaywithout loss of generality
assume to be Pψ j itself, Pψ j → ψ, ‖ψ‖ = 1, and also ψ j → Pψ j → ψ ,
thus Pψ = ψ . Therefore, A0ψ = A0Pψ = 0. Also, since multiplica-
tion by cχB is a bounded operator we have cχBψ j → cχBψ = 0, since
cχBψ j → 0. Therefore, ‖Aβψ‖ ≤ ‖A0ψ‖ + ‖cχBψ‖ = 0 in contradiction
to the absence of eigenvalues.

(4) Definition of the inverse. This is standard: we let ψ ∈ D(Aβ), Aβψ = φ and
define Rβφ = ψ . This is well defined since Aβψ1 = Aβψ2 entails, by Step 1,
ψ1 = ψ2. By Step 2, Rβ is defined on a dense set. By Step 3, for any p there is
an ε > 0 such that ‖Rβ‖ < ε−1. Thus Rβ extends by density to L2(R3) and by
construction AβRβφ = φ whenever Rβφ ∈ D(Aβ). Conversely, if φ ∈ D(Aβ),
and Aβφ = u then Rβu = φ entailing RβAβφ = φ on the dense set D(Aβ).

For the regularity ofRβ in x , we first note that if we defineQ = (I −�)−1, we have
the following identity:

Rβ = Q
[

1−
(
b
r
+ iβχ B + i p + 1

)

Q
]−1

. (47)

It is clear that if φ ∈ L2(R3), Qφ ∈ H2(R3) and so (b/r − iβχ B + i p + 1)Qφ ∈ L2.
Therefore, from (47), Rβ : L2(R3) → H2(R3).

4.2. Proof of Proposition 15. The shift operator S, defined by (SY ) j = y j+1, is quite
straightforwardly shown to be bounded inH: the proof of Lemma 27 in [15] goes through
without changes. By the second resolvent identity we have

Rβ = (1− iβR0χB)
−1 R0.

Since −� − br−1 is self-adjoint, we have by the spectral theorem, for some C > 0
independent of p,

‖(−�− br−1 − i p)−1‖L2(R3) � C(Re p)−1, (48)

and thus ‖Rβ‖L2(B) � C1(1 + |Re p|)−1. Since Rβ is diagonal (in n) and S is bounded
(cf. Lemma 12), we have ‖C‖H � C2(1 + |Re p1|)−1. Thus ‖C‖H is small for large
Re p1, and therefore (I − C)Y = Y (0) has a unique solution Y ∈ H and the proof
follows.
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4.3. Proof of Proposition 11.

Proof. The estimate ‖χBR0χB‖ = O(p−1/2) is shown right after the statement of
Proposition 11.

We now consider the analyticity of Rβ in an open set on the imaginary p axis for
Im p < −ε. There, β = 0 and χ BRβχ B = χ BR0χ B is manifestly analytic from
its representation as an integral operator, whose kernel G is given below (see [26] and
Appendix §5.4 for details).

With k = √
i p (using the principal branch of the square root), and ν = b/(2k),

G(x, x ′; k)
= ik(η − ξ)I (−ikξ)J (−ikη)− k2ξη[I (−ikξ) J̇ (−ikη)− J (−ikη) İ (−ikξ)]

�(1− iν)�(1 + iν)

× e
ik
2 (ξ+η)

4π |x − x ′| , (49)

where

ξ = |x | + |x ′| + |x − x ′|, η = |x | + |x ′| − |x − x ′|, (50)

I (z1) =
∫ i∞

0
e−z1t t−iν(1 + t)iνdt, İ (z1) = −

∫ i∞

0
e−z1t t1−iν(1 + t)iνdt (51)

J (z2) =
∫ 1

0
ez2t t−iν(1− t)iνdt; J̇ (z2) =

∫ 1

0
ez2t t1−iν(1− t)iνdt.

��
Further properties of function G are discussed in §5.4.

Note 28. Note that (49) still holds for p ∈ iR+, with k = √
i p, with the choice

arg k = π/2 for p ∈ iR+, and with the upper limits i∞ in (51) replaced by +∞.

4.4. Proof of Proposition 17. The function f = Rβ,l,mχBg is the solution of the equa-
tion

(

− d2

dr2
− 2
r
d
dr

+
l(l + 1)
r2

− b
r
+ λ2 − ic

)

f = g; r � a,

(

− d2

dr2
− 2
r
d
dr

+
l(l + 1)
r2

− b
r
+ λ2

)

f = 0; r > a,

(52)

such that f decays at infinity, is regular at the origin andC1 at r = a.We note λ = √−i p
is in the closure of the fourth quadrant for Re p � 0.We letα = √

λ2 − ic, κ1 = b/(2α),
κ = b/(2λ), µ = 2l + 1 and define (in terms of the Whittaker functions M and W 6)

m1(s) := s−1Mκ1,µ/2(2αs); w1(s) := s−1Wκ1,µ/2(2αs);
w2(s) := s−1Wκ,µ/2(2λs). (53)

6 See [9], pp. 60, Eq. (1) and pp. 63, Eq. (5).
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For r > a we have f = Bw2(r) since r−1Mκ,µ/2(2λr) grows with r as r → ∞. For
r � a we must have

f = Am1 + f0, (54)

where, using standard results about the Wronskian of M and W, see [9], pp. 25 and [1],
pp 505, 508, we have

2α�(1 + µ)
�
( 1
2 +

1
2µ− κ1

) f0 = w1(r)
∫ r

0
χ [0,a](s)s2m1(s)g(s)ds

+m1(r)
∫ a

r
s2w1(s)χ [0,a](s)g(s)ds. (55)

The integral representations of the functionsM andW entail immediately that the func-
tions f0, f andMκ1,µ/2(2αr) depend analytically on λ for small λ. Continuity of f and
f ′ at a � 1 imply that A defined in (54), is given by

A = f0(a)w′
2(a)− f ′

0(a)w2(a)
m′
1(a)w2(a)− m1(a)w′

2(a)
. (56)

In § 5.5 it is shown that that A is analytic in (λ, exp [iπb/(2λ)]) in a domain correspond-
ing to λ small in the closure of the fourth quadrant, if a and c are chosen large enough.
It follows that resolvent Rβ,m,n is analytic in X for X = (√p, exp

[
iπb/

(
2
√−i p)]) ∈

D+
ε × D for small ε.

4.5. Proof of Proposition 19. By adding and subtracting 1 fromAβ and using the second
resolvent formula, whenever everything is well defined, we have

χBA−1
β
χB = : χBRβχB = χB(−� + 1)−1χB

−χBRβ(−br−1 − iβχB − 1− i p)(−� + 1)−1χB. (57)

The Green’s function for −� + 1 is

G(x, y) = 1
4π |x − y|e

−|x−y|. (58)

Now if ‖φ j‖L2(B) � 1 then the functions f j = (−� + 1)−1χBφ j are seen by straight-
forward calculation to be equicontinuous on the one point compactification of R

3. A
subsequence, without loss of generality assumed to be the f j ’s themselves, converges
in L2(R3) as well (to a function with exponential decay, since there is a δ1 > 0 small
enough and independent of j so that eδ1|x |(−� + 1)−1χBφ j ) is also equicontinuous on
the compactification of R

3). In particular, χB(−� + 1)−1χB is compact.
Now f j converge in the sup norm with weight eδ1|x |, and thus (−br−1− iβχB−1−

i p) f j converge in L2(R3). Since Rβ is bounded, compactness of χBRβχB follows.
By Proposition 11, and the previous argument, C is a norm limit of compact operators

(the truncations of C to the subspaces of H with vanishing components for |n| > N ).
Therefore, Cl,m = Pl,mC is also compact.
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4.6. Proof of Proposition 21 and final estimates for Theorem 1. If (24) has no nontrivial
solution for any p1 ∈ H, then compactness of Cl,m implies that

(
I − Cl,m

)−1 exists.
Lemma 13, Corollary 18 and Proposition 11 give the analytic and continuity properties
of Cl,m and Tl,mY0. Analyticity of

(
I − Cl,m

)−1 in X1 for X1 ∈ D+
ε × D, follows in a

standard way from analyticity of Cl,m and the second resolvent formula,

A−1 − B−1 = B−1(B − A)A−1 (59)

(see § 5.3). The same resolvent identity can be applied to show analyticity of (I−Cl,m)
−1

with respect to p1 in a neighborhood of

H\ {(�pc + iωZ) ∪ (�−ε + iωZ) ∪ (Iε + iωZ)
}
.

Hence, the solution Y = (
I − Cl,m

)−1
Tl,mY0 is analytic for p1 ∈ H\{iωZ}, since ε, β

and pc are artificially introduced parameters the value of which cannot affect Y , since
Y0 is independent of these choices (see Remark 14.)

The function ŷ(p; x) = yn(p1, x), with p = inω + p1, is analytic in p for
p ∈ iR\iωZ and by analyticity of Y in X1, boundedness at p = iωZ follows. In
particular, as p → inω from the right half-plane, ŷ(p, x) is analytic in the extended
variable

(

(p − inω)1/2, exp
[

iπb
2
√−i(p − inω)

])

. (60)

The regularity properties of Y in p and the decay properties in |n| of its components
yn for large |n|, simply stemming from Y ∈ H, imply that y(t, x) can be expressed as
an inverse Laplace transform of ŷ(p, x) on iR. We now show that

P(t,B) = ‖ψ0(x)e−t + y(x, t)‖2L2(B) ≤ 2e−2t‖ψ0‖2L2(B)
+2‖y(x, t)‖2L2(B) → 0 as t → ∞.

We note that
∫

B
dx |y(t, x)|2 =

∫

B
dx

∫ ∞

−∞

∫ ∞

−∞
eit (s−s′) ŷ(is, x)ŷ(is′, x)dsds′

=
∫ ∞

−∞
ei s̃t

{∫ ∞

−∞

[∫

B
ŷ(i s̃ + is′, x)ŷ(is′, x)dx

]

ds′
}

ds̃. (61)

So, in order to show ionization, it suffices from the Riemann-Lebesgue Lemma to show
that

∫ ∞

−∞

[∫

B
ŷ(is′, x)ŷ(is′ + i s̃, x)dx

]

ds′

is in L1(ds̃). This follows from Cauchy-Schwarz, since
∫ ∞

−∞

{∫ ∞

−∞

[∫

B
|ŷ(is′, x)||ŷ(is′+i s̃, x)|dx

]

ds′
}

ds̃≤
(∫

R

‖ŷ(is′, ·)‖L2(B)ds′
)2
.

(62)
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However,

∫

R

‖ŷ(is′, ·)‖L2(B)ds′ =
∫ ω

0

[
∑

n∈Z

‖yn(iq, ·)‖L2(B)
]

dq

≤ C
∫ ω

0

∑

n∈Z

(1 + |n|)4/3‖yn(iq, ·)‖2L2(B)dq

≤ C
∫ ω

0
‖Y (iq, ·)‖2Hdq < ∞, (63)

since Y is bounded in p1 = iq for q ∈ [0, ω].
Since ŷ(p1+inω, x), n ∈ Z, is analytic in the variable (60), standard stationary phase

analysis (see Appendix §5.7 ) shows that y(t, x) = O(t−5/6), and hence P(t,B) =
O(t−5/3) as t → ∞.

4.7. Proof of Theorem 3. Since (14) (restricted to B) follows from the homogeneous
system w = Cw (see also Proposition 8 for the necessary regularity), we look for a
nontrivial solution of (14) in H. We multiply (14) by wn , integrate over the ball Bã (of
radius ã ∈ (1, a]), sum over n (this is legitimate since w ∈ H) and take the imaginary
part of the resulting expression. Noting that

∑

j,n∈Z

� j (x)wn− jwn =
∑

j,n∈Z

�− jwn− jwn =
∑

j,n∈Z

� jwn+ jwn

=
∑

j,m∈Z

� j (x)wmwm− j (64)

so the sum (64) is real, we get from (14),

0 = Im

(

+i p1
∑

n∈Z

∫

Bã
|wn(x)|2dx +

∫

Bã

∑

n∈Z

dxwn�wn

)

= +Re p1
∑

n∈Z

∫

Bã
|wn(x)|2dx + 1

2i

∫

∂Bã

(
∑

n∈Z

wn∇wn − wn∇wn
)

· n dS. (65)

It is convenient to decompose wn using spherical harmonics. We write

wn =
∑

l�0,|m|�l
Rn,l,m(r)Ym

l (θ, φ). (66)

The last integral in (65), including the prefactor, then equals

− i
2
a2

∑

n∈Z

∑

m,l

[
Rn,m,l R′

n,m,l − R′n,m,l Rn,m,l
]

= − i
2
a2

∑

n∈Z

∑

m,l
W[Rn,m,l , Rn,m,l ], (67)
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where W[ f, g] is the Wronskian of f and g. On the other hand, we have outside of Bã ,

�wn + br−1wn + (i p1 − nω)wn = 0, (68)

and then by (66), the Rn,l,m satisfy for r > a the equation

R′′ + 2
r
R′ + br−1R − l(l + 1)

r2
R = (−i p1 + nω)R, (69)

where we have suppressed the subscripts. Let gn,l,m = r Rn,l,m . Then for the gn,l,m we
get

g′′ −
[
l(l + 1)
r2

− i p1 + nω − br−1
]

g = 0. (70)

Thus

RR′ = gg′

r2
− |g|2

r3
(71)

and

r2W[R, R] = W[g, g] =: Wn . (72)

Multiplying (70) by g, and the conjugate of (70) by g and subtracting, we get for r > a,

W ′
n = −i(p1 + p1)|g|2 = −2i |g|2Re p1. (73)

Remark 29. Direct estimates using the Green’s function representation (49) imply that

wn(x) = e−κnr

r1+
b
2κn

(
cn(θ, φ) + O(r−1)

)
as r → ∞ (74)

with cn(θ, φ) independent of r and with

κn = √−i p1 + nω (when Re p1 > 0, κn is in the fourth quadrant when n < 0). (75)

(i) We first take Re p1 > 0, to illustrate the argument. Using (74) we get

g ∼ Ce−κnr r− b
2κn (1 + o(1)) as r → ∞. (76)

There is a one-parameter family of solutions of (70) satisfying (76) and the asymp-
totic expansion can be differentiated [42]. We assume, to get a contradiction, that there
exist n < 0 for which g = gn �= 0. For these n we have, using (76), differentiability of
this asymptotic expansion and the definition of κn that

1
2i

lim
r→∞ |gn|−2Wn = −Im κn > 0. (77)

It follows from (73) and (77) that Wn/(2i) is strictly positive for all r > a (by mono-
tonicity and positivity at infinity) and all n for which gn �= 0. This implies that the last
term in (65) is a sum of nonnegative terms which shows that (65) cannot be satisfied
nontrivially.

(ii) Re p1 = 0. For n < 0, we use Remark 29 (and differentiability of the asymptotic
expansion as inCase (i)) to calculateWn in the limit r → ∞:Wn = 2i |cn|2|κn|(1+o(1)).
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Since for Re p1 = 0, Wn is constant, cf. (73), it follows that Wn = 2i |cn|2|κn||gn|2
exactly. Thus, (65) cannot be non-trivially satisfied, implying that

wn(x) = 0 for all n < 0 and |x | = r = ã ∈ (1, a]. (78)

For ã > r > 1 (where V (t, x) = 0) we have Own = 0, where O is the elliptic operator
−� − b/r − i p1 + nω. The proof that wn(x) = 0 for r > 1 then follows immedi-
ately from (78), by standard unique continuation results [17,23] (in fact, O is analytic
hypo-elliptic). See also Note 5.

4.8. Connection with the Floquet operator. It is easy to check that the discrete time-
Fourier transform of the eigenvalue equation for the Floquet operator, Eq. (5), Kv = φv,
with p1 = iφ, coincides with (14), the differential version of the homogeneous equation
associated to (23). Now, (78) shows that a solution of (14) is an eigenvector of K .

In the opposite direction the existence of a Floquet eigenfunction entails failure of
ionization since it implies the existence of a solution of (2) for which the absolute value
is time-periodic.

4.9. Differential equation for w. We seek to show that the only solution to the homo-
geneous system

w = Cl,mw (79)

in the space H is w = 0. Since w is piecewise C2 (see Note 5), (79) implies that the
components of w = {Yl,mr−1gn(r)

}
n∈Z

satisfy the differential-difference system (see
Note 5):

d2

dr2
gn −

(

−br−1 + nω − i p1 +
l(l + 1)
r2

)

gn = i�(gn+1 − gn−1). (80)

First, we notice that for n < 0, Theorem 2 implies that gn(r) = 0 for r � 1. Thus
gn(1) = 0, g′

n(1) = 0 for all n < 0.

4.10. Proof of Proposition 23. The gist of the proof is that contractive mapping argu-
ments show that if the statement was false then the solution would vanish.

Lemma 30. If Y �= 0, then there exists some n0 � 0 so that either gn0(1) �= 0 or
g′
n0(1) �= 0. (As before, in the sequel, we shall define n0 to be the smallest such integer).

Proof. To get a contradiction, assume the statement is false. Since the functions wn are
in the domain of� (see Note 5), then, in particular, for any n, gn is continuous in r . Thus,
the set Zn := {r : gn(r) = 0} is closed and so is the (possibly empty) left connected
component of 1 in Zn , call it Kn . Let

K =
⋂

n∈Z

Kn .

Assume to get a contradiction that K is nonempty: let then K = [a, 1]. If a = 0, then
Y ≡ 0 since gn(1) = 0, g′

n(1) = 0 imply gn(r) = 0 for r > 1. Then Y �= 0 implies
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a > 0. We first take 0 < a < 1. We write the differential equation for gn(r) in integral
form and use the conditions gn(a) = 0 = g′

n(a), since gn vanishes on [a, 1]:

e
√
nωr gn(r) =

∫ a

r

(
[1− e−2

√
nω(s−r)]

2
√
nω

)

e
√
nωs

×
{[
l(l + 1)
s2

− i p1 + Ṽ (s)
]

gn(s)− i�(s) (gn−1(s)− gn+1(s))
}

ds.

(81)

Consider the Banach space of sequences

{gn(r)}∞n=−∞
in the norm

sup
n∈Z,r∈[a−ε,a]

∣
∣
∣e

√
nωr gn(r)

∣
∣
∣ .

It is easy to see that the rhs of (81) is a contractive mapping if ε is small enough and
then gn(r) = 0 for r ∈ [a − ε, a] contradicting the definition of a. The same is true if
a = 1, since gn(1) = 0 and g′

n(1) = 0 would imply, with the same proof as before, that
gn = 0 for r ∈ [1− ε, 1], for some ε > 0, contradicting the definition of a. ��

4.11. Proof of Theorem 4. For a heuristic discussion see § 5.9. The proof is by rigorous
WKB. The fact that there are two competing potentially large variables, k and 1/r makes
it necessary to rigorously match two regimes. First, note that (37) implies

gn0−k(r) = i kmk(r)hk(r). (82)

We need a few more preliminary results.

Lemma 31. For any ε1 > 0, there exists C3 > 0 independent of k and ε1 so that for
k � k0 = C3ε−11 , and for r ∈ [ε1, 1],

sup
ε1≤r≤1

|h′
k | � C4k0

(
k0
k

)1/2
, (83)

where C4 is independent of ε1 and k.

The proof of Lemma 31 is given in §4.13.

Definition 32. For fixed ε, we define Lε = αC3 (2C4C3/ε)2, with C3 and C4 defined in
Lemma 31, and ζ = αkr , where α is given in (32). We will take ε small enough so that
Lε ≥ C3α.
Finally, in what follows, c∗ is a positive “generic” constant, the value of which is

immaterial.

Lemma 33. For ε > 0 small enough and kαr = ζ ∈ [Lε, kα], we have
|hk(r)− 1| � ε. (84)

The proof of Lemma 33 is given in § 4.14.
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Definition 34. Let h̃k(ζ ) = hk(ζ/(αk)).

Lemma 35. For any small ε > 0, there exists a subsequence S = {h̃k j } j∈N that con-
verges to a continuous function h̃ for ζ ∈ [0, Lε]. For the limiting function h̃(ζ ), we
have |h̃(ζ )− 1| ≤ 4ε for ζ ∈ [0, Lε].

The proof of this proposition is given in § 4.15.

Proposition 36. For any r ∈ [0, 1], lim j→∞ hk, j (r) = 1.

Proof. From Lemma 35 and Lemma 33 it follows that for any r ∈ [0, 1] and any ε > 0
we have lim j→∞ |hk j (r)− 1| ≤ 4ε. ��
The proof of Theorem 4 now follows from the definition of hk in (36), Remark 24,
Note 5 and Proposition 36.

4.12. Further results on gn0−k and hk.
Lemma 37. For any j, k ∈ N ∪ {0} we have, at r = 1, i.e. at s = 0,

∂ j+τ gn0−k
∂s j+τ

|s=0 = δ j,2k i k for 0 � j � 2k

Proof. In case (i) (corresponding to τ = 0), note that (80) may be rewritten, cf. (31), as

(gn0−k)ss − �′

2�3/2 (gn0−k)s +
Qk
�
gn0−k = i

(
gn0−k+1 − gn0−k−1

)
, (85)

where

Qk = b
r
+ (k − n0)ω + i p1 − l(l + 1)

r2
(86)

Since gn0−k(1) = 0 = g′
n0−k(1) for all k � 1, while gn0(1) = 1, the statement follows

from (85) for any 0 � j � 2, if 2k � j . Assuming the statement holds for some j � 2
for 2k � j , we prove it for ( j + 1) for 2k � ( j + 1).

Taking ( j − 1) derivatives in s of (85) at s = 0, we obtain

∂ j+1gn0−k
∂s j+1

= i
∂ j−1

∂s j−1
gn0−(k−1) − i

∂ j−1

∂s j−1
gn0−(k+1) + L

where L is a linear combination of derivatives of gn0−k up to order j , which are all
zero since 2k � ( j + 1) > j . The first two terms on the rhs give a contribution of
i i kδ( j−1),2(k−1) +0 since 2k � ( j +1) implies 2(k−1) � ( j−1) and 2(k +1) > ( j−1)
completing the inductive step.

In case (ii) (corresponding to τ = 1): since gn0(1) = 0 and gn0−k(1) = 0 = g′
n0−k(1)

for all k � 1, it follows from (85) that g′′
n0−k = 0 for all k � 1 implying the conclusion

for j = 0 and j = 1. By taking an additional derivative of (85) with respect to s and
evaluating at s = 0, we obtain

∂3gn0−k
∂s3

= iδ2,2k
∂

∂s
gn0 |s=0 = iδ2,2k

g′
n0(1)

−√
�(1)

= iδ2,2k

so the statement holds for j = 2 and any k with 2k � j . The rest of the proof is very
similar to that for τ = 0. ��
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Let ψ1,k , ψ2,k be two independent solutions of

Lkψ = 0 ; and Wk = ψ1,k(r)ψ ′
2,k(r)− ψ2,k(r)ψ ′

1,k(r) (87)

where

Lkψ = ψ ′′ + Qkψ (88)

From the form of the equation we see that Wk is independent of r .

Lemma 38. For n = n0 − k, k � 1, the system (80) is equivalent to

gn0−k(r) = i
∫ 1

r
�(s)

(
gn0−k+1(s)− gn0−k−1(s)

)
Gk(r, s)ds k � 1 (89)

where

Gk(r, s) = W−1
k [ψ1,k(r)ψ2,k(s)− ψ2,k(r)ψ1,k(s)] (90)

Proof. The proof simply follows from variation of parameters, the two boundary con-
ditions at r = 1 and gn0−k(1) = g′

n0−k(1) = 0. ��
Definition 39. Define

jk = s

mk

[Lkmk −�mk−1
]

(91)

Lemma 40. For k ≥ 1, there exist constants C1, C2 and c∗, independent of k so that for
any r ∈ (0, 1] we have | jk | ≤ c∗. For r ≥ 1

k , we have | j ′k(r)| ≤ C1/
(
kr2

)
+ C2

Proof. In the Appendix, (253), we obtain an explicit expression for jk . Routine asymp-
totics for large k in different regimes of r ∈ (0, 1], discussed in the Appendix §5.8,
show that k2 j (2)k + k j (1)k = O(1) in all cases and hence jk = O(1). In fact, as r → 0
and k → ∞ with ζ = kαr = O(1) fixed, we have jk → g(ζ ), where g(ζ ) is bounded.
Also taking the r - derivative of jk for r = O(1) not small, we get j ′k(r) = O(1). When
r � 1, the asymptotics in the regime 1

k � r � 1 gives jk = O
(
ζ−1) = O (1/(kr)).

Since the asymptotics is differentiable, we have j ′k(r) = O
(
1/(kr2)

)
. Finally, we look

at ζ = O(1), ζ ≥ 1. Since d
dr jk = k d

dζ jk ∼ kg′(ζ ), where ζ 2g′(ζ ) is bounded for all
ζ , it follows that | j ′k(r)| ≤ C1/

(
kr2

)
+ C2 for r ≥ 1/k. ��

Lemma 41. For k � 1, hk(r) defined in (82) satisfies the system of differential equa-
tions:

h′′
k + 2h

′
k
m′
k

mk
+
(
�mk−1
mk

+
jk
s

)

hk = �

(
mk−1
mk

hk−1(r) +
mk+1
mk

hk+1(r)
)

, (92)

and the system of integral equations (89) is equivalent, for k � 1, to

hk(r) =
∫ 1

r

�(s)mk−1(s)
mk(r)

Gk(r, s)hk−1(s)ds

+
∫ 1

r

�(s)mk+1(s)
mk(r)

Gk(r, s)hk+1(s)ds := Akhk−1 +Hkhk+1. (93)
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Proof. This simply follows by substituting gn0−k(r) = i kmk(r)hk(r) into (80) and (89),
and using

m′′
k

mk
+ Qk = Lkmk

mk
= �mk−1

mk
+
jk
s
,

in turn a consequence of Lemma 40. ��
Remark 42. Let now r ∈ [ε̂, 1], where ε̂ � C2k−1 for sufficiently large C2 indepen-
dent of k. It is convenient to rewrite Ak and Hk in (93) in terms of s (see (3.11.1)).
Furthermore, changing the variable of integration from s to t = s(s)/s(r), we obtain

[Akhk−1](s) = (2k + τ)(2k + τ − 1)
∫ 1

0
t2k−2+τTk(s, t)hk−1(st)dt, (94)

where, using (36), we get

Tk(s, t) =
√
�(r(st))Fk−1(r(st)

sFk(r(s))
Gk(r(s), r(st)) (95)

and

[Hkhk+1](s) = s3

(2k + 2 + τ)(2k + 1 + τ)

∫ 1

0

√
�(r(st)t2k+2+τ

× Fk+1(r(st)
Fk(r(s))

Gk(r(s), r(st))hk+1(st)dt. (96)

In evaluatingAk for large k, it is useful to calculate the Taylor expansion of Tk(s, t) and
its s derivative at t = 1. To do so, we first note that

∂Tk
∂t

=
(

−�
′(r ′)Fk−1(r ′)
2�(r ′)Fk(r)

− F ′
k−1(r ′)
Fk(r)

)

Gk(r, r ′)− Fk−1(r ′)
Fk(r)

∂Gk
∂r ′ (r, r

′), (97)

where, to simplify notation, we wrote r(s) = r and r(ts) = r ′ and used ∂r ′s(r ′) =
−√

�(r ′). From (87) and (90) we get Gk(r, r) = 0 and ∂r ′Gk(r, r ′) = 1 at r ′ = r ; (97)
implies

∂Tk
∂t

∣
∣
∣
t=1 = − Fk−1(r)

Fk(r)
. (98)

Using (97), taking an additional derivative with respect to t , using also (86) and (88) to
see that ∂r ′r ′Gk = −QkGk , we obtain

∂2Tk
∂t2

∣
∣
∣
t=1 = Fk−1(r)

Fk(r)

(
ξ�′(r)
2�3/2(r)

+
2ξF ′

k−1(r)√
�(r)Fk−1(r)

)

. (99)

A similar calculation can be carried out for the third derivative. We only write down the
potentially largest term in the regime kr ≥ C2 (for large k and small r )

∂3Tk
∂t3

∣
∣
∣
t=1 = ξ2Fk−1(r)Qk(r)

�(r)Fk(r)
+ O

(

1,
1
kr3

)

= ξ2Fk−1(r)
�(r)Fk(r)

(

kω − l(l + 1
r2

)

+O
(

1,
1
kr3

)

. (100)
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Note that if kr is sufficiently large, (35) gives

Fk−1(r)
Fk(r)

= H(α(k − 1)r)H(αk)
H(αkr)H(α(k − 1)

= 1 + O(k−2r−1) (101)

and

F ′
k−1(r)
Fk−1(r)

∼ − l(l + 1)
2αkr2

+ O
(

1
k2r3

)

. (102)

Note also that (32) implies α− 2
√
�(r)/ (s(r)) = O(r) for small r . Including all terms

that become important when r is small, we note that in the regime when kr is sufficiently
large, we have

Tk = (1− t) +
(

−k
4
f1 +

f2
r2

)(
2
3
(1− t)3 − (1− t)2

k

)

+O
(
(1− t)4

r3
,
(1− t)3

kr3
,
(1− t)3

r
,
(1− t)2

kr
,
(1− t)2

k2r3
(1− t)
k2r

)

, (103)

∂Tk
∂s

=
(

−k
4
f ′
1 +

f3
r3

)(
2
3
(1− t)3 − (1− t)2

k

)

+O
(
(1− t)4

r4
,
(1− t)3

kr4
,
(1− t)3

r2
,
(1− t)2

kr2
,
(1− t)2

k2r4
,
(1− t)
k2r2

)

, (104)

where

f1(s) = ωs2

�(r(s))
, (105)

f2(s) = l(l + 1)s2

4�
, (106)

f3(s) = l(l + 1)s2

2�3/2 . (107)

When r ∈ [0, ε̂], for ε̂ = C2/k, it is sometimes more convenient to expressAk in terms
of ζ = kαr . For that purpose, we define

Q(ζ ) = −2k log
[

1− s(0)−s

s(0)

]

− log

[(
�(0)
�(r)

) 1
4
exp

(
1
4

∫ r

0
dr ′ ωs(r ′)√

�(r ′)

)]

, (108)

where we recall the relation (31) between s and r = ζ/(kα), ζ ∈ [0, kαε]. A series
expansion in k−1 leads to

Q(ζ ) = ζ − ζ

k

(
ω

2α2
− �′(0)
4�(0)α

)

+
ζ 2

4k

(

1 +
�′(0)
α�(0)

)

+ O
(
ζ 3

k2
,
ζ 2

k2

)

. (109)

We choose ε̂1 = C̃2k−1 log k, for some k-independent C̃2 (chosen more precisely later).
We define δ̂1, dependent of r , so that

(1− δ̂1)s(r) = s(ε1). (110)
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From (31), it follows that for sufficiently large C̃2 we have

δ̂1 � 1− s(ε1)

s(ε)
� (5 + l) log k
(4k + 2τ)k

. (111)

It follows from the definition of Ak in (93) that for r ∈ [0, ε̂], i.e. ζ ∈ [0, kαε̂],
[Akhk−1

]
(ζ )=

∫ kαε̂1

ζ

e−Q(η)+Q(ζ )
(
1+
a1
k

) H(η(1−k−1))
H(ζ )

G(ζ, η)hk−1(η(1−k−1))dη

+(2k + τ)(2k + τ − 1)

×
∫ 1

ε̂1

[
s(r ′)
s(r)

]2k−2+τ
�(r ′)Gk

(
r, r ′) Fk−1(r ′)

s2Fk(r)
hk−1(r ′)dr ′

=: [A0
khk−1](ζ ) + [A1

khk−1](r), (112)

where G(ζ, η) is defined by
G(ζ, η) = kαGk(r(ζ ), r(η)), (113)

while

a1(η, ζ )
k

= H(αk)
H(α(k − 1))

(
1 +

τ

2k

)(

1 +
τ − 1
2k

)
s2(0)�(η/(kα))
s2(η/(kα))�(0)

×
(

s(η/(kα))
s(ζ/(kα))

)τ
− 1, (114)

while for large k and 0 < ζ ≤ η ≤ ε̂1α we have

a1(η, ζ ) = τ − 1
2
+
(

1 +
�′(0)
α�(0)

)

η +
τ

2
(ζ − η) + O

(
η2

k
,
η

k

)

. (115)

Similarly, for kαr = ζ ∈ (0, kε̂1α), we define
b1(η, ζ )

k
= H(αk)
H(α(k + 1))

s2(η/(kα))�(η/(kα))
s2(0)�(0)

(
s(η/(kα))
s(ζ/(kα))

)τ
− 1. (116)

We then have

[Hkhk+1] (ζ ) = �(0)s2(0)
α2k2(2k + 2 + τ)(2k + 1 + τ)

×
∫ kαε̂1

ζ

e−Q(η)+Q(ζ )
(

1+
b1
k

)
H(η(1+k−1))

H(ζ )
G(ζ, η)hk+1(η(1+k−1))dη

+
s2

(2k + 2)(2k + 1 + 2τ)

×
∫ 1−δ̂1

0

√
�(r(st))Gk (r(s), r(st)) t2k+2+τ

Fk+1(r(st))
Fk(r(s))

hk+1(st)dt

=: [H0
khk+1] + [H1

khk+1]. (117)
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Lemma 43. For k � 2 and k1 ∈ {k − 1, k, k + 1} we have
(1) If r ∈ (0, 1) and s ∈ (r, r + δ), where δ ≤ min

{
C2k−1 log k, 1− r

}
, then

∣
∣
∣
∣Gk(r, s)

Fk1(s)
Fk(r)

∣
∣
∣ � c∗

k1/2
,

∣
∣
∣
∣
∂

∂r

(

Gk(r, s)
Fk1(s)
Fk(r)

) ∣
∣
∣ < c∗k1/2.

(2) If r ∈ (0, 1), δ ≤ C2k−1 log k with r + δ < 1, then for s ∈ (r + δ, 1),
∣
∣
∣
∣Gk(r, s)

Fk1(s)
Fk(r)

∣
∣
∣
∣ < c∗kl/2−1/2,

∣
∣
∣
∣
∂

∂r

(

Gk(r, s)
Fk1(s)
Fk(r)

)∣∣
∣
∣ < c∗kl/2+1/2.

Proof. It suffices to find bounds for Gk(r, s)H(αk1s)/H(αkr) since the other functions
involved are regular everywhere for r, s ∈ [0, 1], see (36). We first consider k → +∞.

It is easily verified that G(ζ, η), defined in (113), is the Green’s function (see (86),
(88) ) for

L := � �→ � ′′ − l(l + 1)
ζ 2

� +
�

k

[
ω

α2
+
b
αζ

]

+
�

k2α2
[i p1 − n0ω] (118)

and is given by

G(ζ, η) := kαGk(r(ζ ), r(η)) = �1(ζ )�2(η)−�2(ζ )�1(η)

W
, (119)

where �1, �2 are two independent solutions of L� = 0 and W = �1(ζ )�
′
2(ζ ) −

�2(ζ )�
′
1(ζ ) is their constant Wronskian.

Standard asymptotic results show there exist two independent solutions�1,�2 such
that for large k, we have uniformly in z ∈ [0,√ωk],

�1 ∼ − 2l l!
(2l)!

√
π z
2
Yl+1/2(z) ; where z =

√
ω

α2k
ζ = √

ωkr, (120)

�2 ∼ 2−l−1(2l + 2)!
(l + 1)!

√
π z
2
Jl+1/2(z). (121)

The Wronskian W is asymptotic, for large k, to (2l + 1)
√
ω/

√
α2k. The expressions

(120) and (121) may also be used to determine the asymptotics of � ′
1 and �

′
2. Using

(119), (120), (121) and (36) and the bounds on W , with l1 = l + 1
2 it follows that

∣
∣
∣
∣
Fk1(s)
Fk(r)

Gk(r, s)
∣
∣
∣
∣ � c∗|zz′|1/2

k1/2

∣
∣
∣
∣
∣
∣
∣
∣

H
(

α

√
k1
ω
z′
)

H
(

α

√
k
ω
z
) [Yl1(z)Jl1(z′)− Jl1(z)Yl1(z

′)]

∣
∣
∣
∣
∣
∣
∣
∣

, (122)

where z′ = η
√
ω/

√
α2k = √

ωks. A similar bound holds for
∣
∣
∣
∣
∂

∂r

{
Fk1(s)
Fk(r)

Gk(r, s)
}∣∣
∣
∣ .

We now prove part (1). We break this case up into two subcases: (a) r ∈ [k−2/3, 1]
and (b) r ∈ [0, k−2/3]. In case (a), we note that s ∈ [r, r + δ] implies s/r and therefore
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1 ≤ z′/z = O(1). The function H in (122) is close to 1 because its argument is large.
Furthermore, note that

√
zYl+1/2(z) and

√
z Jl+1/2(z) are bounded for large z, while they

are asymptotic to constant multiples of z−l and zl+1 for small z. Using (122), part 1 of
the lemma follows by inspection in case (a). For case (b), (122) further simplifies since
z,z′ are small and

H(k1η/k)
H(ζ )

Gk(r(ζ ), r(η)) = H(k1η/k)
kαH(ζ )

G(ζ, η)

∼ H(k1η/k)
(
ηl+1ζ−l − ζ l+1η−l)

kαH(ζ )(2l + 1)
. (123)

When ζ ∈ [log k, αk1/3] and η ∈ [ζ, ζ + αkδ], we have 1 ≤ [η/ζ ]l ≤ c∗ and therefore
∣
∣
∣
∣
H(k1η/k)
H(ζ )

Gk(r(ζ ), r(η))
∣
∣
∣
∣ =

∣
∣
∣
∣
H(k1η/k)
kαH(ζ )

G(ζ, η)
∣
∣
∣
∣ � c∗

k1/2
.

The same inequality holds if ζ ∈ [0, log k], since η ∈ [ζ, (C2 + 1) log k] since in this
regime ζ−l/H(ζ ) is bounded and the logarithmic growth in k of terms involving η can
be bounded by, say, k1/2, while for small η, ηl H (k1η/k) is bounded. The bounds on
derivatives follow in a similar manner using d

dr = kα d
dζ .

Part 2 (which is only relevant for r + δ � 1) follows similarly on careful inspection
of (122), from the asymptotic behavior in different regimes of z and z′. ��
Lemma 44. Let r ∈ (0, ε̂], with ε̂1 = C2

k log k. We choose C2 large enough so that
s(ε1)
s(r) = (1 − δ1) ≤ (5+l) log k

4k+2τ . Then |[A1
k f ](r)| � c∗kl/2−1/2(1 − δ1)

2k−2+τ‖ f ‖∞ �
c∗k−3‖ f ‖∞ and | ddr [A1

k f ](r)| � c∗kl/2+1/2(1− δ1)
2k−2+τ‖ f ‖∞ � c∗k−2‖ f ‖∞.

Proof. Consider A1
k given by (112). We note that s−2�(s) and its r−derivative are

bounded, while Gk(s, r)Fk(s)/Fk(r) and its r -derivative are bounded by c∗kl/2−1/2 and
c∗kl/2+1/2 respectively for any τ (cf. Lemma 43). Further |s(s)/s(r)| � (1 − δ1) and
from (111), we have

(1− δ1)
2k−2+τ � c∗

kl/2+5/2
,

and the lemma follows. ��
Remark 45. Since for r ∈ (0, ε̂], the bound in Lemma 44 on A1

k is O(k
−2), we will see

later that Ak is dominated by A0
k (defined in (112)) as k → ∞.

Lemma 46. Define G0(ζ, η) = limk→∞ G(ζ, η) and H0(ζ ) = limk→∞ H(ζ ), where
ζ, η � k1/2 as k → ∞. Then,

∫ ∞

ζ

e−η+ζG0(ζ, η)H0(η)H0(ζ )
dη = 1, (124)

∫ ∞

ζ

e−η+ζG0ζ (ζ, η)
H0(η)
H0(ζ )

dη = −1 + H
′
0(ζ )

H0(ζ )
. (125)
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Proof. Using (120) and (121) and the behavior of Bessel functions for small argument,
[1], it follows that for ζ, η � k1/2 we have

G0(ζ, η) = lim
k→∞ G(ζ, η) = ηl+1ζ−l − ζ l+1η−l

2l + 1
(126)

and H0(ζ ) = limk→∞ H(ζ ) =
√

2
π
ζ 1/2eζ Kl+1/2(ζ ). Now, using the modified Bessel

function equation, it is easily verified that f (ζ ) = e−ζ H0(ζ ) satisfies

f ′′ − l(l + 1)
ζ 2

f = f

with f (ζ ) ∼ e−ζ as ζ → ∞. Using variation of parameters to invert the left hand side
of the above equation, and using the boundary conditions at ∞ we obtain

f (ζ ) =
∫ ∞

ζ

G0(ζ, η) f (η)dη.

Dividing through by f (ζ ), the first identity in the lemma follows. By differentiating the
first identity with respect to ζ , and using the first identity in the resulting expression, we
obtain the second identity. ��
Lemma 47. For any r ∈ (0, 1),

∣
∣
∣
∣Ak[1](r)− 1

∣
∣
∣ =

∣
∣
∣

∫ 1

r
�(s)

mk−1(s)
mk(r)

Gk(r, s)ds − 1
∣
∣
∣
∣ � c∗

k2
. (127)

For 1
k ≤ r ≤ 1

2 we get
∣
∣
∣
∣
d
dr

Ak[1](r)
∣
∣
∣
∣ =

∣
∣
∣
∣
d
dr

∫ 1

r
�(s)

mk−1(s)
mk(r)

Gk(r, s)ds
∣
∣
∣
∣ � c∗

k2
+

c∗
k3r2

, (128)

while for any r ∈ [0, 12 ],
∫ 1

r
�(s)

∣
∣
∣
∣
∂

∂r

(

Gk(r, s)
mk−1(s)
mk(r)

)∣∣
∣
∣ ds � c∗k. (129)

Proof. Recalling the definition (93), it follows from (39) and Lemma 40 that

Lkmk −�mk−1 = jk(r)
s

mk, (130)

where jk(r) = O(1) as k → +∞ for any r ∈ [0, 1]. We can check from (36) that
mk(1) = 0, m′

k(1) = 0 for k � 1. From (130), inversion of Lk yields

mk(r) =
∫ 1

r
Gk(r, s)

{

�(s)mk−1(s) +
jk(s)
s(s)

mk(s)
}

ds. (131)

Therefore,
∫ 1

r
Gk(r, s)

�(s)mk−1(s)
mk(r)

ds = 1−
∫ 1

r
Gk(r, s)

jk(s)mk(s)
s(s)mk(r)

ds. (132)
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First, we choose δ̂1 so that 1 − δ̂1 = (5 + l) log k/ (4k + 2τ). We then define
δ̂ so that (1 − δ̂1)s(r) = s(r + δ̂). It is clear that for large k we have δ̂ ∼
(5/2 + l/2) s(r) log k/

(
(2k + τ)

√
�(r)

)
. Lemma 43, and the fact that kl/2−1/2(1 −

δ̂1)
2k+1+τ /(2k + 1 + τ) � 1

k3 give

∣
∣
∣
∣

∫ 1

r+δ̂
Gk(r, s)

jk(s)mk(s)
s(s)mk(r)

ds
∣
∣
∣
∣ �

∣
∣
∣
∣
∣

∫ 1−δ̂1

0
t2k+τ

× Fk(r(st)√
�(r(st))Fk(r(s)

Gk(r(s), r(st)) jk(r(st))dt
∣
∣
∣
∣

� c∗
k3

‖ jk‖∞ � c∗
k3
. (133)

Now, consider the contribution from
∫ r+δ̂
r . There are again two cases: (i) 1 � r � k−2/3

and (ii) 0 < r � k−2/3.
In the first case, Taylor expandingGk(r, s)near s = r wegetGk = (s−r)+O((s−r)3

Qk) = √
�(r)s(1− t) + O(k4/3(1− t)3, (1− t)2). Hence,

∣
∣
∣
∣
∣

∫ r+δ̂

r
Gk(r, s)

jk(s)mk(s)
s(s)mk(r)

ds

∣
∣
∣
∣
∣
� c∗‖ jk‖∞

∫ 1

1−δ̂1
t2k+τ−1(1− t)dt � c∗

k2
. (134)

For the case (ii), we rewrite the integral in terms of ζ = kαr , to obtain

∣
∣
∣
∣
∣

∫ r+δ̂

r
Gk(r, s)

jk(s)mk(s)
s(s)mk(r)

ds

∣
∣
∣
∣
∣
�c∗
k2

‖ jk‖∞
∫ ζ+kαδ̂

ζ

e−Q(η)+Q(ζ )G(ζ, η)H(η)
H(ζ )

dη

� c∗
k2

∫ ζ+kαδ̂

ζ

dηe−η+ζG0(ζ, η)H0(η)H0(ζ )

� c∗
k2

∫ ∞

ζ

dηe−η+ζG0(ζ, η)H0(η)H0(ζ )
� c∗
k2

(135)

by Lemma 46. Using (132) and (135), the first part follows.
To prove (128), we note that if C3 is large and rk > C3, Taylor expansion gives

U1(s, t) := Fk(r(st)√
�(r(st))Fk(r(s)

Gk(r(s), r(st))

= f4(s)(1− t) + O
(

(1− t)2, k(1− t)3,
(1− t)3

r2
,
(1− t)2

kr2

)

(136)

for f4 = −s/�(r(s)), while

∂

∂s
U1(s, t) = f ′

4(s)(1− t) + O
(

(1− t)2, k(1− t)3,
(1− t)3

r3
,
(1− t)2

kr3

)

.
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From (132) we note that

d
dr

Ak[1](r) = −√�(r(s))
{∫ 1

1−δ̂1
t2k+τ+1

j ′k(r(st))√
�(r(st))

U1(s, t)dt

−
∫ 1

1−δ̂1
t2k+τ jk(r(st))U1,s(s, t)dt

}

− d
dr

∫ 1

r+δ̂

(
ξ(s)
ξ(r)

)2k+τ jk(s)Fk(s)
ξ(s)Fk(r)

Gk(r, s)ds. (137)

We note further that

− d
dr

∫ 1

r+δ̂

(
ξ(s)
ξ(r)

)2k+τ jk(s)Fk(s)
ξ(s)Fk(r)

Gk(r, s)ds

= −
∫ 1

r+δ̂

(
ξ(s)
ξ(r)

)2k+τ jk(s)
ξ(s)

∂

∂r

[
Fk(s)
Fk(r)

Gk(r, s)
]

ds

+(2k + τ)
ξ ′(r)
ξ(r)

∫ 1

r+δ̂

(
ξ(s)
ξ(r)

)2k+τ jk(s)Fk(s)
ξ(s)Fk(r)

Gk(r, s)ds

+

(
ξ(r + δ̂)
ξ(r)

)2k+τ
jk(r + δ̂)Fk(r + δ̂)
ξ(r + δ̂)Fk(r)

Gk(r, r + δ̂)
(
1 + δ̂′(r)

)
. (138)

From the bounds in Lemmas 40 and 43 and the fact that ξ(s)/ξ(r) ≤ (1− δ̂1), we easily
conclude that the contribution of

∫ 1
r+δ̂ in (138) to

d
drAk[1](r) is O(1/k2).

Since Lemma 40 implies | jk(r)| < c∗ and | j ′k(r)| < c∗ + c∗/(kr2) for 1
2 ≥ r ≥ 1

k ,
it follows from the local expansion of U1(s, t) and its s-derivative in a neighborhood of
t = 1 in the first integral in (137) that

∣
∣
∣
∣
∣
d
dr

∫ r+δ̂

r
Gk(r, s)

jk(s)mk(s)
s(s)mk(r)

ds

∣
∣
∣
∣
∣
� c∗
k3r2

+
c∗
k2

and (128) follows.
We now prove (129). We first note that for r ≥ k−2/3, s ∈ (r, r + δ̂), from (90),

∂rG(r, s) = −1 at s = r and therefore, from (120), (121), it follows that for s − r =
O(k−1 log k) � k−1/2, ∂rG(r, s) ∼ −1 < 0 for s ∈ (r, r + δ̂). The same is true
for r ∈ [0, k−2/3] since in this regime, ∂rGk(r, s) ∼ ∂ζG0(ζ, η) (see (126)), with
ζ = r/(αk), η = s/(αk). Therefore, from (31) and (36), we get

− ∂

∂r

(
mk−1(r)Gk(r, s)

mk(r)

)

= −
[

(2k + τ − 2)
√
�(r)
ξ(r)

− F ′
k(r)
Fk(r)

]
mk−1(r)Gk(r, s)

mk(r)

−∂rGk(r, s)mk−1(s)mk(r)
. (139)
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Since the contributions to the integrals from
∫ 1
r+δ̂1

is O( 1k2 ), and the first term on the
right on (139) is negative for large k, while the second is positive, it follows that

∫ 1

r
�(s)

∣
∣
∣
∣
∂

∂r

(
mk−1(r)

mk(r)Gk(r, s)

)∣∣
∣
∣ ds ≤

∣
∣
∣
∣
d
dr

Ak[1](r)
∣
∣
∣
∣

+2
[

(2k + τ − 2)
√
�(r)
ξ(r)

− F ′
k(r)
Fk(r)

]

|Ak[1](r)| + O
(
1
k2

)

≤ c∗k (140)

for r ∈ [
C2k−1, 1

]
. For r ∈ [

0,C2k−1], we note that since the contribution from
∫ 1
r+δ̂

for d
drAk[1](r) is negligible, we have
d
dr

Ak[1](r) ∼ kα
d
dζ

∫ ζ+kαδ̂1

ζ

e−Q(η)+Q(ζ )
(
1 +

a1
k

) H(η(1− 1/k))
H(ζ )

G(ζ, η)

∼ kα
d
dζ

∫ ζ+kαδ̂1

ζ

e−η+ζ H0(η)
H0(ζ )

G0(ζ, η)

∼ kα
d
dζ

∫ ∞

ζ

e−η+ζ H0(η)
H0(ζ )

G0(ζ, η); (141)

it follows immediately from Lemma 46 that in this case , | ddrAk[1](r)| ≤ c∗k. Hence
the inequality in (140) is valid for all r ∈ [0, 1/2]. ��
Lemma 48. For any f ∈ L∞[0, 1],

(a) For r ∈ [0, 1], ‖Ak f ‖∞ �
(
1 +

c∗
k2
)

‖ f ‖∞, (142)

(b) For r ∈
[

0,
1
2

]

,

∥
∥
∥
∥
d
dr

[Ak f ](r)
∥
∥
∥
∥∞

� c∗k‖ f ‖∞. (143)

Proof. Consider the expression for Ak f from (93). We break up the integral into
∫ r+δ
r

and
∫ 1
r+δ , where δ = C2k−1 log k, with C2 large enough so that

(1− δ1)
2k−2+τ � 1

kl/2+7/2
; (1− δ1) := s(r + δ)

s(r)
.

From (36) and Lemma 43, part (2), transforming the integration variable to t , it follows
that

∣
∣
∣
∣

∫ 1

r+δ
�(s)

mk(s)
mk(r)

Gk(r, s) f (s)ds
∣
∣
∣
∣ � c∗

k2
‖ f ‖∞. (144)

In
∫ r+δ
r (we replace the upper limit r + δ by 1 if r + δ > 1). Since δ1 = O

(
k−1 log k

)

and t ∈ (1− δ1, 1) then Tk(s, t) ≥ 0 and Gk(r, s) � 0 for r ∈ [k−2/3, 1]. Therefore,

‖Ak f ‖∞ � ‖ f ‖∞
{[∫ r+δ

r

�(s)mk−1(s)
mk(r)

Gk(r, s)
]

+
c∗
k2

}

. (145)

From (144) we get
∣
∣
∣
∣

∫ 1

r+δ
�(s)

mk−1(s)
mk(r)

Gk(r, s)ds
∣
∣
∣
∣ � c∗

k2
.
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Hence
∫ r+δ

r
�(s)

mk−1(s)
mk(r)

Gk(r, s)ds =
∫ 1

r
�(s)

mk−1(s)
mk(r)

Gk(r, s)ds + O
(
1
k2

)

. (146)

Using Lemma 47, (142) (a) follows. For (b) we write

d
dr

∫ 1

r
�(s)

mk−1(s)
mk(r)

Gk(r, s) f (s)ds

=
∫ 1

r
�(s)

∂

∂r

(

Gk(r, s)
mk−1(s)
mk(r)

)

f (s)ds. (147)

By Lemma 47, the quantity above is bounded by c∗k‖ f ‖∞. ��
Lemma 49. For any f ∈ L∞[0, 1],

‖Hk f ‖∞ � c∗
k2

‖ f ‖∞,
∥
∥
∥
d
dr

[Hk f ](r)‖∞ � c∗
k2

‖ f ‖∞.

Proof. As before, we choose δ = C2k−1 log k large C2 independent of k. Using
Lemma 43, it follows that

∣
∣
∣
∣

∫ 1

r+δ

�(s)mk+1(s)
mk(r)

Gk(r, s) f (s)ds
∣
∣
∣
∣ � c∗(1− δ1)

2k+2kl/2−5/2‖ f ‖∞

� c∗
k4

‖ f ‖∞, (148)
∣
∣
∣
∣

∫ 1

r+δ

∂

∂r

{
�(s)mk+1(s)

mk(r)
Gk(r, s)

}

f (s)ds
∣
∣
∣
∣

� c∗(1− δ1)
2k+2kl/2−3/2‖ f ‖∞ � c∗

k3
‖ f ‖∞. (149)

Now, Lemma 43 implies
∣
∣
∣
∣

∫ r+δ

r

�(s)mk+1(s)
mk(r)

Gk(r, s) f (s)ds
∣
∣
∣
∣ � c∗

‖ f ‖∞
k2

∫ 1

0
t2k+2+τdt

� c∗‖ f ‖∞
k3

, (150)
∣
∣
∣
∣

∫ r+δ

r

∂

∂r

{
�(s)mk+1(s)

mk(r)
Gk(r, s)

}

f (s)ds
∣
∣
∣
∣ � c∗‖ f ‖∞

k

∫ 1

0
t2k+2+τdt

� c∗‖ f ‖∞
k2

. (151)

��
Lemma 50. There exist k0 and c∗, independent of k, so that for k > k0, over the
r-interval (0, 1),

‖hk‖∞ < c∗. (152)
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Proof. First we note that for k0 sufficiently large, ‖hk0‖∞ exists since gk0 is continu-
ous for r ∈ [0, 1] and the expression for mk in (36) shows that 1/mk0 is bounded as
well for sufficiently large k0 since Kl+1/2 has no zeros in the region of interest. Define
rk = Hkhk+1. Note that

hk = Ak (Ak−1hk−2 + rk−1) + rk . (153)

In k − k0 inductive steps we get

hk = AkAk−1..Ak0+1hk0 +Hkhk+1 +
k−k0−1∑

m=1

⎛

⎝
m∏

j=1
Ak− j+1

⎞

⎠Hk−mhk−m+1. (154)

We write this abstractly as

h = h0 +Nh, (155)

where

h0k = AkAk−1..Ak0+1hk0;

[Nh]k = Hkhk+1 +
k−k0−1∑

m=1

⎛

⎝
m∏

j=1
Ak− j+1

⎞

⎠Hk−mhk−m+1,
(156)

and N is defined on the space S of sequences h = {hk}∞k=k0+1 in the norm

‖h‖ = sup
k�k0+1

‖hk‖∞. (157)

Lemmas 48 and 49 imply

|[Nh]k | � ‖h‖∞

⎛

⎝ c∗
k20

+ c∗
k−k0−1∑

m=1

⎧
⎨

⎩

m∏

j=1

[

1 +
c∗

(k − j + 1)2

]
⎫
⎬

⎭
1

(k − m)2

⎞

⎠

< ν‖h‖∞, (158)

where, if k0 is large ν < 1 is independent of k. Thus, N is contractive and there is a
unique solution of (155) in S. ��

Lemma 51. For any r ∈ [
0, 12

]
and for large enough k we have ‖ d

dr hk‖∞ � c∗k.

Proof. Since by Lemma 50 hk is bounded, Lemmas 49 and 48 imply

|h′
k(r)| � | d

dr
[Akhk−1](r)| + | d

dr
[Hkhk+1](r)| � c∗k. ��

Lemma 52. For all k � 1, hk(1) = 1.
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Proof. In case (i), a simple computation shows that

∂2kgn0−k
∂s2k

|s=0 = i khk(1); (gn0−k := i kmkhk).

(By the differential equation for hk , all derivatives exist.) Lemma 37 with j = 2k gives

i k = ∂2k

∂s2k
|s=0gn0−k = i khk(1),

implying the result in case (i). In case (ii), using Lemma 38, a similar computation
shows that

i k = ∂2k+1

∂s2k+1
|s=0gn0−k = i khk(1) (gn0−k := i kmkhk).

��
Definition 53. Let

T̂k(s, s) = s−2k+1−τ
∫ s

0
t2k−2+τ s ∂

∂s
Tk(s, t)dt, (159)

where Tk(s, t) is defined in (95).

Lemma 54. Let δ = k−1 log k and Sk(s) := ∂
∂s

∫ 1
0 t

2k−2Tk(s, t)dt. IfC2 is large enough,
s ∈ (0, δ) and r(s) � k−1C2, we have

T̂k(s, s) = sSk(s)− s f ′
1(s)

12
(1− s)3 +

s f3(s)
3kr3

(1− s)3

+O
(
(1− s)4

kr4
,
(1− s)3

k2r4
,
(1− s)2

k3r4
,
(1− s)
k4r3

,
(1− s)3

kr2
,
(1− s)2

k2r2

)

. (160)

Proof. This simply follows by integrating (103) from t = 1 to s of Tk and the fact that
T̂k(s, 1) = sSk(s). ��

4.13. Proof of Lemma 31. First choose ε1 > 0. From Lemma 49, it follows that
∥
∥
∥
∥
d
ds

[Hkhk+1]
∥
∥
∥
∥∞

� c∗
k2

‖hk+1‖∞ � c∗
k2
,

where we applied Lemma 50. Further, we note that

1
(2k + τ)(2k + τ − 1)

d
ds

Akhk−1(s)

=
∫ 1

0
t2k+τ−2 ∂Tk

∂s
(s, t)hk−1(st)dt +

∫ 1

0
t2k+τ−1Tk(s, t)h′

k−1(st)dt. (161)
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We have
∫ 1

0
t2k+τ−2 ∂Tk

∂s
(s, t)hk−1(st)dt = hk−1(s)Sk(s)−

∫ 1

0
dt t2k+τ−2s∂Tk

∂s
(s, t)

×
∫ 1

t
h′
k−1(ss)ds = hk−1(s)Sk(s)−

∫ 1

0
h′
k−1(ss)

[∫ s

0
t2k+τ−2s∂Tk

∂s
(s, t)dt

]

ds

= hk−1(s)Sk(s)−
∫ 1

0
h′
k−1(ss)s2k−1+τ T̂k(s, s)ds = (2k + τ − 1)Sk(s)

×
∫ 1

0
s2k−2+τhk−1(ss)ds −

∫ 1

0
s2k−1+τ [T̂k(s, s)− T̂k(s, 1)]h′

k−1(ss)ds.

(162)

Therefore,

d
dsAk[hk−1](s)

(2k + τ)(2k + τ − 1)
=
∫ 1

0
[Tk(s, s)− T̂k(s, s) + sSk(s)]s2k+τ−1

×h′
k−1(ss)ds + (2k + τ − 1)Sk(s)

∫ 1

0
s2k+τ−2hk−1(ss)ds.

(163)

We note that

(2k + τ)(2k + τ − 1)Sk(s) = ∂

∂s
[Ak[1](s)] = O

(
1

k3ε21
,
1
k2

)

and that (2k + τ − 1)
∫ 1
0 s

2k+τ−2hk−1(ss)ds has a bound independent of k. Combining
(103) with Lemma 54, if k is large so that kε1 is large, then

Tk(s, s)− [T̂k(s, s)− sSk(s)] = (1− s) +
(

−k f1
4

+
f2
r2

)

×
[

− (1− s)2

k
+
2
3
(1− s)3

]

− s

(

− f ′
1
12

+
f3

3kr3

)

(1− s)3

+O
(
(1− s)4

kr4
,
(1− s)3

k2r4
,
(1− s)2

k3r4
,
(1− s)
k4r3

,
(1− s)3

kr2
,
(1− s)2

k2r2
,

× (1− s)4

r3
,
(1− s)3

kr3
,
(1− s)3

r
,
(1− s)2

kr

)

. (164)

From (164), it is clear that Tk(s, s) − T̂k(s, s) + sSk(s) > 0 if s ∈ (1 − δ, 1) and kε1
is sufficiently large. Now, s f3/

(
3kr3

)
(1 − s)3 > 0 exceeds any term following it in

(164), except possibly when 1− r , i.e. s is small. Thus, if we define

Mk = sup
r(s)∈[ε1,1]

|h′
k(s)| (165)
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we get

|h′
k(s)| � (2k + τ)(2k+τ−1)Mk−1

{∫ 1

1−δ1
s2k+τ−1

[

(1−s)+
(

−k f1
4
+
f2
r2

)

× [−1
k
(1− s)2 +

2
3
(1− s)3] + s

f ′
1
12
(1− s)3

]

ds
}

+
c∗
k2

+
c∗
k3ε21

. (166)

When (1 − r) (and thus s) is small, we can replace the term s f ′
1/(12)(1 − s)3 on the

right side of the above equation simply by (1 − s)3, which is clearly bigger. From the
fact that

∫ 1
1−δ s

2k−1[−k−1(1− s)2 + (2/3)(1− s)3]ds = O(k−5), it follows that

Mk � Mk−1

(
2k − 1 + τ
2k + 1 + τ

+
c∗
k2

+
c∗
k3ε21

)

+
c∗
k2

+
c∗
k3ε21

. (167)

Let C3 be large enough and define k0(ε1) = C3/ε1, so that for k � k0 we have
(
2k + τ − 1
2k + τ + 1

+
c∗
ε21k3

+
c∗
k2

)

�
(
k − 1
k

)1/2
.

Then for k � k0,

Mk �
(
k − 1
k

)1/2
Mk−1 +

c∗
k2

+
c∗
k3ε21

, (168)

implying

Mk �
(
k0
k

)1/2

Mk0 +
c∗
k1/2

k∑

j=k0

1
j3/2

+
c∗
k1/2

∑

j=k0

1
j5/2ε21

� c∗
k3/20
k1/2

+
c∗

k1/2k1/20

+
c∗

k1/2k3/20 ε21

.

(169)

The result follows from the definition of Mk and noting that last two terms in (169) are
O(c∗k3/20 k−1/2).

4.14. Proof of Lemma 33. From Lemma 31 and the definition of k0, it follows that

|h′
k(ε1)| � C4C

3/2
3

k1/2ε3/21

for k � C3ε1−1 = k0. Using hk(1) = 1, it follows that for k ≥ C3/r ,

|hk(r)− 1| �
∫ 1

r
|h′
k(r

′)|dr ′ � C4C
3/2
3

1
2 (kr)1/2

.

Additionally, if 7 αkr �
(
C4C

3/2
3 α1/2

1
2ε

)2

= Lε then |hk(r)− 1| � ε.

7 It is to be noted that for small enough ε the inequality αkr ≥ Lε always implies k ≥ C3/r .
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4.15. Proof of Lemma 35. For ζ ∈ [0, Lε], using the a priori boundedness of hk in k and
Lemma 51, we note that both h̃k(ζ ) := hk(r(ζ )) and (h̃k)ζ are bounded independently
of k. Hence the sequence {h̃k}k�2 is bounded and equicontinuous. By Ascoli-Arzelà’s
theorem, there exists a subsequence h̃k j (ζ ) converging to a continuous function h̃. The
first part of the result is proved.Wefirst prove that |h̃(ζ )−1| ≤ 4ε. Now, fromLemma33,

|h̃k(ζ )− 1| � ε for ζ ∈ [Lε, αk] for sufficiently large k. (170)

Let h̃k, j be a subsequence that converges to h̃ for ζ ∈ [0, Lε]. Let ζm , ζM be a minimum,
and a maximum point of h̃ on [0, Lε] and the corresponding minimum and maximum
values are denoted by m and M respectively. Continuity at the endpoint ζ = Lε implies
that M ≥ 1 − ε, m ≤ 1 + ε. If both M − 1 − ε < 0 and m − 1 + ε > 0, there is
nothing to prove because in that case it is clear that |h̃(ζ )− 1| ≤ 2ε. Now, consider the
possibility that (i): M > 1 + ε. In a similar manner, we will also consider the possibility
(ii): m < 1− ε. Consider (i) first. Since at the end point of the interval, h̃(Lε) < 1 + ε,
from continuity there exists an interval [a, b] ⊂ [ζM , Lε] of nonzero length for which

h̃(η) ≤ 1
2
(M + 1 + ε) < M for η ∈ [a, b]. (171)

For some L̂ > Lε , independent of k (to be determined shortly), we write

[
A0
k f
]
(ζ ) =

(∫ L̂

ζ

+
∫ kαε1

L̂

)

K (ζ, η) f (η(1− k−1))dη

with K (ζ, η) := e−Q(η)+Q(ζ )
(
1 +

a1
k

) H(η(1− k−1)
H(ζ )

G(ζ, η)dη

=: [A00
k f ](ζ ) + [A01

k f ](ζ ). (172)

For fixed ζ and η we have

lim
k→∞ K (ζ, η) = K0(ζ, η) = e−η+ζ H0(η)

H0(ζ )
G0(ζ, η). (173)

On our interval we have η � ζ . Thus G0 � 0 (see (126)); G0 can vanish only if η = ζ .
Furthermore, by (171) we have ζM �∈ [a, b]. We can then define

J = 3 sup[0,Lε ] |h̃|
(b − a)Km

, where Km = min
η∈[a,b] K0(ζM , η) > 0.

Note that Q(η) ∼ η for large k and, aside from the exponential term, K is algebraically
bounded. We can thus choose L̂ > Lε large enough independently of k, so that

|[A01
k f ](ζ )| � ε J−1‖ f ‖∞,[Lε ,kαε1]. (174)

There is a subsequence of h̃k j that converges uniformly on ∈ [0, L̂]; for simplicity,
we will use the same notation h̃k, j for the subsequence. It is clear that the limit is h̃(ζ )
if ζ ∈ [0, Lε]. We keep the notation h̃ for the limit on [0, L̂]. We note that (170) implies

|h̃(ζ )− 1| � ε for ζ ∈ [Lε, L̂]. (175)
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Now choose a small ε2 > 0. It is clear that in the interval [Lε, L̂], h̃(ζ ) ≤ 1 + ε < M .
For sufficiently large k j , using continuity of h̃(ζ ), we have

[A00
k, j h̃(ζM )] ≤

∫

η∈[ζM ,L̂]\[a,b]
K (ζM , η)h̃(η)dη +

∫ b

a
K (ζ, η)h̃(η)dη + Mε2

� M
∫

η∈[ζM ,L̂]\[a,b]
K (ζM , η)dη +

1
2
(M + 1 + ε)

∫ b

a
K (ζM , η)dη + ε2M

= M
∫ L̂

0
K (ζM , η)dη − 1

2
(M − 1− ε)

∫ b

a
K (ζM , η)dη + Mε2

� MA00
k j [1](ζM )− (b − a)

3
(M − 1− ε)Km + Mε2.

Since Ak j [1] = A00
k j [1] + A01

k j [1] + A1
k j [1] (see (112) and (172)) Lemmas 47, 44 and

(174) imply that for large k j we have

[A00
k j [1]](ζM ) � 1 +

ε

J
+ ε2.

Hence, for large k j we have

[A00
k j h̃](ζM ) � M

(
1 +

ε

J
+ 2ε2

)
− Km

3
(M − 1− ε)(b − a). (176)

Now, there exists N so that if j � N , ‖h̃k j − h̃‖∞,[0,L̂] < ε2 and � j = Ak j+1 ...Ak j+1
satisfies

‖� j − I‖∞ � ε2

while

r j+1 := Bk j+1 +
k j+1−k j−1∑

m=1

m∏

l=1
Ak j+1−l+1Bk j+1−m,

where Bl = Hl hl+1, satisfies the estimate

|r j+1| < ε2.

Therefore, from

h̃k j+1 = � jAk j h̃k j + r j+1

it follows that

h̃k j+1(ζM ) � h̃(ζM )− ε2 = M − ε2.

On the other hand, at ζ = ζM we have

� jAk j h̃k j + r j+1 � (1 + ε2)
[

M(1 +
ε

J
+ 2ε2) + ε2 − Km

3
(M − 1− ε)(b − a)

]

+ ε2.

(177)
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Thus,

M − ε2 � (1 + ε2)
[

M(1 +
ε

J
+ 2ε2) + ε2 − Km

3
(M − 1− ε)(b − a)

]

+ ε2.

This is true for any ε2, hence as ε2 ↓ 0. Thus,

M �
[

M
(
1 +

ε

J

)
− Km

3
(M − 1− ε)(b − a)

]

.

However, from the definition of J , this implies M − 1− ε � ε. We note that for (ii),
we repeat the above argument for −h̃, which has a maximum at ζm , to conclude that
either (−m)− (−1 + ε) ≤ 0 or (−m)− (−1 + ε) = 1− ε − m � ε. Therefore,

1− 2ε � m � M � 1 + 2ε,

implying that |h̃ − 1| ≤ 4ε.

5. Appendix

5.1. Short proof of the regularity of the unitary propagator.

Theorem 5. Assume that H1 = H + V (x, t), where H is time independent and self-
adjoint, and V (·, t) is in L∞(Rn) for every t and is differentiable in time, with integrable
derivative. Consider the Schrödinger problem

iψt = H1ψ; ψ(x, 0) ∈ D(H). (178)

Then there exists a strongly differentiable unitary propagator on L2(Rn) U (t) so that
ψ(x, t) = U (t)ψ0 ∈ D(H) for all t and ψ(x, t) solves (178).

Proof. We note that it is enough to prove this property on a finite interval [0, ε], since
the problem can be restarted at t = ε. Let y = ψ − e−tψ0. Then y satisfies the inhomo-
geneous Schrödinger equation

iyt = y0e−t + Hy + V y; y0 := iψ0 + Hψ0 + Vψ0, y(0) = 0. (179)

We transform this equation into an integral equation, formally for now. Straightfor-
ward calculations show that

i(eiHt y)t = eiHt e−t y0 + eiHt V y (180)

or (still formally)

iei Ht y =
(∫ t

0
e(i H−1)sds

)

y0 +
∫ t

0
eiHsV (s)y(s)ds

= (i H − 1)−1(eiHt−t − 1)y0 +
∫ t

0
eiHsV (s)y(s)ds (181)

or, equivalently,

iy = (i H − 1)−1(e−t − e−i Ht )y0 + e−i Ht
∫ t

0
eiHsV (s)y(s)ds. (182)
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It is clear that (182) is contractive in the norm supt∈[0,ε] ‖ · ‖L2(R3) for small ε, and has a
unique solution. Clearly, the first term on the right side of (182) is differentiable in time
and the derivative is continuous since e−i Ht is; let u0 denote this derivative.

We now write a formal equation for u = yt . We have

iu = u0 +
∫ t

0
e−i HsV ′(t − s)

(∫ t−s

0
u(s′)ds′

)

ds

+
∫ t

0
e−i HsV (t − s)u(t − s)ds. (183)

This equation is also contractive, and has a unique solution, in the same space. Thus both
sides of (183) are integrable in time. By integration and appropriate changes of variables
and order of integration, we see that

∫ t
0 u(s)ds satisfies the same equation as y, which

has a unique solution. Thus y = ∫ t
0 u(s)ds is strongly differentiable. Since both y and

eiHt y are strongly differentiable (the latter by inspection from (181)), y ∈ D(H) for all
t and is strongly differentiable. It is clear that ψ ∈ D(H) and easy to check that it is
differentiable and satisfies (178). ��

5.2. Laplace transform of the Schrödinger equation. We look more generally at equa-
tions of the form

iψt = Hψ + V (t, x)ψ, (184)

where H is self-adjoint and time independent, and V (x, t) is bounded on R
3 and differ-

entiable and bounded in t , and ψ(x, 0) ∈ D(H). The conditions on V can be relaxed.
(For the purpose of this paper, H would be taken to be HC .)

Proposition 55. Under the assumptions above, the Laplace transform ψ̂(p, ·) ofψ(t, ·)
exists for Re p > 0; it is in D(H) and satisfies

(p + i H)ψ̂ = ψ0 − î Vψ. (185)

Proof. We take the unitary propagator of the time-independent problem,U = e−i Ht and
applyU∗(t) = U−1(t) to both sides of (184). Since (cf. § 1.2)U−1 is strongly differen-
tiable, with derivative iU−1H , and ψ is t−differentiable in L2, U−1ψ is differentiable
and we get

(U−1ψ)t = iU−1Hψ +U−1ψt = −iU−1Vψ. (186)

SinceU−1Vψ is continuous in t , we can integrate both sides and get, after multiplication
by U and using the fact that U−1(t) = U (−t),

ψ = Uψ0 − iU
∫ t

0
U−1Vψ(s)ds = Uψ0 − i

∫ t

0
U (t − s)(Vψ)(s)ds

= Uψ0 − iU ∗ (Vψ), (187)

where ∗ is the usual Laplace convolution. Taking the Laplace transform (which clearly
exists) in (187) and using standard functional calculus we get

ψ̂ = (p + i H)−1ψ0 − i(p + i H)−1̂Vψ, (188)

and thus ψ̂ is a D(H) solution of (185). ��
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Now, from Eq. (7), it follows that ŷ satisfies (9). Furthermore, using (188) and the
fact that y0 and � j are compactly supported, we see that ŷ also satisfies

ŷ(p, ·) = R0χB ŷ0(p, ·)− R0χB

⎡

⎣
∑

j∈Z

� j ŷ( p̂ − i jω, ·)
⎤

⎦ , (189)

where R0 = (HC − i p)−1.

5.3. Analyticity of (I − Cl,m)
−1 in X. This is standard, and can be seen directly from

analytic functional calculus. We provide a self-contained argument, for completeness.
We write CX to emphasize the X− dependence of C, and for simplicity of notation we
drop the (l,m) subscript. We have

(I − CX1)
−1 − (I − CX ′)−1 = (I − CX ′)−1(CX1 − CX ′)(I − CX1)

−1 and

(I − CX ′)−1
[
I + (CX1 − CX ′)(I − CX1)

−1]

= (I − CX1)
−1. (190)

We fix X1 and let X ′ → X1. Since (I − CX1)
−1 is bounded, then ‖(CX1 − CX ′)(I −

CX1)
−1‖ → 0 as X ′ → X1 and

I + (CX1 − CX ′)(I − CX1)
−1 (191)

is invertible when X1 and X ′ are close enough and [I +(CX1 −CX ′)(I−CX1)
−1]−1 → I

in operator norm as X ′ → X1. Thus

(I − CX ′)−1 → (I − CX1)
−1 (192)

in operator norm, as X1 → X ′. Now diferentiability in X follows from (190).

5.4. CoulombGreen’s function representation. The retardedGreen’s functionsG = G+
is defined as the solution of the equation,

A0G(x, x ′; k) = δ(x − x ′) (193)

in distributions, satisfying the radiation condition

G(x, x ′; k) ∼ F(θ, φ)eikr r−1−iν; as r → ∞, (194)

where

k = √
i p (Im k > 0 if Re p > 0), ν = b

2k
. (195)

Equivalently, G is the R
3\{0} solution of (193) with zero right hand side, satisfying

(194) and |x − x ′|G(x, x ′; k) → (4π)−1 as x − x ′ → 0.

Proposition 56.

R0χBg =
∫

B
G(x, x ′; k)g(x ′)dx ′. (196)
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Proof. The function

f :=
∫

B
G(x, x ′; k)g(x ′)dx ′ (197)

solves, as can be checked, the equation

A0 f = χBg (198)

with the radiation condition (194). Such a solution is unique since the difference of two
solutions satisfies the equationA0 f = 0 (with the radiation condition (194)). Multiply-
ing by G(x, x ′; k), integrating over a volume and passing to the limit where the volume
approaches R

3, we see that f ≡ 0. ��
Symmetries of the Coulomb potential −b/r allow for a closed form of G (cf. [26]–

where the sign is chosen differently) in terms of Whittaker functions W and M,

G(x; x ′; k) = �(1− iν)
4π ik|x − x ′|

(
∂

∂ξ
− ∂

∂η

)

Wiν, 12
(−ikξ)Miν, 12

(−ikη), (199)

where Im k > 0 , 2kν = b and

ξ = |x | + |x ′| + |x − x ′|, η = |x | + |x ′| − |x − x ′|. (200)

The Whittaker functions are defined in terms of the Kummer functions M andU by the
relations, see [1], Chap. 13,

Mκ,µ(z) = e−
z
2 z

1
2 +µM

(
1
2
+ µ− κ, 1 + 2µ, z

)

, −π < arg z � π,

Wκ,µ(z) = e−
z
2 z

1
2 +µU

(
1
2
+ µ− κ, 1 + 2µ, z

)

, −π < arg z � π.

(201)

The following integral representation follows from [1], Chap. 13, for the values we are
interested in, z1 = −ikξ , z2 = −ikη, a = 1 − iν, b = 2 (a different “b” than the one
in our Coulomb potential)

Miν; 12 (z) = e− 1
2 z z J (z)

�(1− iν)�(1 + iν)
;Wiν; 12 (z) = e− 1

2 z z I (z)
�(1− iν)

, (202)

where I and J are as defined in (51) and the expression is valid in the regions where the
integrals converge (in particular, |Im ν| < 1). For other values of ν of interest, the inte-
grals can be replaced by appropriate contour integrals. For instance J would be replaced
by

(
1− e−2πν

)−1 ∮

C
ezt t−iν(1− t)iνdt,

where C is a smooth simple curve encircling [0, 1], as it can be checked by calculating
the jump across the cut of the integrand. It follows from these integral representations
that the Green’s function is analytic at any (small) p, Re p �= 0. Substituting (202) into
(199), we obtain (49).
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5.5. Dependence of A in Eq. (56) on Z, p. We now seek to determine the asymptotics
of A in (56) in the resolvent χBRβχB in terms of λ = √−i p and Z = exp [iπb/(2λ)]
for X = (

√p, Z) ∈ D+
ε × D for sufficiently small ε.

Recall the expression A in (56). Note that since

α =
√
λ2 − ic ∼ e−iπ/4c1/2

(
1 + O(λ2)

)
≡ α0 + λ2α1 + · · · , (203)

κ1 = b
2α

= beiπ/4√
c

[
1 + O(λ2)

]
≡ κ1,0 + λ2κ1,2 + , (204)

each of m1(a) and w1(a) is analytic in λ for small λ, with the expansion

m1(a) = 1
r
Mκ1,l+1/2(2αa) ∼ m1,0(a) + λm1,1(a) + · · · , (205)

w1(a) = 1
a

Wκ1,l+1/2(2αa) ∼ w1,0(a) + λw1,1(a) + · · · . (206)

The asymptotics in this case is also differentiable with respect to a and we get similar
expressions as above for m′

1(a) and w
′
1(a). It follows that the expression for f0 in (55)

also possesses a regular series expansion in λ:

f0(a) = f0,0(a) + λ f0,1(a) + · · · . (207)

To simplify A as in (56) for small λ, we now consider the asymptotics of w2(a) and
w′
2(a) for small λ.

5.6. Asymptotics of w2(a), w′
2(a) for small λ. Since w2(a) = 1

aWκ,l+1/2(2λa), with
κ = b/(2λ), it follows from formula (13.1.33) and analytic continuation to larger values
of κ of (13.2.5) of [1], p. 505 and the identity �(x)�(1− x) = π/ sin[πx] that

w2(a) = −e
−iπ(l−κ)e−λa(2λa)(l+1)�(κ − l)

2π ia
H(2λa; κ, l),

where H(z; κ, l) =
∫

C
e−zt t l−κ(1 + t)l+κdt, (208)

where the contour C starts at ∞ei0, circles around the origin once counter-clockwise
to the right of t = −1 and goes to ∞ei2π . In defining the integrand, we choose arg
t ∈ [0, 2π ], arg(1 + t) ∈ (−π, π] so that there is no branch cut on the real axis between
−1 and 0.

It follows from (208) that

w′
2(a)=

(

−λ+ l
a

)

w2(a)+
e−iπ(l−κ)e−λa(2λ)(l+2)al�(κ − l)

2π i
H1(2λa; κ, l),

where H1(z; κ, l) =
∫

C
e−zt t l−κ+1(1 + t)l+κdt. (209)

We now seek to determine H(2λa; b/(2λ), l) and H1 (2λa, b/(2λ), l) asymptotically
for small λ. For that purpose it is convenient to define

ε2 = 2λ
(a
b

)1/2
, τ = ε2t , P(τ ; ε2) = − 1

ε2
log

(
1 +

ε2

τ

)
+ τ, (210)
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where we use the principal branch of log in defining P(τ ; ε2) above. Then, noting that
in the definition of log τ and log (τ + ε2), arg τ ∈ [0, 2π) and arg (τ + α) ∈ (−π, π],
we have

log τ − log(τ + ε2) = − log
(
1 +

ε2

τ

)

for τ in the upper-half plane, while for τ in the lower-half plane, we have

log τ − log(τ + ε2) = i2π − log
(
1 +

ε2

τ

)
.

It is readily checked that

H
(

2λa; b
2λ
, l
)

= bl+1/2

22l+1λ2l+1al+1/2

{∫

C1
τ l(τ +ε2)l exp

[
−√

abP(τ ; ε2)
]
dτ

+ exp
(

− iπb
λ

)∫

C2
τ l(τ + ε2)l exp

[
−√

abP(τ ; ε2)
]
dτ
}

,

(211)

H1
(

2λa; b
2λ
, l
)

= bl+1

22l+2λ2l+2al+1

{∫

C1
τ l+1(τ +ε2)l exp

[
−√

abP(τ ; ε2)
]
dτ

+ exp
(

− iπb
λ

)∫

C2
τ l+1(τ + ε2)l exp

[
−√

abP(τ ; ε2)
]
dτ
}

.

(212)

HereC1 is a contour in the upper-half complex τ -plane from +∞ to−ε2 along a steepest
descent line, passing through the saddle point τs,1 = i(1+o(1)), where P ′(τs,1; ε2) = 0.
The contour C2 is the steepest descent line in the lower-half τ -plane from τ = −ε2 to
+∞ through the saddle point τs,2,= −i(1 + o(1)) where P ′(τs,2; ε2) = 0. We rewrite
w2 and w′

2 as

w2(a)= (−1)l+1e−λabl+1/2�(κ − l)
2l+1

√
aλl

[
ZM1(

√
ab, ε2)+Z−1M2(2

√
ab, ε2)

]
, (213)

where

M1(ζ, ε2) = 1
π i

∫

C1
e−ζ P(τ ;ε2)τ l(τ + ε2)ldτ,

(214)
M2(ζ, ε2) = 1

π i

∫

C2
e−ζ P(τ ;ε2)τ l(τ + ε2)ldτ,

w′
2(a) =

(

−λ + l
a

)

w2(a) +
(−1)l e−λabl+1�(κ − l)

2l+1aλl

×
[
ZM3(

√
ab) + Z−1M4(

√
ab)

]
, (215)

where

M3(ζ, ε2) = 1
π i

∫

C1
e−ζ P(τ ;ε2)τ l+1(τ + ε2)ldτ (216)

and M4(ζ, ε2) = 1
π i

∫

C2
e−ζ P(τ ;ε2)τ l+1(τ + ε2)ldτ.



Ionization of Coulomb Systems in R
3 729

It follows that, with ε2 = 2λ
√
a/b, we have

w′
2(a)

w2(a)
= −λ + l

a
−
(
b1/2

a1/2

)(
Z2M3(

√
ab, ε2) + M4(

√
ab, ε2)

Z2M1(
√
ab, ε2) + M2(

√
ab, ε2)

)

. (217)

5.6.1. Analyticity in ε2

Proposition 57. The functions Mi (
√
ab, ·), i = 1, ..., 4, are analytic near zero.

Proof. We look at M1, the others being similar. We can make a change of variable

q = P(τ ; ε2)− P(τs,1; ε2), (218)

where the function q is real on the steepest descent contour and changes monotonically
from∞ to 0, as we move from +∞ to τ = τs,1, and then increases monotonically again
from 0 to ∞ as we move along the steepest descent path from τ = τs,1 to τ = −ε2.
We denote the two branches of the inverse function τ(q) in (218) by τ1(q) and τ2(q).
Noting that

dP(τ ; ε2)
dτ

= 1
τ(τ + ε2)

+ 1,

we have

M1(ζ, ε2) = e−ζ τs,1
(∫ ∞

0
e−ζq

(
τ l+12 (τ2 + ε2)l+1

τ 22 + 1 + ε2τ2

)

dq

−
∫ ∞

0
e−ζq

(
τ l+11 (τ1 + ε2)l+1

τ 21 + 1 + ε2τ1

)

dq

)

. (219)

It is easy to check that (τi − τs1)
2 is analytic for small ε2, regular in q and nonzero at

ε2 = 0 for all q.
Furthermore, the integrands in (219) are clearly bounded by an L1 function uniformly

in ε2 (see (210) and (218)), ensuring ε2-analyticity of the integrals. ��
Returning to the original variable τ we get

1
π i
M1(

√
ab, 0) = 1

π i

∫

C1,0
e−

√
ab
(
− 1
τ
+τ
)

τ 2ldτ

=
∫ π

0
exp

[
i(2l + 1)θ − 2

√
ab sin θ

]
dθ

= J2l+1
(
2
√
ab
)

− i
[
Y2l+1

(
2
√
ab
)
+ G2l+1

(
2
√
ab
)]

(220)

and
1
π i
M2(

√
ab, 0) = 1

π i

∫

C2,0
e−

√
ab
(
− 1
τ
+τ
)

τ 2ldτ

=
∫ 0

−π
exp

[
i(2l + 1)θ − 2

√
ab sin θ

]
dθ

= J2l+1
(
2
√
ab
)
+ i

[
Y2l+1

(
2
√
ab
)
+ G2l+1

(
2
√
ab
)]
, (221)
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where J2l+1 and Y2l+1 are the usual Bessel functions of order 2l + 1 and

G2l+1(ν) ≡ 1
π

∫ ∞

0

{
exp[(2l + 1)t] + (−1)2l+1 exp[−(2l + 1)t]

}
e−ν sinh t dt

= 2
π

∫ ∞

0
sinh ((2l + 1)t) e−ν sinh t dt, (222)

τs,1 = i

√

1− ε22
4

− ε2

2
= i + Series in ε2. (223)

Thus, asymptotically, to the leading order in λ, we have with ν = 2
√
ab,

−
√
a
b
w′
2(a)

w2(a)

=
[
Z2 (J2l+2(ν)− iY2l+2(ν)− iG2l+2(ν)) + (J2l+2(ν) + iY2l+2(ν) + iG2l+2(ν))

]

[
Z2 (J2l+1(ν)− iY2l+1(ν)− iG2l+1(ν)) + (J2l+1(ν) + iY2l+1(ν) + iG2l+1(ν))

]

× (1 + O(λ)). (224)

The discussion on w′
2(a)/w(a) shows that

A = f0(a)w′
2(a)− f ′

0(a)w2(a)
m′
1(a)w2(a)− m1(a)w′

2(a)
(225)

is an analytic function of the extended parameter set X for X = (√p, Z
) ∈ D+

ε × D as
long as the denominator for A is nonvanishing as λ → 0.

We can prove it is nonvanishing by simplifying the leading order expression in λ for
w′
2(a)/w2(a), defined as w′

2,0(a)/w2,0(a) under the further assumption that a and c (as
in the definition of β) are sufficiently large.

5.6.2. Further simplification for large a. For large a, there is additional simplification
since

J2l+1
(
2
√
ab
)

± iY2l+1
(
2
√
ab
)

∼
(

(−1)l+1
π1/2a1/4b1/4

)

× exp
[
±i

(
2
√
ab +

π

4

)]
, (226)

J2l+2
(
2
√
ab
)

± iY2l+2
(
2
√
ab
)

∼
(

(−1)l+1
π1/2a1/4b1/4

)

× exp
[
±i

(
2
√
ab − π

4

)]
, (227)

and from Watson’s Lemma, we get

G2l+1
(
2
√
ab
)

= O(1/a), G2l+2
(
2
√
ab
)

= O(1/
√
a). (228)

It follows that for large a,

w′
2,0(a)

w2,0(a)
∼ r2
a

(
n1 − Z2

Z2 + n1

)(
1 + O(a−1/2)

)
, (229)
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where

n1 = ie4i
√
ba, Z = exp

[
iπb
2λ

]

, r2 = i
√
ab. (230)

5.6.3. Nonvanishing of the denominator of A in (225) Now, defining

m = m1(a), m′ = m′
1(a), f = f0(a), f ′ = f ′

0(a), (231)

we have to the leading order in λ, for large a,

− A =
r2
[

n1 − Z2 + O(λ)
n1 + Z2 + O(λ, a−1/2)

]

− a f ′

r2m
[

n1 − Z2 + O(λ)
n1 + Z2 + O(λ, a−1/2)

− 3
4r2

]

− am′

= f
[
4r2(n1 − Z2) + O(λ)

]− 4a f ′ [n1 + Z2 + O(λ)
]

m
[
4r2(n1 − Z2) + O(λ)

]− 4am′ [n1 + Z2 + O(λ)
] . (232)

The denominator of A is

D = −m
{

Z2
(

4a
m′

m
+ 4r2 + O(λ)

)

+ n1
(

4a
m′

m
− 4r2 + O(λ)

)}

. (233)

We note that

m≡m1(a)= 1
a

M b
2α ,l+1/2

(2αa)=e−αa(2α)l+1alM
(

l+1− b
2α
, 2l+2, 2αa

)

∼ (2λ)l+1 al
eαa

�
(
l + 1− b

2α
)
[
1 + O

(
αa)−1

)]
for α large, (234)

and for large α in the fourth quadrant

m′ ≡ m′
1(a) ∼ (2α)l+1 alα

eαa

�
(
l + 1− b

2α
)
[
1 + O(αa)−1

]
, (235)

α =
√
λ2 − ic → c1/2 exp

[
−i π

4

]
as λ → 0. (236)

Therefore, D can be zero for large enough c (i.e. large β) only if

Z2
(
2
√
2ac1/2(1− i)

[
1 + O

(
(ca)−1

)]
+ 4i

√
ba
)

= −n1
(
2
√
2ac1/2(1− i)

[
1 + O

(
(ca)−1

)]
− 4i

√
ba
)
+ O(λ).

Taking the absolute square of both sides, we obtain,

|Z |2
(
[2a√2c]2

(
1 + O(c−1a−1) + [4√ab − 2a

√
2c
(
1 + O(c−1a−1)]2

)

=
(
[2a√2c]2

(
1 + O(c−1a−1) + [4√ab + 2a√2c(1 + O(c−1a−1)]2

)
+ O(λ).

This is impossible, since |Z | ≤ 1. This means that for large enough a and c (that is,
β large), D cannot be zero. It means that the resolvent is well-defined as p = 0 is
approached from the closure of H.
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Note 58. Note that the denominator of A in (232) vanishes at points in the region |Z | > 1,
where, as a result, the resolvent Rβ has poles. From the relation between Z and p, it
follows that p = 0 is an accumulation point of a sequence of poles in the left half plane
approaching zero tangentially to iR.

5.7. Stationary phase analysis needed to calculate the ionization rate. We know that
the solution ŷ(is, x) is analytic in the extended parameter

(√
is, Z)

)
, where

Z = exp
[
iπb/

(
2
√
s
)]
. (237)

So, for X =
(√

is, Z
)

∈ D+
ε × D,

ŷ(is, x) =
∞∑

l=0
sl/2Fl(Z). (238)

Consider

G(s) ≡
∞∑

l=4
sl/2Fl

(

exp
[
iπb
2
√
s

])

. (239)

It is clear that G(s) is a C1 function of s in [−a, a]. Integration by parts gives
∫ a

−a
G(s)eist ds = O(t−1). (240)

Now note that

Fl
(

exp
[
iπb
2
√
s

])

=
∑

j≥0
Dj,l exp

[

i
πbj
2
√
s

]

(241)

with Dj,l decreasing exponentially with j , because of analyticity of Fl(Z) for |Z | ≤ 1.
For 0 ≤ l ≤ 3, it follows there exists constants c and C independent of j so that

3∑

l=0
|Dj,l | ≤ Ce−cj . (242)

It follows that for large t , we have

|
3∑

l=1

∞∑

j=[√t]+1
Dj,l

∫ a

−a
exp

[
ibj
2
√
s

]

eist sl/2ds| ≤ C1e−c
√
t . (243)

Further, for large t ,
∣
∣
∣
∣
∣

3∑

l=0
D0,l

∫ a

−a
eist sl/2ds

∣
∣
∣
∣
∣
≤ C2

t
. (244)
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Therefore,
∫ a

−a

3∑

l=0

(
sl/2Fl(Z)

)
eist ds =

∑

0≤l≤3

∫ a

−a
sl/2Fl(Z)eist)ds (245)

∼
∑

0≤l≤3

[√t]∑

j=1
Dj,l

∫ a

−a
sl/2 exp

[

i
{

st + j
πb
2
√
s

}]

ds

+O
(
1
t

)

.

We first evaluate the terms of the form
∫ a

−a
sl/2eits+id j /

√
sds (246)

for large t , where

d j = jπb
2
.

The contribution from
∫ 0
−a is obviously small, at most O(1/t), uniformly for all t , since

the integrand vanishes exponentially as s → 0−. Sowe only consider, for 1 ≤ j ≤ [√
t
]
,

∫ a

0
sl/2eits+id j s

−1/2
ds. (247)

We have a point of stationary phase at s = s0, j , where

s0, j =
(
d j
2t

)2/3
. (248)

Note that s0, j � 1 for t large since j is restricted to j ≤ √
t . It is then convenient to

rescale s = s0, j q, to obtain

s1+l/20, j

∫ a
s0, j

0
exp

[
iν j

(
q + 2q−1/2)] ql/2dq, where ν j = 2−2/3

d2/3j
t1/3. (249)

Using standard stationary phase arguments we obtain that, for large t , and hence large
ν j ,

|s1+l/20, j

∫ a/s0, j

0
exp

[
iν j

(
q + 2q−1/2)] ql/2dq −

√
2πsl+1/20, j eiν j

√
ν j

e−iπ/4|

≤ C
s1+l/20, j

ν j
. (250)

For large t , the dominant contribution comes from the term with l = 0 and so
∣
∣
∣
∣
∣
∣

∫ a

−a
ŷ(is, x)eist ds−

[√
t
]

∑

j=0
Dj,0

√
2πs0, j eiν j√

ν j
e−iπ/4

∣
∣
∣
∣
∣
∣
≤Ct−1

[√
t
]

∑

j=0
e−cj ≤C1t−1. (251)
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The sum over j is clearly convergent because of the exponential decay of Dj,0; hence[√
t
]
in the upper limit can be replaced by ∞. From the definition of s0, j and ν j , it

follows that
∫ a

−a
ŷ(is, x)eist ds = O

(
t−5/6

)
. (252)

At all other singular points, p = inω, n ∈ Z, the behavior is similar, and a similar
calculation gives a einωt t−5/6 contribution. Since Y ∈ H, there is sufficient decay in n
to ensure that the sum over all such contributions is convergent.

5.8. Calculation of jk . Substituting the explicit expressions for mk(r) and m(k−1)(r),
it may be checked that in both cases, τ = 0 and τ = 1, corresponding to (i) and (ii)
respectively

jk = k2α2s(r) j (2)k + kα2s(r) j (1)k + j (0)k , where (253)

j (2)k = 4�
α2s2

(

1− H(αk)H(ζ − ζ/k)
H(α(k − 1))H(ζ )

)

+
H ′′(ζ )
H(ζ )

− l(l + 1)
ζ 2

− 4
√
�(r)

αs(r)
H ′(ζ )
H(ζ )

,

j (1)k = −2(1− 2τ)�
α2s2

(

1− H(αk)H(ζ − ζ/k))
H(α(k − 1))H(ζ )

)

+
b
αζ

+

[

−2τ
√
�

αs
+

ωs

2
√
�α

− �′

2α�

]
H ′(ζ )
H(ζ )

,

j (0)k = 5s�′2

16�2 − ωs2�′

4�3/2 − s�′′

4�
− (1 + 2τ)

4
ωs +

ω2s3

16�
− (ωn0 − i p1)s,

where s(r) = ∫ 1
r

√
�(s)ds, ζ = kαr and jk := s[Lkmk − �mk−1]/mk . Recall that

H(ζ ) satisfies

H ′′ = 2
(

1− ω

2kα2
+
�′(0)(1 + 2ζ )
4kα�(0)

+
τ

2k

)

H ′ +
(
l(l + 1)
ζ 2

− b
αζk

)

H, (254)

where

α = 2
√
�(0)
s(0)

, (255)

and that H(ζ ) has the following asymptotic behavior:

H(ζ )∼1+
l(l+1)
2ζ

+
b
2kα

log ζ +O
(
log ζ
kζ

,
1
ζ 2

)

, (ζ, k → ∞, , ζ ≤kα) . (256)

Now, we claim that for any r ∈ (0, 1), | j (2)k +k−1 j (1)k | ≤ Ck−2. In the regime r � 1,
we use Taylor expansion:

� = �(0) +�′(0) ζ
kα

+ O
(
1
k2

)

, s = s(0)−√
�(0)

ζ

kα
+ O

(
1
k2

)

(257)

and substitute r = ζ/(kα) in j (2)k + k−1 j (1)k ; we then use α = 2
√
�(0)/s(0), (254)

and the asymptotic behavior (256) to evaluate H(αk) and H(α(k − 1)) to find j (2)k +
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k−1 j (1)k ∼ k−2g(ζ ) for some bounded differentiable function g(ζ ), with asymptotic
behavior g(ζ ) ∼ const./ζ for large ζ . When r is not small, we use the asymptotic
behavior (256) to evaluate all terms involving the function H and to find the same
inequality | j (2)k + k−1 j (1)k | ≤ Ck−2.

Therefore, jk(r) = O(1) in all regimes. Further, it is easily checked that in the
regime k � ζ � 1, jk(r) = O

(
1, ζ−1) = O(1/(kr), 1). Since the asymptotics is

differentiable (since H satisfies a second order differential equation), it follows j ′k(r) =
O(k−1r−2, 1). When r is not small, using (256), it is readily checked that j ′k = O(1).

5.9. Generalizations. In fact, the same asymptotic arguments hold more generally if

V (t, x) =
M∑

j=−M
ei jωt� j (r)

with � j (r) satisfying the conditions we used for �. We substitute for r = O(1),

gn0−k(r) = c∗
�(2k/M + 1)

exp

⎡

⎣k log f0(r) +
M∑

j=1
k1− j/M f j (r)

⎤

⎦ ,

and calculate the error term Rk as before. By requiring that the O(k2−2 j/M ) terms vanish
for j = 0, ..,M , we obtain (M + 1) first order differential equations for f j . To leading
order

f0(r) =
[∫ 1

r

√
�−M (s)ds

]2/M
.

The expressions for f j (r) for j � 1 aremore complicated and involve arbitrary constants
to be determined from the information for small k at r = 1. Again because of the pres-
ence of r−2l(l + 1) in Lk , the remainder is O(r−2), which is O(k2) when r = O(k−1).
We write

gn0−k(r) ∼ c∗ exp

⎡

⎣k log f0(r) +
M∑

j=1
k1− j/M f j (r)

⎤

⎦ H(αkr)
�(2k/M + 1)

. (258)

Then, if ζ = O(1), we find to leading order H(ζ ) ∼ H0(ζ ), where

H ′′
0 − 2H ′

0 − l(l + 1)
ζ 2

H0 = 0,

where now α = 2
√
�−M (0)/s(0) and s(r) = ∫ 1

r
√
�−M (s). As for M = 1, we have to

require H0(ζ ) ∼ 1 as ζ → ∞. This leads to

H0(ζ ) =
√
2
π
eζ ζ 1/2Kl+ 1

2
(ζ ).

For nonzero gn0−k , the constant multiple in (258) is expected to be nonzero. On the other
hand, the asymptotic behavior as ζ ↓ 0, H0(ζ ) ∼ c∗ζ−l implies that the behavior at
r = 0 of gn0−k/r is not acceptable unless every gn vanishes identically.
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*
The analysis is likely to extend to systems with HC replaced by

HW = −�− b/r +W (r),

where b may be zero and W (r) = O(r−1−ε) for large r and is in L∞(R3). Under these
assumptions, W (r) does not participate in the asymptotics, to the orders relevant to the
proofs.

5.10. Further remarks on the asymptotics.

Remark 59. A weaker statement than Theorem 4 suffices to complete the proof of The-
orem 1. For instance, it suffices to show that for sufficiently large j , |Rk, j | < 1, where

rl+1vn0−k j (r) = i k j r lmk j (r)[1 + Rk j (r)].

Remark 60. Stronger results than those in Proposition 36 hold.Noting that for any integer
q � 0 we have

‖Ak j+q ...Ak j+2Ak j+1Ak j [h̃ − 1]‖∞ �
∞∏

q ′=0

(

1 +
c∗

(k j + q ′)2

)

‖h̃ − 1‖∞,

while

Ak j+q ...Ak j+2Ak j+1Ak j [1] = 1 + O(k−1
j ),

and the fact that ‖Hk j+q h̃‖∞ � c∗k−2
j , it follows that the sequence h̃k , satisfying

h̃k = Ak h̃k−1 +Hk h̃k+1,

has the property limk→∞ h̃k = 1. Indeed, this is in accordance with the heuristic argu-
ments presented in § 5.9. While these results completely justify the formal asymptotics,
they are not needed in the proofs and we omit the details.
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