Commun. Math. Phys. 296, 681-738 (2010) Communications in
Digital Object Identifier (DOI) 10.1007/s00220-010-1023-x Mathematical

Physics

Tonization of Coulomb Systems in R3
by Time Periodic Forcings of Arbitrary Size

0. Costin!, J. L. Lebowitz>>, S. Tanveer!

1 Department of Mathematics, Ohio State University, 231 West 18th Ave.,
Columbus, OH 43210, USA.
E-mail: costin@math.ohio-state.edu

2 Department of Mathematics, Rutgers University, 110 Frelinghaysen Rd.,
Piscataway, NJ 08854, USA
Department of Physics, Rutgers University, 136 Frelinghaysen Rd.,
Piscataway, NJ 08854, USA

Received: 5 May 2009 / Accepted: 3 October 2009
Published online: 7 March 2010 — © Springer-Verlag 2010

Abstract: We analyze the long time behavior of solutions of the Schrédinger equation
iV, = (—A—=b/r+V(t,x)¥,x € R3,r = |x|, describing a Coulomb system subjected
to a spatially compactly supported time periodic potential V (¢, x) = V (¢t + 27 /w, x)
with zero time average.

We show that, for any V' (¢, x) of the form 2Q () sin(wt — ), with € (r) nonzero on
its support, Floquet bound states do not exist. This implies that the system ionizes, i.e.
P(t,K)= fK [ (t, x)|?dx — 0ast — oo for any compact set K C R3. Furthermore,
if the initial state is compactly supported and has only finitely many spherical harmonic
modes, then P (¢, K) decays like /3 as t — oo.

To prove these statements, we develop a rigorous WKB theory for infinite systems
of ordinary differential equations.
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1. Introduction and Overview of Results

The long time behavior of solutions of the Schrodinger equation of a system with both
discrete and continuous spectrum subjected to a time periodic potential is a longstand-
ing problem. Powerful results have been obtained under various assumptions on the
potentials, see [5-8,21,32,34,36,37], and references therein. In particular, there are
conditional results on the ionization of the Hydrogen atom, subjected to an external
time-harmonic dipole field V' (¢, x) = E - x cos wt if E is sufficiently small, see [43,44].
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In addition, Méller and Skibsted proved the equivalence of absence of point spectrum and
ionization for a large class of such systems subject to periodic fields [32]. There are also
detailed results about the behavior of the wave function for systems subjected to general
time periodic potentials, decaying faster than »~2, under the additional assumption of
absence of point spectrum of the Floquet operator, see [20].

None of these results however prove or disprove ionization of Coulomb—bound par-
ticles subject to time-periodic forcing of fixed amplitude and zero average. In fact,
such results have only recently been obtained even for simple model systems, see [11—
13,15,16,30] and references cited there. For a periodic dipole field of nonzero average
ionization was proved in [33] (we note that the time averaged Hamiltonian has no bound
states in this seetting).

What experiments and simplified models show is that the behavior of systems with
both discrete and continuous spectrum, subject to time-periodic fields of arbitrary
strength, can be very complicated. For amplitudes where perturbation theory is not
applicable (such fields are becoming of increasing practical importance in technology),
qualitative departures from the behavior at small fields are observed. There are even
situations, see e.g. [12], where for small enough fields ionization occurs for all ini-
tial states while for larger fields there exist localized time—quasiperiodic solutions of
the Schrodinger equation, i.e. Floquet bound states. Though these situations are rather
exceptional, constructive methods of analysis are required to determine the outcome in
specific settings.

In this paper we prove ionization for Coulomb systems with very special (non-dipole)
type of forcings of arbitrary magnitude. This is equivalent to establishing the absence
of point and singular continuous spectrum of the corresponding Floquet operators. We
also obtain the large time behavior of the wave function. The time decay of the wave
function, for compactly supported initial conditions, is of order =%/, This differs from
the 1 =3/2 or, exceptionally, # ~'/2 power law found for shorter range reference potentials,
see [15,20]. The nonperturbative methods include the development of rigorous WKB
techniques for infinite systems of ODEs.

1.1. The Coulomb Hamiltonian. In units such that A2/2m = 1, the Coulomb quantum
Hamiltonian of a Hydrogen atom (more generally a Rydberg atom) is

He=-a-"2, (1)
r

where b > 0,7 = |x|, x € R3 and A is the Laplacian. It is well known, see e.g. [28],
that Hc is self-adjoint on the Sobolev space H*(R3) = D(—A), the domain of —A (cf.
also [28], p. 303). The spectrum of Hc consists of isolated eigenvalues E,, = —b?/4n?,
with multiplicity 72, and an absolutely continuous part, [0, 00).

1.2. Setting. Our starting point is the time evolution of the wave function ¥ (¢, x) of the
Hydrogen atom described by the Schrodinger equation

iV = Hoy +V({t, x)¥; ¥ (0,x) = yo(x) € H*(RY), )
where V(t,x) = Z Q; (x)e' /" is real valued and €2 = 0.
JEZL
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The operator Hc + V (¢, x) satisfies the assumptions of Theorem X.71, p. 290, in [31]
v.2.; Theorem X.70, p. 285 also applies in our setting. Thus, for any ¢, ¥ (¢, -) € H2(R3),
and the unitary propagator U (¢) for (2) is strongly differentiable in ¢; see § 5.1 for a
short proof in our case.

Assumption 1. The Q;(x), j € Z are smooth inside a common compact support, cho-
sen without loss of generality to be the ball B C R of radius 1, and Zjez(l +
17 DIS2) 1 Lo B,y < 0.

1.3. lonization. We say that the system ionizes if the probability to find the particle in
any compact set vanishes for large ¢, i.e., for any @ > 0 we have

P(t, Ba):/ W, x)[>dx — 0 as t — oo, (3)
Ba

where By = {x : |x| < a}. To prove ionization, it clearly suffices to prove (3) for all
a>1.

A simple way in which ionization may fail is the existence of a solution of the
Schrédinger equation in the form

V(t, x) = v(t, x) with ¢ € Rand v € L?([0, 27 /w] x R?) time-periodic. (4)
Substitution in (2) leads to the equation:
Kv = ¢v, (5)

where
0 1
=j— —(—-A— +
K lat ( A —br V(t,x)) (6)

is the Floquet operator, densely defined on L2 ([0, 277/w] x R3); 0 # v € L? implies by
definition that ¢ € o, (K), the point spectrum of K.

Somewhat surprisingly, in all studied systems, o, (K) # ¥ is in fact the only possibil-
ity for ionization to fail. As we will show this is also true for (2). The proof of ionization
also implies that K does not have any singular continuous spectrum. This turns out to
be a consequence of the existence of an underlying compact operator formulation, the
operator being closely related to K. Generic ionization is then expected since L? solu-
tions of the Schrodinger equation of the special form (4) are unlikely. We prove that for
V(t,x) =2Q(r)sin(wt —0), 2 > 0on [0, 1] and sufficiently smooth, they do not exist.

1.4. Laplace space formulation. For € H?(R?), the Laplace transform
R o)
W= [ e
0

exists for p € Hi, the right half complex plane, and the map p — U( p, ) is H? valued
analytic in Re p > 0. The Laplace transform converts the asymptotic problem (3) into
an analytical one.
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To improve the decay in p of the Laplace transform, it is convenient to write
Y, x) = Yo(x)e +y(t,x). (7
Now, y(¢, x) satisfies
iyi—Hey—V (t, x)y=e"" [iot Howro+ V (1, ))¥o]= =0, x): p(0,x)=0. (8)

Standard arguments (see Appendix 5.2) show that the —Laplace transform of y, y is in
H? and satisfies

(He —ip)§(p.x) = 5°(p, x) = D_ Q;(0)(p — ijw, x), ©)
JEL
where
~0 B I Q;(x)o(x)
y (P,x)——1+p(”/f0+HC1ﬂ0)—Zm~ (10)

JjEZ

1.5. The homogeneous equation and the PDE-difference equations. The homogeneous
system associated to (9) is

(—A—b/r —ipyw(p,x) == > Q;@w(p—ijo,x). (11)
JEZ

Note 2. (i) Clearly, (9) and (11) couple two values of p only if (p1 — p2) € iwZ, and
are effectively infinite systems of partial differential equations. Setting

p = p1 tinw, with p; € Cmod (iw), (12)
we denote
ya(p1.x)=P(p1+inw, x), y9(p1, x) =" (p1+inw, x), w,(p1, x) =w(p +inw, x).

Equations (9) and (11) now become

(He = ip1+no)y, = y) = > Q;(5)yn-j, (13)
JjEL
(He —ip1 +no)w, = — > Qj(x)w,— ;. (14)
JEZ

Note 3. Seen as a differential difference equation, the solution y(p, x) is then a vector
{vn(p1, X)}nez and the whole problem depends only parametrically on p;. We have

yn(p1+iw,x) = ype1(p1, x), (15)
and the analysis can be restricted to
So={peH:Imp € [0,w)},

where H is the closure of H. There is arbitrariness in the choice of Sy and, to see ana-
lyticity in p; on dSy, it is convenient to allow p; € H, using (15) to identify different
strips of width w.
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2. Main Results

Theorem 1. Assume V (¢, x) = 2Q(r) sin(wt —0), with Q(r) =0forr > 1, Q(r) >0
Jorr < 1and Q(r) € C®[0,1]. Then 0,(K) = ¥ and ionization always occurs.
Furthermore, if Yo(x) is compactly supported and has only finitely many spherical
harmonics, then P(t,Bg) = O(t73/3).

For the proof, given in § 3.10, § 3.11 and § 4.6, we develop a relatively general rigor-
ous WKB theory for infinite systems of differential equations. This yields the asymptotic
behavior of w, as n — —oo. The argument relies on Theorems 2 and 3 below.

Remark 4. The condition 2(17) # 0 simplifies the arguments but these could accom-
modate an algebraically vanishing 2. (We also note that some one-dimensional models
with rough €2 such as a § mass show failure of ionization, see [12,30 and 35].)

We will later derive equivalent systems of integral equations, (22), allowing for a
compact operator reformulation of the problem.

Theorem 2. In the setting § 1.2, assuming spherical symmetry in x of the forcing V (t, x),
ionization occurs iff for all py € H, (14) has only zero H* solutions decaying in n'V).
This is true iff 0, (K) = 0.

This extends results about absence of singular continuous spectrum of K, [20], to
this class of systems, with Coulombic potential and nonanalytic forcing.
The proof'is given in § 3.2 and § 3.8.

Properties of Floquet bound states for general compactly supported V (t, x).

Theorem 3. If there exists an H* nonzero solution w of (14) decaying in n," then it has
the further property

wy, = Xg,w, forall n <0 (16)
with X 4 the characteristic function of the set A.

The general idea of the proof is explained in § 3.9 and the details are given in § 4.7.

Note 5. (i) The Sobolev embedding theorem implies that w,, is continuous in x. From
(14), w, is piecewise C2, implying continuity of Vw,, up to 9B;.
(i1) Equation (16) makes the second order system (14) formally overdetermined since
the regularity of w in x imposes both Dirichlet and Neumann conditions on 9B
for n < 0. Nontrivial solutions are not, in general, expected to exist.

3. Proofs

Outline of the ideas. As in our previous work [10—15], summarized in [18] on sim-
pler systems, we rely on a modified Fredholm theory to prove a dichotomy: there are
bound Floquet states, or the system gets ionized. Mathematically the Coulomb potential
introduces a number of substantial difficulties compared to the potentials considered
before (for references, see e.g. [15]), due to its singular behavior at the origin and, more
importantly, its very slow decay at infinity.

! For precise conditions, see §3.4 below and the integral form (22).
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The slow decay translates into potential-specific corrections at infinity, and standard
general methods to show compactness in weighted spaces of the Floquet resolvent, such
as those in [20], or our previous ones do not apply. Instead, the asymptotic behavior in
the far field of the resolvent has to be calculated in detail. The accumulation of eigen-
values of increasing multiplicity at the top of the discrete spectrum of H¢ produces an
essential singularity at zero of the Floquet resolvent with a local expansion of the form
> p!2eii4=iD) ™ for small p when Re p > 0, where 4 = 7b/2. For sufficiently
rapidly decaying potentials the exponentials would be absent. Their presence clearly
makes the analysis at p = 0 of the Floquet resolvent more delicate and is responsible
for ths%change in the large time asymptotic behavior of the wave function, from ¢~3/2
totr /7.

We introduce an extended parameter X = (p!/?, /4P )7]/2) and prove analyticity
of the solution p in X, whose p-counterpart is p small, Re p > 0, and similarly in
regions near the special points p € iwZ. We reformulate the problem in terms of an
integral operator €, defined in § 3.4, closely related to the Floquet resolvent, shown to
be compact in a suitable space and analytic in a variable corresponding to X. Then, by
the Fredholm alternative, (/ — ¢)~! is meromorphic, and in fact analytic in X, since we
show absence of eigenvalues of / — ¢ for any p € H.

3.1. The Hilbert space H. Let ‘H be the Hilbert space of sequences ¥ = {y,},ez,
yn € L2(By), with a > 1, and with

2. 2 4/3 2
Y17 == 1715 = D A+ 1D Iyallf g, < 00
nez

Note 6. The properties of (I — €)' as Re p; — 0" ensure that ¥ (py, -) € HU H? and
is locally integrable in p; along iR.

We then extend the stationary phase method to such a setting, cf. § 5.7, to evalu-
ate, asymptotically for large 7, the inverse Laplace transform of y on iR and obtain the
ionization result and time decay estimates.

To show ionization we then have to rule out the existence of a point spectrum of the
Floquet operator, that is the existence of nontrivial solutions of (14). We use the general
criterion in Theorem 3 to show that, if there exists a nonzero solution to (14), then a
subsequence of {w), },c_n would be singular at x = 0, in contradiction with Note 5, (i).

To find the behavior of solutions for large n, we develop a WKB theory for infinite
systems of ODEs and find the asymptotic behavior of w,, in n in detail. The formal WKB
calculation of the behavior is straightforward algebra, relatively easy even in much more
general settings, see § 5.9. Justifying the procedure is however delicate, and a good part
of the paper is devoted to that; cf. § 4.11, § 4.12.

The procedure of introducing an enlarged set of parameters with respect to which
the solution is regular, when this does not hold in the original parameter, should also be
applicable to other problems where complicated singularities arise.

3.2. Proof of Theorem 2. We show that y has a limit in L}oc on 0H = iR, where it is
smooth except for possible poles and a discrete set of essential (but L ') singularities.
Poles are present iff the integral form (22) of (11) has nontrivial solutions in . There is
sufficient decay in p at infinity, so that, when poles are absent, the Riemann-Lebesgue
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lemma applies, implying that y decays as ¢ — oo, proving ionization—since o (x)e ™’

obviously goes to zero in this limit. More detailed analysis of the resolvent reveals the
nature of the essential singularity at p = iwZ. Stationary phase analysis shows a ¢ /6
decay of the wave function if the initial condition is spatially compactly supported and
contains only a finite number of spherical harmonics.

Proposition 7. Jonization holds for every Vo € L? iff it holds for any Yy in a set densely
spanning L>.

Proof. We make use of the standard triangle inequality argument to estimate U (¢) v,
where U (¢) is the unitary operator associated to the Schrédinger evolution (2). O

We choose 1 in a dense set C2° (R3), the smooth, compactly supported functions in
R3. Define as usual the angular momentum operators

, ¥ 1 a3 1 @
+ +

o W tan@% sin29W

and

L ; 0

=—i—.

z a¢

Let P, be the orthogonal projector on {¢ : L3¢ = I(l + 1)¢, L.¢p = m¢} for some
me€Z,|m| <l eNUJ{0}.

Since >, Pm = 1, we can now assume without loss of generality that
Yo € P (Cfo (R3)) if  and m are arbitrary. Likewise, if P(¢, Ba) decays like /3
when Yo € P (C o0 (R3)), then the same decay rate clearly holds for any vy given by
a finite linear combination over (/, m) (but not, in general, for any ¥o € L*(R3)).

Further notations. As usual we write D, = {z : |z] < €}, D = D; and we denote
DI =DeNfz : argz € (—m /4, w/4)}. Wealsolet Z, = i[—e, 0], H™ = {p+c: p € H]},
ly = {p : Re(p) > 0,Im(p) = «} and for a set 4, A\y, = A\Ly. We denote
D = HUiR", and O(D) will denote some small open neighborhood of D.

3.3. Step 1. Compact operator reformulation. To investigate the analytic properties of
¥ it is convenient to introduce a new operator .Ag which is a complex perturbation of
Hc, having no real eigenvalues. More precisely, define

Ap:=Hc—ip(p)Xg,(r)—ip; (with the understanding that Aq=Hc—ip), (17)
where a > 1 and

c>0 iflmpe[—e plandRep >0

B=pBp) = [ (18)

0 otherwise

Here € < w/2 is small as required in Proposition 17 below, and we choose p. so that
pe/w ¢ Z and p. > —Eq = b*/4, the ground state energy of the unperturbed atom.
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Clearly Ag is defined on D(Hp) and Ay = A_g +ip* +ip. We rewrite (13) and (14) in
the equivalent form

[He—ipi+no—iB(p) X8, ()] ya =y)—iB(P) X8, ()yu— D Q;(X)yu—j, (19)
JEL
[He —ip1 +nw — iB(p) X, ()] wn = —iB(p)XB,Hwy — D Qj(X)w,—j.  (20)
JEL
We show next that AEI is analytic in p € H\{£,, U £_.}, and sufficiently regular on
iR. Since the parameter p. is artificial, the non-analyticity at £, U £_. of Algl is not
reflected in the actual solution p, as discussed in Note 9.

Proposition 8. There exists an open neighborhood O of D\ {Epc Ul_e } not containing
the origin 0, such that the operator Rg = Agl exists and is analytic in p € O\({p, U
L_¢). Furthermore, for any p for which Rg exists, we have Rg : L*(R3) — H? (]R3).

The proof'is given in § 4.1.

3.4. Restriction to a ball B, Definition of €. To study ionization, we only need to know
y(t, x) for x in a fixed (but arbitrary) ball B, > Bj. Henceforth, to simplify the nota-
tion, we write B, = B. We shall therefore need to study the properties of X gfRgXB.
This sandwiched operator (which preserves information about L2 (R3) through built-in
boundary conditions on dB) is the one that we shall most often use below. We recall that
p = pi1+inwand y(p| +inw, x) = y,(p1, x). Since 2;(x) = XL, (x), (13) implies
that for x € B,

yu(p1.x) = XaRpy) + XeReXe | —iBya(p1.x) — D Qix)y—j(pr.x) |, (21)
JEZL

where we may assume that B contains the support of v¢(x), and therefore of yg. Note
that g depends on n through p = inw + p;. Corresponding to (21), we obtain the
homogeneous system:

w(p1,x) = XaRpXp | —iBwa(pr.x) — D Qi@ w,j(pr.x) [ (22)
JEL
The elements of H will be denoted by capital letters, e.g. {yu},ez =: Y, {yn}, . =:
Yo. We define the operators T on L?(B) by
(Yo}, = XRpy).
and ¢ on H by

(€Y}, = XBRpXB | —iBya(p1,x) — D Qj@)yu—;(p1,x)
JEZL
Then, we rewrite (21) in the form
Y =%V, +CY. (23)
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Note 9. We shall see that for any S satisfying (18), Eq. (23) has a unique solution in H
(call it now Y ®). Thus, away from the artificial cuts, all these solutions coincide (since
the domain of Y@ corresponding to ¢ = 0, contains all of the others). Hence, wherever
some Y#) has analytic continuation, so will ¥(®.

The homogeneous system corresponding to (23) is given by
w = Cw. (24)

Note 10. We have shown (cf. § 1.4 and § 5.2) that g@ and the Laplace transform p(p, -) =
L (1// - woe’t) exist for Re p > 0. The corresponding ¥ = {y,}, y» = p(inw + p1, -),
restricted to B, will therefore satisfy (23) for 8 = 0 when Re p; > 0. It will be shown
that (23) has a unique solution ¥ € H for any Re p; > 0, and that Y is analytic in
p1 € Hand has an L }O . limit on iR, with sufficient decay in n. The implied decay and
regularity properties of $(p, -) on iR show that £L~'$ + ¢4 (the integration contour
taken to be iR) equals ¢ for x € B.

Proposition 11. (Asymptotic behavior of XgRg X g). I[fRe p = 0 and |Im p| — oo (see
Note 3), then | XgRp Xl = O(|p|~'/?) (recall that B = 0 if |Im p| is large). Moreover
Jorany € > 0, X pRg X p is analytic in p in an open set containing —i (€, 00).

For Im p — +oo, the |p|~!/? decay rate follows from the spectral theorem since we
are outside the spectrum, while for Im p — —oo, the rate is obtained using Mourre
estimates [27], Theorem 6.1. The rest of the proof involving analyticity is given in § 4.3
and relies on an explicit representation of the resolvent for Hc, see § 5.4. Using spherical
symmetry, the explicit Green’s function could be avoided, but in view of possible future
generalizations to non-spherical ¥ (¢, x), we prefer this more delicate approach.

Lemma 12. We have Yy € H. The operators S := Y — {ZjeZ Q;(X)yn—j(p1, X)}nez
and € are bounded in 'H.

Proof. We note from Proposition 11 thatRg = O (|p|_1/2) for large p,i.e. O (|n|_1/2)

for large |n|, since p = inw + p1. Therefore, from the expression of j/,(,) in (10),

> A+ DY), 1P

nez

<D A+ np*? ||Xsm,sxs||[
nez

l[¥oll 2 + ||AWO||L2i|

1+ p1+ino

2
€212

[1+p1+in — jol

+IXsReXalllvoll2 D

JEZ
2
11€21l 2
<C l-&-z(l-i-|n|)6/7 E —_—
—~ (1+|n—JjD
nez JEZL

Using (7.12) and (7.13) in [15] with y = 6/7, the above is finite since

D AFDTIQ 2 < DA+ 1D 2 < 0.

JjeZ J€EZ
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The proofthat G is the same as that of Lemma 27 of [15], with y = %, replacing absolute
values by norms in x. Since JRg is uniformly bounded (in the operator norm) and acts
diagonally in n, € is bounded too. O

Lemma 13. Both Y, and the operator € are analytic in p for
p1eC)Cﬁ\ﬂ@k+in}U{&{+in}U£Q%ﬁwZH).

Proof. Propositions 8 and 11 imply that JRg is analytic in p € O\{£,, U £_} and in
an open set containing —i (€, 0o). Analyticity of TY and € follow from their definition
(we note € is a norm limit of analytic operators: its restrictions to the subspaces with
nonzero components for [#| < N only). O

Remark 14. As shown later, (I — €) is invertible. Since the solution Y cannot depend
on the arbitrary parameters € and p. (see Note 9), the non-analyticity of € and Y for

p1 € {lp, TiwZ} U {l_¢ +iwZ}U{L +iwZ}
is not reflected in Y.

Proposition 15. For Re p; > 0 large enough, (23) has a unique solution in 'H. The
inverse Laplace transform in p of y(p,x) =: y,(p1,x), where p = inw + pj, solves
the initial value problem (8) in B (see Note 10).

The proof'is given in § 4.2.

3.5. Step 2. Regularity of Rg 1 m at p = 0 and of €, at py = 0. Define Rg; » =
PmRgand &, = P €.

Note 16. (Compactness versus regularity of g ; ). The term —if X g was introduced

in § 3.2 to ensure that M4/, is bounded in HL. Since —if X g is localized in x, the shifts
in the poles created by the point spectrum of H¢ are smaller as p — 0 (the size of the
orbitals of the Hydrogen atom grows when the energy approaches zero.) The resulting
integral operators have an essential singularity at p = 0. The factor X g is needed to
ensure compactness, simplifying the analysis.

The poles of the resolvent Mg, accumulate at p = 0 from —IH, along a curve
tangent to the positive imaginary p-axis (see Note 58 in §5.6). As a result, while being
uniformly bounded, $g; , is not continuous along the imaginary p line at zero but
oscillates without limit. Boundedness of Xgg; » X g (Which is not difficult to prove)
does not ensure boundedness of the solution Y. However, we do have analyticity in an
extended, two-dimensional, parameter. Let A := /—ip (with the usual branch of the
square root, Imi < 0 if p € H) and let X := (p'/?, Z) with

inh

Z=e. 25)

(The dependence of Z on A reflects the actual behavior of the solution.) The resolvent
is analytic in X and a useful Fredholm alternative can be applied.

For any @ > 1 we can choose a ¢ in (18) (see § 4.4 below) such that the following
statement holds.
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Proposition 17 (Analyticity in X). XgRg ;X is analytic with respect to X on the
compact set E x D.2

The proof is given in §4.4.
As a corollary, we have the following regularity property of ¢; ,, and %, ,,, Yo. Let

S_e={p:Imp e[—€,w—¢€), Rep >0} (26)

Corollary 18. For py €S_., define X1 = (p}ﬂ, Zl), where Zy=exp [inb/ (2/=ip1)]

Then, %) Yo and €, are analytic in X1 on the compact set }DT: x D.

Proof. Note first that Propositions 8 and 11 and the relative arbitrariness in the choice
of p. and € imply that X gfgX p is analytic in p in a neighborhood of p = inw,
n € Z\{0}. Since for large |n|, X g X p = X pPRoX 5, its expression as an integral
operator involving G in (49) (see Note (28) as well) implies a lower bound of the analy-
ticity radius independent of ». For sufficiently small € for any n € Z, including n = 0,
then, analyticity of X 3Rg X p in the expanded variable

. inh
(\/p_—mw, exp [Qm)})

follows in the domain

{Ip —ino|'? < €

ith
e"p[am)}‘ = 1]

(since Proposition 17 gives analyticity X € IDTZ x D). Analyticity of &; ,, in X € ]DT;’ xD
now follows since ¢; ,, is the norm limit of analytic operators (the restrictions of ¢; ,,
to the subspaces of H with zero components for |n| > N). (See Proposition 11 for the
necessary estimates of decay in N.) The analyticity of ¥; ,, Yo follows from its definition.

]

3.6. Compactness.
Proposition 19. ¢, , is compact in H (cf. Note 2) for p1 € H.
The proof is given in §4.5.

3.7. Step 3. The Fredholm alternative. We can now formulate the ionization condition
using the Fredholm alternative.

Proposition 20. If(24) has no nontrivial solution in 'H for py € S_¢, then (I — @1,,”)71
exists and the system ionizes (cf. (3)).

2 As usual, by analyticity in a compact set, we mean analyticity in some open set containing the compact
set. Analyticity in D x D of course, implies that X BRB.1.m X g is given by a convergent double series in
inh

p]/2 and e 2% .
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The first part is simply the Fredholm alternative. lonization follows from the follow-
ing proposition. We recall that (p; +inw, x) = y, are the components of Y.

Proposition 21. Assume (24) has no nontrivial solution when p, € Lﬁ Then, for
Yo € Prm (CSO(R3)), the solution Y € H to (23) is analytic in p1 € H\{iwZ} and
analytic with respect to X1 in ]DTZ x D. In particular Y is bounded at py = 0. These
properties imply sufficient regularity and decay of y(p, x) so that the integration con-
tour in L~ can be taken to be iR. By the Riemann-Lebesgue lemma, P(t,B) — 0 as
t — o0.

The proof is given in § 4.6.

3.8. End of proof of Theorem 2. 1t only remains to make the connection with Floquet
theory. This is done in § 4.8.

3.9. Proof of Theorem 3. Equation (14), restricted to B, follows from the homogeneous
system w = Cw. Multiplying (14) by w,, summing over n, and integrating over B,
where a € (1, a], we are lead to a nonnegative definite quantity involving wy |, being
zero for n < 0. Details are given in § 4.7.

3.10. Proof of ionization for spherically symmetric 2, Theorem 1. We consider the case
V(t,x) =2Q()sinwt, corresponding to 2 = —iQand Q_| = iQ (Q is real valued).
The proof in the slightly more general case 2€2(r) sin (wt — ) amounts to replacing ¢
byt —6/w and Yo(x) by ¥ (6/w, x) in our proof. Recall &; ,, = Pl,m€.3 We obtain by
projection of (23) to Py, (L*(R?)),

Y=Yy +¢,7Y. (27)
The homogeneous equation associated to (27) is
w=Cpw, weH. (28)

The Fredholm alternative applies and (27) has a unique solution in H iff (28) implies
w=0.

Note 22. By separation of variables in spherical coordinates, we see that &; ,, can be
defined in the same way as €, replacing Ag in (17) by

d> 2d 10+ b
( )———ip1+na)—i,BXB (29)
r

a2 rdr r2
and the associated differential-difference systems are obtained by replacing —A — b/r
with —d—2 — %i + +h b
dr?  rdr r2 r
Clearly if there exists a nontrivial solution w € H of (28), then, again by elliptic
regularity (see Proposition 8), v defined by w = ) ,, v(r), where ), ,, are the spherical
harmonics, is a nontrivial solution to

Aﬁ,r = —

-Aﬂ,rvn = —iQ (Vp+1 — Vn—1) —iBX BUy implying -AO,rUn = —iQ (Wp+1 — Vp—1)
(30)

3 As discussed, it suffices to show ionization on a dense subset of initial conditions.
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Proposition 23. If'v satisfies (30), then there exists n > 0 such that either (i) v, (1) # 0;
or (i) v, (1) = 0, but v),(1) # 0, let ng be the smallest such n. By homogeneity, we
can assume that vy, (1) = 1 in case (i) and v;lo(l) = —/Q(1) in case (ii) (we use the
positivity of Q).

The proof is given in § 4.10.

Definition. We define t to be 0 or 1 in case (i) and 1 in case (ii) respectively.

3.11. Asymptotic behavior of vy, in (30) as n — —oo. Inview of Proposition 21 we see
that (30) holds the necessary ionization information.

3.11.1. Notation. Let

1
s(r) ::/ VQ(p)dp (r €(0,1)). (31)
r
By assumption 2 > 0 is smooth and then so is s. Let

2%

0

no—k, Q0 =Q(0), Q= ©0), s, =50), a« =

, C=akr.  (32)
Denote

2
Hy(¢) == \/;eC K p0); Gog) = @ef 2 1 p(0),

where K;+1,2 and I+1 /2 are the modified Bessel functions of order / + 1/2. It follows
that for small ¢,

Ho(¢) ~27'c~ anyi.

Let H (¢; k, I) be the unique solution of the integral equation
. ¢ v
H(C kD) = Go(¢) / ¢ P Go(s)R(Hy + k™ H)(s)ds
0

¢ .
—Hy(¢) [ e > Ho(s)R(Ho + k™" H)(s)ds (33)
ko

for ¢ € [0, ka], where the operator R is defined by
B o  Q+20) T , bf
(Rf)(§)—2(—m+w+§)f T ac

Define
H() = H(¢: k1) == Ho(¢) +k " H(z: k. ).

It can be checked that H satisfies

,/ w Q6(1+2§') T , I+1 b
- - + +— + -
H =2 (1 2ka? 4kaQ 2k H ;2 alk H 34
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with the following asymptotic condition*

H(§)~1+l(1+1) b (log{ 1

Remark 24. (i) H(: k1) ~ @eﬁgl/zmwz(;)(l +o(1)) ask — oo

(ii) From the expression (33) for H it is seen that as ¢ — 0 we have ILVI(;“; k, 1) ~
const.z '™ for/ # 1 and H ~ const. + const £ log¢ for/ = 1. Fort =0 or 1,
H is less singular than Hp at { = 0.

Define
52]‘”9%(1)H(ozkr) 13 ’s(s)ds:| g2kte
) 2k +7)!1Q% () H (k) a [4/1 VS2(s) 2k +1)! Ko 00

Note 25. From standard properties of the modified Bessel function K415, it follows
that for large enough k, H (akr) is continuous and nonzero for » € (0, 1] and that as
r — 0, H(akr) is singular as /. Therefore for any k sufficiently large u; = r'm; has
a finite limit nonzero limit as » — 0%.

Definition 26. With ng as in Proposition 23, we define hy(r) by

&
Wpo—k = %mk(”)hk(”)yl,m' (37)

Theorem 4. (Behavior as k — +oo (i.e. n — —o00) ) For any sufficiently large k,
up = rlmk(r) is continuous inr € (0, 1] and uy(r) — const # 0asr — 0. Further-
more, if there is a nontrivial solution to (30), then there exists a subsequence k; — oo
such that for any r € [0, 1],

lim g () = 1. (38)
J—>0o0

The first part follows simply from Note 25. The rest of the proof is given in § 4.11.
Proposition 27. There is no nonzero solution of (28) in 'H.

Indeed, Theorem 4 shows that otherwise (#/*1v,)(0) = m, # 0 for a subsequence of
n < 0. This implies that the corresponding wy, (x) ~ m,r~"~1Y), forr = |x| — 0.
This singularity is incompatible with w, € H?, (see Proposition 8). Thus there is no
admissible solution of the homogeneous system and the first part of Theorem 1 follows
from Theorem 2 (i). See also the remarks in § 5.10. The result on the decay rate follows
from the type of essential singularities of y for p € iwZ; see §4.6.

4 Asis common, the notation O (a, b) = O (|a| + |b|); similarly O (a, b, c) = O (|a| + |b| + |c|).
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4. Proofs of Intermediate Steps

4.1. Proof of Proposition 8. As mentioned in § 3.3, Ag and A/’g are adjoints of each-
other. They are furthermore densely defined and hence (see, e.g [28], Theorems 5.28 and
5.29, p. 168), closed. Once we show that Ag(p) is invertible in D, analyticity of Rg in
O\(£p, U L_¢) follows (the spectrum of the closed operator Hc — i X g(r) is a closed
set). Analyticity holds wherever Ag is analytic, [31], Vol. 1, Theorem VIIL.2, p. 254).

(1) Eigenvalues. We first show below that no ip € iD is an eigenvalue of He —
iBXg(r). Assume we had Agyr = 0. If B = 0, Apyr = 0 implies ip € o,(Hc),
but, by construction, these values of p correspond to the region where 8 # 0. So
we can assume 8 > 0. Then

(W (=A —ip = br= )+ (Y. i XsY) = 0. (39)
Taking the imaginary part of (39) we get
Rep (¥, ) + ey, Xg¥) =Rep (Y, ) + (X, Xg¥) =0.  (40)

If Re p > 0 this immediately implies ¢ = 0. f Rep = 0 we get Xgy = 0.
But Xgy = 0 implies 0 = Agyy = Agy. In spherical coordinates the equation
Ao = 0 becomes a system of ordinary differential equations

d> 2d 10+
— + —
dr?  rdr r2

br—! — ip) Vnim =0. (41)

Since Xgy = 0, the solution of (41) vanishes identically on [0, a]; but then, by
standard arguments the solution is identically zero.

If Im p ¢ [—e€, p], with p € D, then Ag = Ay, and we are, by construction,
outside the spectrum of 4, and thus Agyy = 0 implies ¢ = 0.

(2) Therange of Ag is dense. Indeed, the opposite would imply® Ker(.Ajg) # 0, which
leads to the same contradiction as in Step 1 (note that .Ajg is simply Ag with the
signs of B and Re p changed at the same time).

(3) Forany p € D there is an € > 0 such that | Agy|| > €|l |.

(@) IfRep > 0and|y]| =1, then

IAs Il = [(Ap, ¥) | =(Ao¥, ¥) — ic(XBY, XBY)I
2 |Re p(¢, ¥)| = Re p. (42)

(b) Let now Re p = 0, and assume Im p is between two eigenvalues of —H,
the distance to the nearest being § > 0. To get a contradiction, assume that
¥l =1and |Ag;|l = €; — 0. Then

€ = I1Ap¥;ll = |[(Apyr;, vj)| = [(Aovr, ) —ic(XBY;, XgY))|

> c|(Xgy;, XBY;)| — 0, (43)
thus Xgyr; — 0, and by the definition of Ag and Ao we get
Aoy 1l — O, (44)

which is impossible, since our assumption and (44) imply noninvertibility of
Hc — ip while ip is outside the spectrum of Hc.

5 [28], p. 267.



Tonization of Coulomb Systems in R3 697

(c) In the last case, Re p = 0,Im p € o,(—Hc); then if we assume there is a
sequence ¥/, |, ]l = 1 such that || Agy;|| — 0as j — oo we get

LAY Il = (AW, W)l = [(Aovry, ) — ic(XBY), XBY))]
> [e(XsY), X¥))| — 0. (45)

Since | Aoy, 1l < I Ag;ll + cllXBY;|l, (45) implies || Aoy || — 0. On the
other hand, with P the orthogonal projection on the finite dimensional eigen-
space of H¢ corresponding to the eigenvalue ip, we have 40P = 0 = Ay =
Ao(I — P) and then since Agy; — 0,

IAo(Z = P)¥ll — 0. (46)

But by definition Ay is invertible on (/ — P)L*(R3) and (46) then implies
I = P)y;ll — 0,ie. Py; —v; — 0.Since ||y; || = 1, [|Py;|| — 1. Then
P isabounded sequence in the finite dimensional space P L 2(R3), hence we
can extract a convergent subsequence, which we may without loss of generality
assume to be Py; itself, Py, — ¥, [|[¥|| = 1, and also ; — Py; — ¥,
thus Py = . Therefore, Agyy = AgPy¥ = 0. Also, since multiplica-
tion by cXg is a bounded operator we have cXgy; — cXpy¥ = 0, since
cXgy¥; — 0. Therefore, |Agy|| < [ Aoy |l + llcXBY | = 0 in contradiction
to the absence of eigenvalues.

(4) Definition of the inverse. This is standard: we let v € D(Ag), Agy¥ = ¢ and
define Rgep = . This is well defined since Agyr; = Agy entails, by Step 1,
Y1 = v¥2. By Step 2, Rg is defined on a dense set. By Step 3, for any p there is
an € > 0 such that [|Rg]| < e~!. Thus Mg extends by density to L?(R?) and by
construction AgNRgp = ¢ whenever Rgp € D(Ag). Conversely, if ¢ € D(Ap),
and Ag¢ = u then Rgu = ¢ entailing 5Rg.Agp = ¢ on the dense set D(Ag).

For the regularity of PR in x, we first note that if we define Q = (/ — A)~!, we have
the following identity:

1
9%;;=Q[1—(§+i/3XB+ip+l)Q] . (47)

It is clear that if ¢ € L>(R?), Q¢ € H*>(R?) and so (b/r —ifXp+ip+1) Q¢ € L>.
Therefore, from (47), Rg : LY(R3) — H2(RY).

4.2. Proof of Proposition 15. The shift operator S, defined by (SY); = y;+1, is quite
straightforwardly shown to be bounded in H: the proof of Lemma 27 in [15] goes through
without changes. By the second resolvent identity we have

Mg = (1 —ifRoXp) " Ro.

Since —A — br~! is self-adjoint, we have by the spectral theorem, for some C > 0
independent of p,

I(=A —br~" —ip) 2@ < CRep) !, (48)

and thus [|Rgll 2y < Ci(1+ IRe p|)~!. Since NRpg is diagonal (in ) and & is bounded
(cf. Lemma 12), we have ||€]ly < C2(1 + |Re p1|)~!. Thus ||€|| is small for large
Re p1, and therefore (/ — €)Y = Y© has a unique solution ¥ € 7 and the proof
follows.
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4.3. Proof of Proposition 11.

Proof. The estimate | XgRoXgl = O(p~'/?) is shown right after the statement of
Proposition 11.

We now consider the analyticity of $ig in an open set on the imaginary p axis for
Im p < —e. There, B = 0 and X pgRgX p = X Mo X p is manifestly analytic from
its representation as an integral operator, whose kernel G is given below (see [26] and
Appendix §5.4 for details).

With k = /ip (using the principal branch of the square root), and v = b/(2k),

G(x,x": k)
_ik(n — &)1 (—ik&)J (—ikn) — K*EnI(=ik&)J (=ikn) — J(—ikn)] (—ik&)]
B ' —iv)['(1+iv)

RG] 4
X4n|x—x’|’ (49)
where
§=|x|+x'|+|x —x'l,n = |x|+ x| — |x — x|, (50)
1(21)2/ eV TV + 1)V d, 1(21)2—/ eI A+ 0Vdr (51)
0 0
1 . . . 1 . .
J(zz)z/ 2V — 1vdr; J(zz)=/ 2= (1 — v,
0 0
O

Further properties of function G are discussed in §5.4.

Note 28. Note that (49) still holds for p € iR", with k = ./ip, with the choice
argk = /2 for p € iR", and with the upper limits i oo in (51) replaced by +oo.

4.4. Proof of Proposition 17. The function f = g, X gg is the solution of the equa-
tion

dr?  rdr 72 r

> 2d II+1) b
( +( )——+k)f= 0; r>a,

dr?  rdr r? r

2 2 +1
( ot )—é+ﬂ—h?f= g r<a,

(52)

such that f decays at infinity, is regular at the origin and C' atr = a. Wenote A = /—ip

is in the closure of the fourth quadrant forRe p > 0. Weleta = VA2 —ic, k1 = b/Qa),
k =b/(21), u = 21 + 1 and define (in terms of the Whittaker functions 9t and 20 ©)

mi(s) = silim,q,u/z(Zas); wi(s) = silﬂﬁkl,u/z(&xs);
wa(s) == s 1W, 12 (21s). (53)

6 See [9], pp. 60, Eq. (1) and pp. 63, Eq. (5).
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For r > a we have f = Bwj(r) since r‘li)ﬁ,(,“/z(mr) grows with » as » — o0. For
r < a we must have

Jf=Amy+ fo, (54

where, using standard results about the Wronskian of 91 and 20U, see [9], pp. 25 and [1],
pp 505, 508, we have
20T (1 + )
(340 —x)

fo = wi() /0 X (0.01(5)s>m1 () g (s)ds

+my (r) / 52w () X [0.41(5)g(s)ds. (55)

The integral representations of the functions 97 and 27 entail immediately that the func-
tions fo, f and My, ,./2(2ar) depend analytically on A for small A. Continuity of /" and
f"ata > 1 imply that A defined in (54), is given by

| = S@ws@ — fi@w @

== Sty (56)
my(a)wa(a) — my(a)w;(a)

In § 5.5 it is shown that that 4 is analytic in (A, exp [iwh/(21)]) in a domain correspond-
ing to A small in the closure of the fourth quadrant, if ¢ and ¢ are chosen large enough.
It follows that resolvent R, » is analytic in X for X = (/p. exp [inb/ (2/=ip)]) €

D7 x D for small e.

4.5. Proofof Proposition 19. By adding and subtracting 1 from .A4 and using the second
resolvent formula, whenever everything is well defined, we have

XBA/ngB =: XgRgXp = Xp(—A+ 1)_1XB
—XgRp(—br~' —ipXg —1—ip)(—A+1)"'Xp. (57)

The Green’s function for —A + 1 is

1
G(x,y) = ———e W1, (58)
4mlx — yl

Now if [[¢; 2y < I then the functions f; = (—A + 1)_1X5¢j are seen by straight-
forward calculation to be equicontinuous on the one point compactification of R3. A
subsequence, without loss of generality assumed to be the f;’s themselves, converges
in L2(R?) as well (to a function with exponential decay, since there is a §; > 0 small
enough and independent of j so that e®!*I(—A +1)~! X g¢;) is also equicontinuous on
the compactification of R3). In particular, Xg(—A + 1)~! X g is compact.

Now f; converge in the sup norm with weight el and thus (—br—' —ifXg—1—
ip) f; converge in L%(R3). Since NRp is bounded, compactness of XgRg X g follows.

By Proposition 11, and the previous argument, € is a norm limit of compact operators
(the truncations of € to the subspaces of H with vanishing components for |n| > N).
Therefore, &; ,, = P,;»€ is also compact.
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4.6. Proof of Proposition 21 and final estimates for Theorem 1. 1f (24) has no nontrivial

solution for any p; € E, then compactness of &; ,, implies that (I — Ql’m)_l exists.
Lemma 13, Corollary 18 and Proposition 11 give the analytic and continuity properties

of &, and %, Yo. Analyticity of ([ — Qil,m)_l in X for X € }DT: x D, follows in a
standard way from analyticity of &; ,, and the second resolvent formula,

A" —B ' =B (B-4)47! (59)

(see § 5.3). The same resolvent identity can be applied to show analyticity of (I —¢; ,,) ™!
with respect to p; in a neighborhood of

H\ {(¢p, +i0Z) U (b—c +iwZ) U (I +iwZ)}.

Hence, the solution ¥ = (1 - Q,m)_l %1.m Yo 1s analytic for p; € ﬁ\{ia)Z}, since €, f8
and p,. are artificially introduced parameters the value of which cannot affect Y, since
Yy is independent of these choices (see Remark 14.)

The function P(p;x) = yu(p1,x), with p = inw + pi, is analytic in p for
p € iR\iwZ and by analyticity of ¥ in X, boundedness at p = iwZ follows. In
particular, as p — inw from the right half-plane, y(p, x) is analytic in the extended

variable
) 12 inh
(p—inw)’“,exp| ———=1) - (60)
2/—i(p —inw)
The regularity properties of Y in p and the decay properties in |n| of its components
yy for large |n|, simply stemming from Y € H, imply that y(¢, x) can be expressed as

an inverse Laplace transform of $(p, x) on iR. We now show that

P(t,B) = [Yo)e™ +y(x, D72 g < 2¢ Y0l72m

+2|ly(x, r)||iQ(B) — 0 ast — oo.

We note that

oo o
/dx|y(t,x)|2 =/dx/ / 'S 5(is, x)P(is’, x)dsds’
B B —00 J —00

=/OO st [/OO [/ )?(i§+is’,x))7(is’,x)dx:| ds’]d§. 61)
—00 —00 B

So, in order to show ionization, it suffices from the Riemann-Lebesgue Lemma to show

that
oo —
/ [/ ﬁ(is/,x)ﬁ(is’+i§,x)dx] ds’
—00 B

is in L'(d5). This follows from Cauchy-Schwarz, since

00 00 2
/ [ / [ / |ﬁ<z‘s¢x>||ﬁ(is’+i§,x>|dx} ds’]dss( / 15 Gs’, ')uLz(B)ds’) :
—00 —00 B R

(62)
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However,

/]R 19Gs", I 2@yds” = /0 |:z lyvn(iq, ')||L2(B)] dq

nel
w
< C [ A ) Piatia ) g da
0 neZ
w
SCAHHMJMMq<w, (63)

since Y is bounded in p; = iq for g € [0, w].

Since y(p1 +inw, x),n € Z,is analytic in the variable (60), standard stationary phase
analysis (see Appendix §5.7 ) shows that y(¢,x) = O(t~>/%), and hence P(¢,B) =
Oty ast — oo.

4.7. Proof of Theorem 3. Since (14) (restricted to B) follows from the homogeneous
system w = Cw (see also Proposition 8 for the necessary regularity), we look for a
nontrivial solution of (14) in H. We multiply (14) by w,, integrate over the ball B; (of
radius a € (1, a]), sum over #n (this is legitimate since w € H) and take the imaginary
part of the resulting expression. Noting that

Z Qj(x)wn_jw_,,z Z Q_jwn_jwn = Z ijn+jwn

Jj.nez Jj.nez JneL

= Z Q; (X)W Wiy (64)

Jj.meZ

so the sum (64) is real, we get from (14),

0= Im(+ip1 Z/ |w,,(x)|2dx +/ dewnAwn)
B; B;

ne’l 4 neZ
1 _ _
= +Re p) Z/B lwy, () [2dx + 5> /aB~ (Z W, Vw, — w,,Vw,,) -ndS.  (65)
1Y/ 4 \neZ
It is convenient to decompose w,, using spherical harmonics. We write
wp= D Rusm@I O, ¢). (66)
120,|m|<!

The last integral in (65), including the prefactor, then equals

i — _
_5 a2 Z Z I:R”’m’lRi/z,m,l - R/n,m,an,m,l]

ne? m,l

= _;; a2 ZZW[En,m,lv Rn,m,l]v (67)

neZ m,l
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where W/ f, g] is the Wronskian of " and g. On the other hand, we have outside of B,
Aw, + brilwn +(ip1 —nw)w, =0, (68)
and then by (66), the R, ; » satisfy for » > a the equation

I(+1)
1”2

2
R'+ZR +br 'R - R = (—ip; +nw)R, (69)
r

where we have suppressed the subscripts. Let g,.7.m = ¥ Ry.1.m. Then for the g, 1., we

get
I(+1
g”—|: (rz )—ip1+na)—br1i|g:0. (70)
Thus
- gg gl
RR = =5 — = (71)
and
r*WIR, Rl = WIg. gl =: Wj. (72)

Multiplying (70) by g, and the conjugate of (70) by g and subtracting, we get forr > a,
W, = —i(p1 +PDlgl> = —2ilgI’Re pi. (73)

Remark 29. Direct estimates using the Green’s function representation (49) imply that

—Knpt

wy,(x) = eH? (c,,(@, o)+ O(r_l)) asr — 00 (74)
e 2

with ¢, (8, ¢) independent of » and with

Kp = +/—ip1 + nw (when Re p1 > 0, k, is in the fourth quadrant when n < 0).  (75)

(1) We first take Re p; > 0, to illustrate the argument. Using (74) we get

b
g~ Ce "y 2 (1 +0(l)) as r — oo. (76)
There is a one-parameter family of solutions of (70) satisfying (76) and the asymp-
totic expansion can be differentiated [42]. We assume, to get a contradiction, that there
exist n < 0 for which g = g, # 0. For these n we have, using (76), differentiability of
this asymptotic expansion and the definition of «;, that

1
— lim |g,|7>W, = —Im«k, > 0. (77)

It follows from (73) and (77) that W, /(2i) is strictly positive for all » > a (by mono-
tonicity and positivity at infinity) and all n for which g, # 0. This implies that the last
term in (65) is a sum of nonnegative terms which shows that (65) cannot be satisfied
nontrivially.

(i) Re p1 = 0. For n < 0, we use Remark 29 (and differentiability of the asymptotic
expansion as in Case (i)) to calculate W, in the limitr — oo: W, = 2i|c,|?|kn|(1+0(1)).
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Since for Re p; = 0, W, is constant, cf. (73), it follows that W, = 2i|c,|?|knllgn|?
exactly. Thus, (65) cannot be non-trivially satisfied, implying that

wy(x) =0 forall n <0 and |x|=r =a € (1,a]. (78)

Fora > r > 1 (where V (¢, x) = 0) we have Ow, = 0, where O is the elliptic operator
—A — b/r —ipy + nw. The proof that w,(x) = 0 for » > 1 then follows immedi-
ately from (78), by standard unique continuation results [17,23] (in fact, © is analytic
hypo-elliptic). See also Note 5.

4.8. Connection with the Floquet operator. 1t is easy to check that the discrete time-
Fourier transform of the eigenvalue equation for the Floquet operator, Eq. (5), Kv = ¢v,
with p; = i¢, coincides with (14), the differential version of the homogeneous equation
associated to (23). Now, (78) shows that a solution of (14) is an eigenvector of K.

In the opposite direction the existence of a Floquet eigenfunction entails failure of
ionization since it implies the existence of a solution of (2) for which the absolute value
is time-periodic.

4.9. Differential equation for w. We seek to show that the only solution to the homo-
geneous system

w=_C pw (79)

in the space H is w = 0. Since w is piecewise C2 (see Note 5), (79) implies that the
components of w = {y,, i} Zn (r)}nEZ satisfy the differential-difference system (see
Note 5):

d? _ .+ ,
28~ (—br Ve —ipy + = )gn =iQ2(gn+1 — &n—1)- (80)

First, we notice that for n < 0, Theorem 2 implies that g,(r) = 0 for » > 1. Thus
gn(1)=0,g,(1) =0foralln < 0.

4.10. Proof of Proposition 23. The gist of the proof is that contractive mapping argu-
ments show that if the statement was false then the solution would vanish.

Lemma 30. If' Y # 0, then there exists some ng > 0 so that either g,,(1) # 0 or
g (1) # 0. (4s before, in the sequel, we shall define n to be the smallest such integer).

Proof. To get a contradiction, assume the statement is false. Since the functions w,, are
in the domain of A (see Note 5), then, in particular, for any 7, g, is continuous in . Thus,
the set Z, := {r : g,(r) = 0} is closed and so is the (possibly empty) left connected
component of 1 in Z,,, call it K,,. Let

K = ﬂ K.
nez

Assume to get a contradiction that K is nonempty: let then K = [a, 1]. If a = 0, then
Y = 0 since g, (1) = 0, g, (1) = 0 imply g,(r) = 0 for » > 1. Then ¥ # 0 implies
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a > 0. We first take 0 < a < 1. We write the differential equation for g, () in integral
form and use the conditions g, (@) = 0 = g/,(a), since g, vanishes on [a, 1]:

a _ ,=2J/nw(s—r)
emrgn(r)Z/ ([1 ¢ ])ems

2ne
a+1 ~ .

- [[ S it V(s)] n(s) — iQ(5) (gu-1(5) — gur1(5)) | ds.

(81)

Consider the Banach space of sequences
{gn () }s.;—oo
in the norm

eV g, (r)

sup
neZ,rela—e,al

It is easy to see that the rhs of (81) is a contractive mapping if € is small enough and
then g, (r) = 0 for r € [a — €, a] contradicting the definition of a. The same is true if
a = 1, since g, (1) = 0 and g/, (1) = 0 would imply, with the same proof as before, that
gy, = 0forr € [1 — e, 1], for some € > 0, contradicting the definition of ¢. O

4.11. Proof of Theorem 4. For a heuristic discussion see § 5.9. The proof is by rigorous
WKB. The fact that there are two competing potentially large variables, k£ and 1/ makes
it necessary to rigorously match two regimes. First, note that (37) implies

8ok (") = i mp () hi(r). (82)
We need a few more preliminary results.

Lemma 31. For any €1 > 0, there exists C3 > 0 independent of k and €| so that for
k>ky= C3el_1, and forr € [€1, 1],

ko 1/2
sup |y | < Cako (;) , (83)
e1<r<l

where Cy is independent of €| and k.

The proof of Lemma 31 is given in §4.13.

Definition 32. For fixed €, we define L, = aC3 (2C4C3/e)2, with C3 and Cy4 defined in
Lemma 31, and { = akr, where « is given in (32). We will take € small enough so that
Le > Cia.

Finally, in what follows, c, is a positive “generic” constant, the value of which is
immaterial.

Lemma 33. For € > 0 small enough and kar = ¢ € [L¢, ka], we have
lhe(r) — 1] < e. (84)

The proof of Lemma 33 is given in § 4.14.
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Definition 34. Let hy (¢) = hi (¢ /(ak)).

Lemma 35. For any small € > 0, there exists a subsequence S = {ﬁk‘/ }jen that con-

verges to a continuous function h for ¢ € [0, L]. For the limiting function h(r), we
have |h(¢) — 1| < 4e for¢ € [0, L¢].

The proof of this proposition is given in § 4.15.
Proposition 36. For anyr € [0, 1], lim; o hy j(r) = L.

Proof. From Lemma 35 and Lemma 33 it follows that for any » € [0, 1] and any € > 0
we have lim; ., |hk‘/. r)—1]<4e. O

The proof of Theorem 4 now follows from the definition of % in (36), Remark 24,
Note 5 and Proposition 36.

4.12. Further results on gn,—k and hy.
Lemma 37. Forany j, k € NU {0} we have, atr = 1,ie ats =0,
3j+rgn()—k
0s/7T

Proof. In case (i) (corresponding to T = 0), note that (80) may be rewritten, cf. (31), as

ls—o = 8, ¢ i* for 0 < j <2k

Q Ok .
(8no—k)ss — m—yz(gnofk)s g ok =1 (gno—k+1 — Gno—k—1) » (85)
where
b ) [(+1)
Ok = —+(k—no)o+ip — —3 (86)

Since gny—k(1) =0 = g,/m_k(l) for all £ > 1, while g,,(1) = 1, the statement follows
from (85) forany 0 < j < 2, if 2k > j. Assuming the statement holds for some j > 2
for 2k > j, we prove it for (j + 1) for 2k > (j + 1).

Taking (j — 1) derivatives in s of (85) at s = 0, we obtain

o gy 37! /!
9git1 l 91 8no—(k—1) — lmgno—(kﬂ) +L

where L is a linear combination of derivatives of g,,—x up to order j, which are all
zero since 2k > (j + 1) > j. The first two terms on the rhs give a contribution of
iiké(j_l),z(k_l)JrO since 2k > (j+1)implies2(k—1) > (j— D and2(k+1) > (j —1)
completing the inductive step.

In case (ii) (corresponding to T = 1): since g, (1) = 0 and g, —x(1) =0 = g;zo—k(l)
for all k£ > 1, it follows from (85) that g;l/o_k = 0 for all £ > 1 implying the conclusion
for j = 0 and j = 1. By taking an additional derivative of (85) with respect to s and
evaluating at s = 0, we obtain

—a3gn°_k—i322kig | 0—i322k—g;7°(1) =1082,2k
F Rl /o TS D W

so the statement holds for j = 2 and any k& with 2k > j. The rest of the proof is very
similar to thatfort = 0. O
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Let 1.k, Y21 be two independent solutions of

Ly =0 sand Wi = Y1 k()3 (1) — Y2k (MY 4 () (87)

where

Ly =" + Oy (88)
From the form of the equation we see that W}, is independent of r.

Lemma 38. Forn = ng — k, k > 1, the system (80) is equivalent to

1
Gno—k (1) =i/ Q(5) (gng—ic+1(5) — Guo—k—1(5)) Gr(r,)ds k=1 (89)
where

Gr(r,s) = W W1 kY2 (5) — Yk (M)Wt k()] (90)

Proof. The proof simply follows from variation of parameters, the two boundary con-
ditions at 7 = 1 and g,—«(1) = g, (1) =0. O

Definition 39. Define
) 5
Jk = — [Lemik — Qmy_1] 1)
mpy

Lemma 40. For k > 1, there exist constants C1, Cy and c, independent of k so that for
any r € (0, 1] we have | ji| < c. Forr > % we have |j, (r)| < C1/ (krz) +C;

Proof. In the Appendix, (253), we obtain an explicit expression for ji. Routine asymp-
totics for large & in different regimes of » € (0, 1], discussed in the Appendix §5.8,

show that kzjliz) + kj,il) = O(1) in all cases and hence jr = O(1). In fact,asr — 0
and k£ — oo with ¢ = kar = O(1) fixed, we have jz — g(¢), where g(¢) is bounded.
Also taking the r- derivative of j; for r = O(1) not small, we get j,é (r) = O(1). When
r < 1, the asymptotics in the regime % Lr KL lgives jr = O ({‘1) = O (1/(kr)).
Since the asymptotics is differentiable, we have j; () = O (1 / (krz)). Finally, we look
at ¢ = O(1), ¢ > 1. Since a%jk = k%jk ~ kg'(¢), where ¢%g'(¢) is bounded for all
¢, it follows that | j{ ()| < C1/ (kr?) + C; forr > 1/k. O

Lemma 41. For k > 1, hi(r) defined in (82) satisfies the system of differential equa-
tions:

m Qmy— i -
W+ 2k (ﬂ + ’—") he =Q (m" Ly (r) + whkﬂ(i’)) . (92)
k mi 5 mip mg

and the system of integral equations (89) is equivalent, for k > 1, to

1
i () = / %Gk(’%s)hk—l(s)ds

. /1 Q$)mit (5)

Gr(r, )hi+1(s)ds := Aghg—1 + Hihger. (93)
my(r)
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Proof. This simply follows by substituting g,,,—x (7)) = i kmi rYhy (r) into (80) and (89),
and using

"
m

i, — ,
mip mig mp S

e .
Ek!ﬂkz mi—1 , Jk

in turn a consequence of Lemma 40. O

Remark 42. Let now r € [€, 1], where é > Cok~! for sufficiently large C» indepen-
dent of k. It is convenient to rewrite Az and Hy in (93) in terms of s (see (3.11.1)).
Furthermore, changing the variable of integration from s to ¢ = s(s)/s(r), we obtain

1
[Arhi—11(s) = Qk+7)2k+17 — 1) / 2T (s, Dby (st)dt, (94)
0

where, using (36), we get

T, 1) = ¥ Q(’f;zzi’;)‘ TS Gt (), (1)) (95)

and
3

1
[Hihis11(s) = : / V@ (st)K T
0

Rk+2+10)Rk+1+1)
y Fi1(r (st)
Fi(r(s))

Gi(r(s), r(st))hi+1(st)dt. (96)

In evaluating Ay for large £, it is useful to calculate the Taylor expansion of Ty (s, t) and

its s derivative at ¢t = 1. To do so, we first note that
i ( QUNFa()  F_ ") Fr_1(r) 3Gy
Fr(r) or

r,r"), (97)

ot " 2Q0)E(r) Fu(r) )G"(N)

where, to simplify notation, we wrote r(s) = r and r(¢s) = r’ and used 9,5(') =
—+/Q(r"). From (87) and (90) we get Gr(r,r) = 0 and 8, Gy (r,7’") = 1 atr’ = r; (97)
implies
T} _ Fi—1(r)
at li=1 Fe(r)

(98)

Using (97), taking an additional derivative with respect to #, using also (86) and (88) to
see that 9,/ Gy = — QO G}, we obtain

0> T _Fk_1<r)(ssz/(r) SO ) 99)
a2 =1 F(r) 2920 QO F1(r))

A similar calculation can be carried out for the third derivative. We only write down the
potentially largest term in the regime kr > C, (for large k and small )

Ple|  _ R0 | o 1) _EFa0) (- 10+]
0 =1 T Q)R ) T ermEe VYT T2

1
+0 (1, m) . (100)

r
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Note that if kr is sufficiently large, (35) gives

Fy_1(r)  H(a(k — 1)r)H(ak)
Fr(r) ~— H(akr)H(a(k —1)

=1+0k( %Y (101)

and

Fi_() 1(1+1)+0( 1 ) (102

Fr_1(r) " 2akr? k23

Note also that (32) implies @ — 24/2(r)/ (s(r)) = O(r) for small . Including all terms
that become important when r is small, we note that in the regime when kr is sufficiently
large, we have

2 1 —1)?
Tk=<1—z)+(——f1 fz)(gu—rf—( k”)

(I-0* A= -0 A-0* A=0>1-1)
+O( 7 k3T T ke T kA kR ) (103)
e _ (k. f 3 (l—t)z)
%% ( iR )(3(1 1)’ — 3
(1—r)4 1-0° A= -0 A-0%* (1-20
+0( rd 0kt [ A kzrz)’ (104)
where
2
fi(s) = Q(r(ﬁ)) (105)
11+ 1)s?
fs) = =5 (106)
I(1+1)s?
f3(8) = T (107)

Whenr € [0, €], for € = Cy/k, it is sometimes more convenient to express Ay in terms
of ¢ = kar. For that purpose, we define

1
5(0)—s QO0)\ 4 1 /r , ws(r)
= -2kl 1— —1 — - |dr—1) 1, 108
(@) og[ 0 ] og [(Q(r)) exp (4 NV (108)
where we recall the relation (31) between s and r = ¢/(ka), ¢ € [0, kae]. A series
expansion in k~! leads to

(o QO Y ¢ Q'(0) ¢
=—-—>|—— 1+——=)+0(=.,=]). (109
e =¢ k (2052 4Q(O)oe) 4k a2(0) K2 k2 (109)
We choose €] = Cok™! log k, for some k-independent Cy (chosen more precisely later).
We define 81, dependent of 7, so that

(1 —8))s(r) = s(e). (110)
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From (31), it follows that for sufficiently large C, we have

_sle) (5+Dlogk
s(e) T (4k+20)k

Si>1 (111)

It follows from the definition of Ay in (93) that for r € [0, €], i.e. ¢ € [0, ka€],

keéy. Hn(1—k™") _
_ Om+O() a4 n _ -l
[Axhi—1] ({)—/{ e (1+ k) G G, mhi—1(m(1—k~"))dn

+QRk+1t)2k+tT—1)
1 N 2k—2+T /
X / |:s(r )i| QNG (r.r) Fe1(r )hk_l(r/)dr’
é

s(r) 52 F(r)
= [ARh—11(0) + LA 110, (112)
where G(¢, n) is defined by
G(&,n) = kaGr(r (), r(m), (113)
while

ai(n. &) H(ak) (1+ T ) (1+ T — l) 52(0)Q (n/ (ko))

kK H(ak—1) 2k 2k ) s2(n/ (ko)) (0)
5 (s(n/(ka)))’ L (114
5(¢/(ka))

while for large k and 0 < ¢ < 5 < €& we have

1 Q'(0) T n
al(n,g)_r—§+(1+a9(0)>7]+§(;—n)+0(?,%). (115)

Similarly, for kar = ¢ € (0, ké1), we define

bi(n, &) Hk)  s*(n/(ka)Q/(ke)) (5(71/(1(0!)))t _q
ko Ha(k+1) 52(0)$2(0) s(¢/(ka)) '

(116)

We then have

Q(0)s2(0)
?k2Qk+2+ )2k +1+71)

kaé b1\ Hn(1+k~ 1) _
OMHO(¢) oy 2Tk ) 1
x/;e (1+k) 5O G(&. mMhen (n(1+k~Y)dny

[(Hihi+1]1(©) =

52

+
Qk+2)(2k+1+27)

1781
x / VQr () Gr (r(s), r(s1)) t2k+2+fwhkﬂ (st)dt
0 Fr(r(s))

= [HOhg1]+ [Hihger). (117)
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Lemma43. Fork > 2 and ki € {k — 1, k, k+ 1} we have
(1) Ifr € (0,1) and s € (r,r +9), where § < min {C2k™" logk, 1 —r}, then

F F
‘Gk(m) Ifzj((rs))‘ < p ‘_( € )F];((:))) ‘ < ek,

2) Ifre(,1),6 < Cok™! logk withr +8 < 1, then fors € (r +4, 1),

9 Fi, (s) 1/2+1)2
" (Gk(r, s) ) )' < cik .

F (s) 12172
Gi(r, Kl2=1 ,
‘ (7, s) ) ‘ < Cy

Proof. Tt suffices to find bounds for G (r, s) H (akys)/ H (akr) since the other functions
involved are regular everywhere for r, s € [0, 1], see (36). We first consider £ — +o0.

It is easily verified that G(¢, n), defined in (113), is the Green’s function (see (86),
(88) ) for

EZZ\DI—)\I—’”—I(];DKII-FE ﬂ+i
z? ka2 at

|+ i —me1 1)

and is given by

U1(5)Wa(n) — ¥2(5)Wi(n)
7 )

where Wy, W, are two independent solutions of LW = 0 and W = W ({)W5(¢) —

W, ()W) (¢) is their constant Wronskian.
Standard asymptotic results show there exist two independent solutions W, W, such

that for large k, we have uniformly in z € [0, v/ wk],

2l /
vy~ ~an Y1+1/2(z) where z = i Vaokr, (120)

2= ‘(21+2)'
Wy ~ R Jl+1/2(Z) (121)

The Wronskian W is asymptotic, for large k, to (2] + 1)/w/~/a2k. The expressions
(120) and (121) may also be used to determine the asymptotics of W| and W}. Using

(119), (120), (121) and (36) and the bounds on W, with [} = [ + % it follows that
ki,
Cylzz'|1/? i (a\/;z )
172
k H (a\/%z)
where z' = n/o/va?k = 5/wks. A similar bound holds for

a0 [ Fi, (s)
ar [ Fi(r) G"(r’s)”'

G(&, ) = kaGr(r (), r(m) = (119)

(Y, (), () — Iy @)Y ()], (122)

~

We now prove part (1). We break this case up into two subcases: (a) » € [k~2/3, 1]
and (b) r € [0, k~%/3]. In case (a), we note that s € [r, r + 8] implies s /7 and therefore
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1 < Z//z = O(1). The function H in (122) is close to 1 because its argument is large.
Furthermore, note that /z Y7+ ,2(z) and VzJ /2(z) are bounded for large z, while they
are asymptotic to constant multiples of z~/ and z/*! for small z. Using (122), part 1 of
the lemma follows by inspection in case (a). For case (b), (122) further simplifies since
z,z are small and

Hkin/k Hkin/k
%Gk(r@),r(n)) _ kf)[;[—'g))g(z, m
_ Hkan/k) (" =)

ka H(¢)(21+ 1)

(123)

When ¢ € [logk, ak'/3] and n €[¢, ¢ +akd], wehave 1 < [77/;“][ < ¢4 and therefore

H(kin/k)
H()

H(kin/k)
G , =|—

(0 (©) r(n))‘ talio) 96| <
The same inequality holds if ¢ € [0, logk], since n € [¢, (C2 + 1) logk] since in this
regime ¢~/ /H (¢) is bounded and the logarithmic growth in k of terms involving 7 can
be bounded by, say, k'/2, while for small 5, n' H (k1n/k) is bounded. The bounds on
derivatives follow in a similar manner using % = koedi.

Part 2 (which is only relevant for » + § < 1) follows similarly on careful inspection
of (122), from the asymptotic behavior in different regimes of z and z’. O

Lemma 44. Let r € (0, €], with @1 = % logk. We choose Cy large enough so that
log k _ _
S = (1= 81) = SIREE Then I[ALF10)] < euklP712(1 = 812727 f oo <

ek 3 flloo and | S-[AL £100)] < c*k1/2+1/2(1 D2 flloo < k™21 f Iloo-

Proof. Consider A}{ given by (112). We note that s~ 2Q(s) and its »—derivative are

bounded, while G (s, ) Fx(s)/ F () and its r-derivative are bounded by cx k212 and
e k!/2T1/2 respectively for any © (cf. Lemma 43). Further [s(s)/s()| < (1 — 8;) and
from (111), we have

2k—2+1 Cx
(=81 N p2es2
and the lemma follows. O

Remark 45. Since for r € (0, €], the bound in Lemma 44 on .A,l{ is O(k=2), we will see
later that 4 is dominated by A,,(g (defined in (112)) as k — oo.

Lemma 46. Define Go(¢,n) = limg_00 G(¢, 1) and Hy(¢) = limg_ o H(), where
.o < k'? as k — oo. Then,

> Ho(n)
e s dn =1, 124
/{ e Go(¢ U)H @) n (124)

—n+¢ 0(77) — 1+ Hé(;) 125
[ e Ban = -1+ G (125)
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Proof. Using (120) and (121) and the behavior of Bessel functions for small argument,
[1], it follows that for ¢, n < k'/? we have

l+]€-71 _ é-l+1 -

n
126
21 +1 (126)

Go(¢,m) =k1_i)n;og(§, n) =

and Hy(¢) = limg_oo H(C) = \/ggl/zeg Ki+1/2(¢). Now, using the modified Bessel

function equation, it is easily verified that f(¢) = e~% Hy(¢) satisfies

I+1)
§-2

with f(¢) ~ e~¢ as ¢ — oo. Using variation of parameters to invert the left hand side

of the above equation, and using the boundary conditions at co we obtain

1/

f=1r

1) = L Go(c. m) £ (.

Dividing through by f(¢), the first identity in the lemma follows. By differentiating the
first identity with respect to ¢, and using the first identity in the resulting expression, we
obtain the second identity. O

Lemma 47. For anyr € (0, 1),

‘Ak[l](r) — 1‘ - sz( )””‘ E())Gk(r §)ds — ‘ < Z—; (127)
For% <r< %weget
‘—Ak[l )| = ‘— Q( )””‘ E())Gk(r s)ds| < PW%’ (128)
while for any r € [0, %],
1
/Q(s) 9 (Gk(r,s)mk_l(s))'ds < cok. (129)
r or my(r)

Proof. Recalling the definition (93), it follows from (39) and Lemma 40 that

Ji(r)

Limy — Qmyp_1 = my, (130)

where jx(r) = O(1l) as k — +oo for any r € [0, 1]. We can check from (36) that
my(1) =0, mj (1) = 0 for k > 1. From (130), inversion of L yields

1
mk<r>=/ Gk<r,s)[sz<s>mk 1(s>+% ()] (131)

Therefore,

1 1 .
/Gk(r,s)wds=l—/ i, 5) KOS 4o (132)

mp(r) s(s)my(r)
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First, we choose §; so that 1 — & = (5 + I)logk/ (4k +27). We then define
6 so that (1 — &1)s(r) = s( + §). It is clear that for large £ we have § ~

(5/2+1/2) s(r) logk/ ((2k+ r)«/Q(r)). Lemma 43, and the fact that k//2-1/2(1 —
SHHT ) 2k +1+ 1) < k% give

1 . 1-8,
/AGk(r,s)Jk(S)mk(S)ds‘ < / 2k
r 0

*o s(s)mi(r)
Fy(r(st) .
* Qr(st) Fr(r(s) Gi(r(s), r(s0)) ji(r(st))dt
< %”]k”oo < Z’—’; (133)

Now, consider the contribution from frﬁa. There are again two cases: (i) 1 > r > k23
and (ii) 0 < r < k=%/3,

Inthe first case, Taylor expanding G (r, s) nears = r we get Gy = (s—r)+O((s —r)3
00 =V/Lr)s(1 —1)+ 0k*3 (1 —1)3, (1 — 1)?). Hence,

r+(§ 7
/ Gr(r ) KEMES)

s(s)my(r)

1
c
< ||jk||oo/ AT A —nde < L (134)
1-8, k
For the case (ii), we rewrite the integral in terms of { = kar, to obtain

) ;
/ Gi(r. S)]k(s)mk(s)ds
r s(s)my(r)

c grhad H ()
<& ~0m+0) d
5 ||jk||oo/£ § 66 g

c {+km§ HO(’])
< * dne~ ¢ ,
2 ), ne”""Go(¢ n)HO({)

Ho(m) _ e
Hy(¢) — k2

<= [ dne"Go(¢, m) (135)
¢

by Lemma 46. Using (132) and (135), the first part follows.
To prove (128), we note that if Cj is large and vk > C3, Taylor expansion gives

Fi(r(st)
Ui(s, t) :i= S IGENACE Gy (r(s), r(st))
1 — 3 1— 2
= A -n+o (-t -t S5 G20 s

for f4 = —s/Q(r(s)), while

s

9 , (1—0° 1-0?
—Ul(ﬁ,r>=f4<a><1—t)+0((1—r)z,k(l—z)% S 73 )
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From (132) we note that

V2 (r(st))
1
- /1 . 257 i (r (s1)) U o(s, t)dt]
1

~ i (s(s>)2"+’ Je(s) Fi(s)
rE\EC))  EWFr(r)

1 -/
4 A1) = — Q(r(s))[ / e D) e
dr 1-8;

Gi(r, s)ds. (137)

We note further that

2k+t
d (S(S)) Jk(8) Fie(s) JOFES) o5
r+8

dr E(r) E(s) Fr(r)

2k+t
—_ / (@) &i[Fk(S)Gk(r,s)} ds
s \EP ) EG) o [Fu)
HOWE (@)2"” Ji($) Fi(s)
§r) s \EO)  E@F()

N W E
£(r) §(r+8)Fi(r)

+2k+ 1) Gr(r, s)ds

Gi(r,r +8) (1 +S’(r)) . (138)

From the bounds in Lemmas 40 and 43 and the fact that £(s)/&£(r) < (1 — Y ), we easily
conclude that the contribution of fr1+5 in (138) to C%Ak[l](r) is 0(1/k2).

Since Lemma 40 implies | jx ()| < ¢y and [ ()] < ¢y + ¢y / (kr?) for % >r > %,
it follows from the local expansion of Uj (s, ¢) and its s-derivative in a neighborhood of
t = 1 in the first integral in (137) that

d /“ Gy M) [ e e

- <= +=
dr o s5(s)my(r) NS BT R

and (128) follows.

We now prove (129). We first note that for » > k=23, s € (r,r + $), from (90)
9-G(r,s) = —1 ats = r and therefore, from (120), (121), it follows that for s —r =
Ok~ "logk) << k 12 8,G(r,s) ~ =1 < 0 fors € (r,r +8) The same is true
for » € [0, k7%/3] since in this regime, 9, Gy (r,s) ~ 9:Go(¢, n) (see (126)), with
¢ =r/(ak), n = s/(ak). Therefore, from (31) and (36), we get

0 (mk QLG s)) [(Zkﬂ 2) Y20 Fk’(r)] WIQIAGE)
ar mi(r) §r)  F() mi(r)
8 G, 5) L) (139)

my(r)
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Since the contributions to the integrals from f s is O(% e ), and the first term on the
right on (139) is negative for large &, while the second is positive, it follows that

/1 a( mi—1(r) )ds
- m(r)Gr(r, s)

«/Q(r Fk(r) 1
+2 |:(2k+r g(r) Pt )} [Ag[1]1()] + (—) <cxk  (140)

K2
forr € [Czk_l, 1]. Forr € [0, Czk_l], we note that since the contribution from fr1+(§
for C%Ak[l](r) is negligible, we have

d d [etkedi air\ Hin(1 — 1/k))
a ~ iy & oM+0(%) ary Z2ntt — 1/%))
drAk[l](’”) kadg/; e 2 (1+ k) G, m

d
=< ‘E-Ak[l](’”)

H()
d [ekedt L Hy()
~ ko — n+¢
ad; . e o (OQ 0(&, m)
d [ _ .. Ho®n)
~ ka— e 141
adg . e H@)Q(én) (141)

it follows immediately from Lemma 46 that in this case , I%Ak[l](r)l < c¢4k. Hence
the inequality in (140) is valid for all » € [0, 1/2]. O

Lemma 48. For any f € L*°[0, 1],
Cx
@ Forre0 1 [Afle< (15 5) 1/l (142)

(b) For r € [0 ] H—[Akf](r) < sk flloo- (143)

oo

Proof Consider the expression for Ay f from (93). We break up the integral into fr ro
and f Ls» Where § = Crk~"logk, with C, large enough so that

_ 1 s(r+36)

_ 2k—2+t . _ o

(1 8 ) ~ kl/2+7/27 (1 81) L 5(1”) .

From (36) and Lemma 43, part (2), transforming the integration variable to ¢, it follows
that

1
/ Q)™ G 5) £ (s)ds
r+s Wlk(?‘)

In [ (we replace the upper limit  + 8 by 1 if 7+ 8 > 1). Since 8 = O (k™' logk)
and ¢ € (1 — 81, 1) then Ty (s, t) > 0 and Gx(r, s) > 0 for r € [k—2/3, 1]. Therefore,

e Q _
1A flloo < 1L loc H/ Mcm,s)] ¥ —} (145)

my(r) k2

C
< k—;ufuoo. (144)

From (144) we get

1
/ Q(s)mk_l(j)Gk(r,s)ds <3

~
+8 my(r
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Hence

r+é
/ Qs )m" (‘())G . s)ds—/ Qs )m"—é())c ., s)ds+0(k1).

Using Lemma 47, (142) (a) follows. For (b) we write
—/ mk 1( )Gk(r s) f(s)ds

9
=/ 2(5)5- (G . )mn’;k—l(s)) f(s)ds.

By Lemma 47, the quantity above is bounded by cik| flco. O

Lemma 49. For any f € L][0, 1],
C
IHk flloo < k—;ufuoo,

H—[Hm(r)noo < 2l

(146)

(147)

Proof. As before, we choose 8§ = Cpk~'logk large C, independent of k. Using

Lemma 43, it follows that

/1 Q(s)mg+1(s)

+3 M(r)

Gr(r, ) f(s)ds| < cx(1 — 81 2K27372) 1o

< Z—’;nfnoo,
1
/ 9 [—Q(S)m"”(s) Gk(r,s)] f(s)ds

+5 Or M)

_ C
< w1 = 8227302 1l < k—*;ufuoo.

Now, Lemma 43 implies

r+d Q
/ (S)mkH(S)Gk(F,S)f(S)dS < *”f!oo/ 2kt g,
r M) k 0
< C*”f”oo
B
8y [Q :
/ [ ($)mp+1(s) Gk(r,s)]f(s)ds < C*“f”oo/ 24T g
r ar M) k 0
x|l flloo
< 2

(148)

(149)

(150)

(151)

O

Lemma 50. There exist kg and c, independent of k, so that for k > ko, over the

r-interval (0, 1),

hklloo < Cs.

(152)
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Proof. First we note that for ko sufficiently large, ||/, lloc €Xists since gi, is continu-
ous for » € [0, 1] and the expression for my in (36) shows that 1/my, is bounded as
well for sufficiently large ko since K;+1,2 has no zeros in the region of interest. Define
7t = Hihj+1. Note that

hie = Ak (Ag—1hg—o +ri_1) +rg. (153)

In k& — ko inductive steps we get

k—ko—1 [ m
hie = Ak Ak—1 A1 hig + Hichin +Z H Ap—ji1 | Hk—mhk—m+1. (154)
m=1 j=1
We write this abstractly as
b =+ 9, (155)

where

by = ArAi—1.. Akgr1 Ao

k—ko—1 m (156)
(MOl = Hehir + D[] Ar—r1 | Hiemhiomer.
m=1 j=1

and O is defined on the space S of sequences h = {hk},‘f‘;ko 41 in the norm

I6I="sup Nl2lloo- (157)
k>ko+1
Lemmas 48 and 49 imply
c k—ko—1 m c 1
"N < gy 1+ *
m=1 j=1
< v][blloo, (158)

where, if kg is large v < 1 is independent of k. Thus, 91 is contractive and there is a
unique solution of (155)in S. O

Lemma 51. For anyr € [0, %] and for large enough k we have || %hkﬂoo < cyk.

Proof. Since by Lemma 50 /4y is bounded, Lemmas 49 and 48 imply
, d d

|hy ()] < [ [Akhk—110) | + | [Hihikr11(r)] < ek
dr dr

Lemma 52. Forallk > 1, hi(1) = 1.
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Proof. In case (i), a simple computation shows that

82kg “k . .

3522 ls=0 = lkhk(1)§ (8no—k = lkmkhk).

(By the differential equation for %, all derivatives exist.) Lemma 37 with j = 2k gives
aZk

i* = @Is:()gnofk = i* (1),

implying the result in case (i). In case (ii), using Lemma 38, a similar computation
shows that

p 82k+1 p P
i = o g ls=08no—k =1 hi(1) (Gno—k := i"mihy).

Definition 53. Let

S

. 0

Ti(s,s) = s 2kF1-T / t2k—2”58—5Tk(5, tydt, (159)
0

where Tj (s, t) is defined in (95).

Lemma 54. Let§ = k= logk and Si.(s) = a% fol 12k=271(s, t)dt. If C, is large enough,
s € (0,8) and r(s) = k~1Cy, we have

sf(s) sf3(s)

2 _ _ — )34 N
Ti(s,5) = s8k(9) = == (1 =9)"+ (1= 9)
(I=9* (1-53 1-92 Q1-5) (1-5)° (1-s5)?
+ .
0( A TS S L e o (160)

Proof. This simply follows by integrating (103) from ¢ = 1 to s of 7} and the fact that
Ti(s, 1) =sSr(s). 0O

4.13. Proof of Lemma 31. First choose €; > 0. From Lemma 49, it follows that

d
— h
H Is [Hihp+]

Cx Cx
N < k_2||hk+1||oo < 2

where we applied Lemma 50. Further, we note that

1 d
AT D@k T 1) ds  Whi-1®)

1 1

AT,

=/ t2k+f—28—5"(5,t)hk_l(st)dH/ (s, R (st)yde.  (161)
0 0
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We have
1 a7 1 07
/ =2k (6 ey (st)dt = hi—y (s)Sk(s) — / di 77255 (s, 1)
A s 0 s
L b * k2, 0Tk
x/ hk_l(ss)ds=hk71(5)Sk(5)—/ hy_y (ss) / t s— (s, 0)dt | ds
) 0 0 s
1
= hi—1(5)Sk(s) _/h;c—l(ﬁs)syﬁ1+r Ti(s, 5)ds = 2k + 7 — 1)Sk(s)
0

1 1
X/ szk*2+fhk_1(5s)ds —/ S2k71+T[Tk(5, S) — Tk(ﬁ, 1)]}1;(_1(55')615'.

O 0
(162)

Therefore,

L Arlhi—11(s)
Rk+t)2k+1—1)

1
= / [Tk(s,S) — fk(ﬁ,s) +5Sk(s)]S2k+‘[—l
0

1
xh),_ (ss)ds + 2k +1 — 1)S(s) / sHT 2 (ss)ds.
0
(163)

We note that

2k +1)(2k + DS —iAl =0 BEE
@k+T) @kt T = DS (s) = o= [Arl11(e)] = B 12

and that Qk+7 — 1) fol §2KFT=2p. | (ss)ds has a bound independent of k. Combining
(103) with Lemma 54, if k is large so that ke is large, then

. k
Ti(s,8) = [Ti(s,5) —sSp(e)] = (1 —s) + (—% + {—i)
(1—9)?% 2 3 . f 3
x[— 3 +§(1_S):|_5<_E+3kr3)(1_s)
+0 (I=5* 1-=53 1-95% QA=s) (1-5)3 (1-5)?
( krd 0 kAT B3 T kAT 2 T k2
(1= 1-5)73 A-5)7° (1-29)?
x 7 k3 r . kr ) (164)

From (164), it is clear that Ty (s, s) — fk(s, $)+sSk(s) > 0ifs € (1 — 8, 1) and ke
is sufficiently large. Now, s f3/ (3kr3) (1 —5)> > 0 exceeds any term following it in
(164), except possibly when 1 — r, i.e. s is small. Thus, if we define

Mi= sup |hp(s)l (165)

r(s)eler.1]
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we get

1
|h ()| < Qk+7)k+T—1) M)y [/
1

_51

S2k+‘[—1 |:(1 (_k_fl+é)

1 5 2 A 3 Cx Cy
X [—%(1 —5) +§(1 s) ]+5 (1 $) |dst + k—2+m (166)
When (1 — 7) (and thus s) is small, we can replace the term s f]/(12)(1 — )3 on the
right side of the above equation simply by (1 — s)3, which is clearly bigger. From the

fact that fll_s s k=11 = 9)2+ (2/3)(1 — 5)31ds = O(k™3), it follows that

2 —1+
ngMk_l( k T8y & )+C_*+ G (167)

ktl+t K2 K& ) K K3

Let C3 be large enough and define ko(€1) = C3 /€1, so that for £ > ko we have

2k+1—1 Cx Cy k—1\?
+ + =)< — )
2k+t+1 elzk3 k2 k

Then for k > ko,

e < (= 1/ZM oy & (168)
implying
e (ko)l/z
kx|
k
1 k3/2 Cy Cx

My + k1/2 Z 732 kl/z Z 52 2 Sc *k1/2 k]/zk(l)/2+k1/2k8/zef'
(169)

The result follows from the definition of M} and noting that last two terms in (169) are
3/2,-172
O(csky “k™).

4.14. Proof of Lemma 33. From Lemma 31 and the definition of kg, it follows that
3/2
i < 3
|hk(€l)| B kl/zgf/z

for k > C3e1~! = ko. Using Az (1) = 1, it follows that for k > C3/r,

h 1 B ()dr e
|hr(r) — 1] < |k(”)| \W
3/2_1/2
CsC
Additionally, if 7 akr > (%) — L. then |hi(r) —1] <e
3

7 1t is to be noted that for small enough e the inequality akr > L always implies k > C3/r.
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4.15. Proofof Lemma 35. For¢ € [0, L], using the a priori boundedness of /i in k and
Lemma 51, we note that both /1 (¢) := hx(r(¢)) and (h )¢ are bounded independently
of k. Hence the sequence {ftk}k>2 is bounded and equicontinuous. By Ascoli-Arzela’s
theorem, there exists a subsequence i . (©) converging to a continuous function h. The
first part of the result is proved. We first prove that | ( ¢)—1] < 4e.Now, from Lemma 33,

|hi(£) — 1| < e for¢ € [Le, ak] for sufficiently large k. (170)

Leth k,j be a subsequence that converges to h for ¢ €10, L¢]. Let &y, &y be aminimum,

and a maximum point of % on [0, L] and the corresponding minimum and maximum
values are denoted by m and M respectively. Continuity at the endpoint ¢ = L, implies
that M > 1 —€e,m < 1+e. IfbothM —1—-€ < Oandm — 1+e€ > 0, there is
nothing to prove because in that case it is clear that |4 () — 1| < 2¢. Now, consider the
possibility that (i): M > 1+¢. In a similar manner, we will also consider the possibility
(ii): m < 1 — €. Consider (i) first. Since at the end point of the interval, #(L¢) < 1 +¢,
from continuity there exists an interval [a, b] C [{ar, L] of nonzero length for which

h(n) < %(M+1+e) < M for n € [a, b). (171)

For some L > L., independent of k (to be determined shortly), we write

L kaey
EAGE (/{ +/ﬁ )K(c, m f(n(1 = &~))dn

. O Hn( — k!
with K (¢, ) := e~ 20D+0® (1 + %) %Q(L ndn
=: [AX £10) + LAY £1(0). (172)
For fixed ¢ and n we have
) e Ho(m)
_ _ ntg 27U
kll)ngo K, n) =Ko, n) =e Ho(g)g()(;’ n). (173)

On our interval we have n > ¢. Thus Gy > 0 (see (126)); Go can vanish only if n = ¢.
Furthermore, by (171) we have ¢y & [a, b]. We can then define

_3suppoz, |h|

, where K,, = min K, , 0.
bk, where K, nrer[%] o, ) >

Note that Q(n) ~ n for large k and, aside from the exponential term, K is algebraically
bounded. We can thus choose L > L. large enough independently of &, so that

LAY £1O| < €7 flloo (L. kaer]- (174)

There is a subsequence of fzkj that converges uniformly on € [0, i]; for simplicity,
we will use the same notation l~zk’ ; for the subsequence. It is clear that the limit is ﬁ({)
if ¢ € [0, Lc]. We keep the notation / for the limit on [0, L]. We note that (170) implies

A

|h(e) — 1| < e for¢ e[Le, L. (175)
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Now choose a small € > 0. It is clear that in the interval [L., L, h() <1+e < M.
For sufficiently large k;, using continuity of (¢ ), we have

b
LA h(gan)] < / K (&, mh(pydn + / K, mh(dn+ Me,

neleu,L\la,b)

1 b
<M R K(Cm, n)d77+—(M+1+6)/ K&y, mdn+eM
nelem, L1\a,b] 2 a

L 1 b
=M/O K (@Cur, n)dn—5<M—1—e>/ K (&u, mdn + Me
< MA@ — (i);—‘l)(M — 1= O)Kn + Mey.

Since Ay, [1] = A,‘gf[l] + A,‘g}[l] + A}{j[l] (see (112) and (172)) Lemmas 47, 44 and
(174) imply that for large k; we have

ARIIG) <1+ +e

Hence, for large k; we have

- K
LARRI(Ear) gM(lJr;Jrzez) —T’”(M—l—e)(b—a)- (176)
Now, there exists N so thatif j > N, ||ftkj — it||0<J 0.i] <€ and A; = .Akjﬂ....Akjﬂ
satisfies
A — Il < €2
while

kii—kj—1

rie =B+ D [T A1 Bk —m

m=1 =1
where B; = H;h;+1, satisfies the estimate
[7j+1] < e2.
Therefore, from
By = Nj ARy + 1741
it follows that
hio C0) = h(Cy) — €2 = M — &3

On the other hand, at ¢ = {37 we have

- K
Aj.Akjhkj +riv1 < (1 +e) |:M(l + ; +2€) ter — Tm(M— 1—e)b —a)i| +e.
177)



Tonization of Coulomb Systems in R3 723
Thus,
i € K,
M—-—e < (1+e)| MO+ 7+262)+€2 — T(M— 1—¢e)b—a)|+e.

This is true for any €3, hence as €2 | 0. Thus,

M < M(H%)_%(M—l—e)(b—a)]

However, from the definition of J, this implies M — 1 — € < €. We note that for (ii),
we repeat the above argument for —/, which has a maximum at ¢,,, to conclude that
either (—m) — (—1+¢) <0or (—m) — (—1+¢) =1 — € —m < €. Therefore,

1 —2e<m <M< 1+ 2e,

implying that |7 — 1| < 4e.

5. Appendix

5.1. Short proof of the regularity of the unitary propagator.

Theorem 5. Assume that H = H + V(x, t), where H is time independent and self-
adjoint, and V (-, t) is in L (R") for every t and is differentiable in time, with integrable
derivative. Consider the Schrodinger problem

iy = Hy; ¥(x,0) € D(H). (178)

Then there exists a strongly differentiable unitary propagator on L*(R") U(t) so that
Y(x,t) =U@)yo € D(H) forall t and Y (x, t) solves (178).

Proof. We note that it is enough to prove this property on a finite interval [0, €], since
the problem can be restarted at # = €. Let y = ¥ — e “4/. Then y satisfies the inhomo-
geneous Schrodinger equation

iye =yoe '+ Hy+Vy; yo:=iyo+Hyo+ Vi, y(0)=0. (179)

We transform this equation into an integral equation, formally for now. Straightfor-
ward calculations show that

i(eiHl‘y)t — el'HteftyO +€th Vy (180)
or (still formally)
ielth — (/ e(lHl)Sds) y0+/ elHS V(S)y(S)dS
0 0
. t .
=GH -1~ - 1)y0+/ SV () y(s)ds (181)
0

or, equivalently,

t
iy=GH -1 —e—in)yoJre—iH’/ Y () y(s)ds. (182)
0
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It is clear that (182) is contractive in the norm sup, (o ¢ Il - | .2(r3) for small €, and has a
unique solution. Clearly, the first term on the right side of (182) is differentiable in time
and the derivative is continuous since e ** is; let u( denote this derivative.

We now write a formal equation for u = y;. We have

t t—s
iu = ug +/ TSy (1 —g) (/ u(s/)ds’) ds
0 0

t
+/ ey (1 —s)u(t — s)ds. (183)
0

This equation is also contractive, and has a unique solution, in the same space. Thus both
sides of (183) are integrable in time. By integration and appropriate changes of variables
and order of integration, we see that fot u(s)ds satisfies the same equation as y, which
has a unique solution. Thus y = fot u(s)ds is strongly differentiable. Since both y and

¢y are strongly differentiable (the latter by inspection from (181)), y € D(H) for all
¢t and is strongly differentiable. It is clear that v € D(H) and easy to check that it is
differentiable and satisfies (178). O

5.2. Laplace transform of the Schrodinger equation. We look more generally at equa-
tions of the form

vy = HYy +V(t, )y, (184)

where H is self-adjoint and time independent, and ¥ (x, ¢) is bounded on R3 and differ-
entiable and bounded in ¢, and ¥ (x, 0) € D(H). The conditions on ¥ can be relaxed.
(For the purpose of this paper, H would be taken to be H¢.)

Proposition 55. Under the assumptions above, the Laplace transform U ( p,)ofv(t,-)
exists for Re p > 0, it is in D(H) and satisfies

(p+iH) = Yo — iV (185)

Proof. We take the unitary propagator of the time-independent problem, U = e~/# and
apply U*(t) = U~ (¢) to both sides of (184). Since (cf. § 1.2) U~! is strongly differen-
tiable, with derivative iU ~! H, and ' is r—differentiable in L2, U~ is differentiable
and we get

WU )y, =iU " HYy + Uy, = —iU™ Wy, (186)
Since U~ ! V4 is continuous in 7, we can integrate both sides and get, after multiplication
by U and using the fact that U~ () = U(—1),
t t
v = Uy — iU/ U=y (s)ds = U —i/ Ut —s)(V)(s)ds
0 0
=Uio —iUx V), (187)

where x is the usual Laplace convolution. Taking the Laplace transform (which clearly
exists) in (187) and using standard functional calculus we get

U= (p+ith Yo —i(p+il) VY, (188)
and thus 1} isa D(H) solution of (185). O
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Now, from Eq. (7), it follows that p satisfies (9). Furthermore, using (188) and the
fact that y* and Q ; are compactly supported, we see that J also satisfies

P(p.) =RoXs (p.) —RoXp | D 2P(p—ijw.) |, (189)
JEL

where Ry = (He — ip)’l.

5.3. Analyticity of (I — Q[’m)_l in X. This is standard, and can be seen directly from
analytic functional calculus. We provide a self-contained argument, for completeness.
We write €y to emphasize the X— dependence of €, and for simplicity of notation we
drop the (I, m) subscript. We have

I—Cx) ' —U—-Cx) ' =U-Cp) " (€Cx, —Cx)(I —Cx,)" and
(= €)™ [ 1+ (@ — e — €)™
= —Cx) " (190)

We fix X; and let X’ — X;. Since (I — @Xl)_1 is bounded, then ||(Cy, — Cx)({ —
Cx)7 ! — 0as X’ — X; and

I+ €y, —Cx ) —Cx)7 ! (191)

is invertible when X and X" are close enough and [+ (€, —€x ) (I —Cx) 17! — 1
in operator norm as X’ — Xi. Thus

I —Cx) "> g —ex)7! (192)

in operator norm, as X| — X’. Now diferentiability in X follows from (190).

5.4. Coulomb Green'’s function representation. The retarded Green’s functions G = G+
is defined as the solution of the equation,

AoG(x,x"s k) =8(x —x') (193)
in distributions, satisfying the radiation condition
G(x,x"s k) ~ F©O, )™ r 171; as r — oo, (194)
where
k=\/ip (Imk >0 ifRep > 0), v=%. (195)

Equivalently, G is the R3\{0} solution of (193) with zero right hand side, satisfying
(194) and |x — x'|G(x,x"; k) — (4m) Lasx —x' — 0.

Proposition 56.

%OXBgz/BG(x,x’;k)g(x’)dx’. (196)
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Proof. The function

f::/ G(x,x'; k)g(xHdx' (197)
B

solves, as can be checked, the equation
Aof = XBg (198)

with the radiation condition (194). Such a solution is unique since the difference of two
solutions satisfies the equation Ag f = 0 (with the radiation condition (194)). Multiply-
ing by G (x, x'; k), integrating over a volume and passing to the limit where the volume
approaches R3, we see that £ =0. O

Symmetries of the Coulomb potential —b/r allow for a closed form of G (cf. [26]—
where the sign is chosen differently) in terms of Whittaker functions 2 and 901,

ra-—iv) B 0
cle ) — _ _ g
G(x,x,k)—4m,k|x_x/| (85 8;7)%7""*5( zké)imiv,%( ikn), (199)
where Imk > 0, 2kv = b and

E=x[+ x| +]x —x"|, n=I|x|+x|—|x x| (200)

The Whittaker functions are defined in terms of the Kummer functions M and U by the
relations, see [1], Chap. 13,

: 1
My u(z) = e’iz%WM (5 +u—x«1 +2,u,z) , —T < argz < 7,
(201)
: 1
W, u(z) = e’iz%*“U (E +u—x,1 +2,u,z) , = < argz < 7.
The following integral representation follows from [1], Chap. 13, for the values we are
interested in, zy = —ik&, zp = —ikn,a = 1 —iv, b = 2 (a different “b” than the one
in our Coulomb potential)
e z)G@) e~1721(z)
{1 —ivyLd+iv)’ B

M1 (2) = : (202)
where / and J are as defined in (51) and the expression is valid in the regions where the
integrals converge (in particular, |Im v| < 1). For other values of v of interest, the inte-
grals can be replaced by appropriate contour integrals. For instance J would be replaced

by
-1 . .
(1 _ e—ZnU) % eztt—w(l _ l‘)wdl‘,
C

where C is a smooth simple curve encircling [0, 1], as it can be checked by calculating
the jump across the cut of the integrand. It follows from these integral representations
that the Green’s function is analytic at any (small) p, Re p # 0. Substituting (202) into
(199), we obtain (49).
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5.5. Dependence of A in Eq. (56) on Z, p. We now seek to determine the asymptotics
of 4 in (56) in the resolvent XgPRg X g in terms of A = /—ip and Z = exp [inb/(21)]
for X = (/p. Z) € ]I)T;r x D for sufficiently small €.

Recall the expression A4 in (56). Note that since

o= VA2 —ic~ e A2 (1 + O(Az)) =g+ 2 2a +e--, (203)
b _ ke [1 + 0(,\2)] + 22 + (204)
= — = = K .
k=5 NG K1,0 1.2
each of m(a) and w (a) is analytic in A for small A, with the expansion
1
my(a) = - . i+1/2(Qaa) ~myo(a) + Amy (@) +-- -, (205)
1
wi(a) = - L i+12Qaa) ~ wyo(a) +Aw (@) +--- . (206)

The asymptotics in this case is also differentiable with respect to a and we get similar
expressions as above for m' (@) and w) (). It follows that the expression for fy in (55)
also possesses a regular series expansion in A:

Jo(@) = foola)+xrfoi@)+---. (207)

To simplify A4 as in (56) for small A, we now consider the asymptotics of w»(a) and
w) (a) for small A.

5.6. Asymptotics of wa(a), w(a) for small . Since wa(a) = %QUKJH/Z(ZM:), with
k = b/(21), it follows from formula (13.1.33) and analytic continuation to larger values
of k of (13.2.5) of [1], p. 505 and the identity I"(x)I"(1 — x) = 7/ sin[w x] that

e—in(l—/()e—ka (Zka)(Hl)F(K -
wa(a) = — . HQ2ha; k1),
2mia

where H(z; k1) = / e (1 + )y, (208)
c
where the contour C starts at coe’®, circles around the origin once counter-clockwise
to the right of t = —1 and goes to cce’?” . In defining the integrand, we choose arg
t € [0,2r], arg(l +¢) € (—m, 7] so that there is no branch cut on the real axis between
—1 and 0.
It follows from (208) that

li —in(l—k) ,—\a 2 (1+2) IF —
wg(a>=(—x+—) wa (@) += ‘ (2 TN ® =D g onas D),
a Tl
where H,(z;«, 1) = / e H = (1 + gy, (209)
C

We now seek to determine H (2Aa; b/(21), [) and Hy (2Aa, b/(2)), [) asymptotically
for small 1. For that purpose it is convenient to define

12 1
€ =2\ (%) ,T=¢et , P(t;e) =—glog (1+6?2)+r, (210)
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where we use the principal branch of log in defining P(t; €3) above. Then, noting that
in the definition of log 7 and log (t +€3), argt € [0, 27) and arg (7t + &) € (—m, 7],
we have

log7 — log(t +€2) = —log (1 + 6—2)
T

for 7 in the upper-half plane, while for t in the lower-half plane, we have

logT — log(t +€2) = i2m — log (1 + 6—2) .
T
It is readily checked that

b bl+1/2 ; ;
H (Zka; — l) = T2 [/Cl T (t+e€3) exp [—VabP(r; 62)] dt

217
+exp (—#) / r[(r + 62)1 exp [—\/EP('C; 62)] dr} ,
C
(211)

b bl+1
H1 (2)»(1, -, l) = W [/C 'L'l+] (T+62)l €eXp [—V Cle(T; 62)] dt
1

2A
+exp (_#) / "z +e) exp [—«/abP(r; ez)] dT] .
G
(212)

Here C is a contour in the upper-half complex t-plane from +oo to —e; along a steepest
descent line, passing through the saddle point 7, ; = i (1+0(1)), where P’ (15 1; €2) = 0.
The contour C3 is the steepest descent line in the lower-half t-plane from T = —ej to
+o0 through the saddle point 75,2, = —i (1 + 0(1)) where P’(z52; €2) = 0. We rewrite
wy and w) as

(_1)1+1e—kabl+l/2r(’( _ l) B
wo (@) = T [ZMl (Vab. e2)+Z~ My (2v/ab. 62)] . (213)
where
1 .
Mi(¢. &) = — / e P (r + 6)ldr,
Tl
| “ 214)
Myt €) = — / e P (r 1+ 6)ldr,
Tl Jc,
i (=Dle 2aplt I — 1)
w/Z(a) = (_)\' + ;) w2(a) + 21+1a)\l
x [ZM3(«/ab) + Z’1M4(\/ab)] , 215)
where
1 .
Myt ) = - / EPER I (¢ 1 )y (216)
Tl Jc,

1 ‘
and M4(c, 62) = _/ e—CP(‘L’,éz)_L_l+l (.[ +€2)ld'[.
Tl

G



Tonization of Coulomb Systems in R3 729

It follows that, with € = 21./a/b, we have

wy@) 1 (bm) (szm €) + Ma(ab, 62)). 217)

wa@) a \a'?)\ 22M,(Vab. &) + My(v/ab, &)

5.6.1. Analyticity in €
Proposition 57. The functions M; (\/E, ), i =1, ..., 4, are analytic near zero.
Proof. We look at M1, the others being similar. We can make a change of variable

g = P(t;€) — P(15,1; €2), (218)

where the function ¢ is real on the steepest descent contour and changes monotonically
from oo to 0, as we move from +oo to T = 74,1, and then increases monotonically again
from 0 to oo as we move along the steepest descent path from v = 7,1 to T = —es.
We denote the two branches of the inverse function 7(g) in (218) by t1(g) and 72(g).
Noting that

dP(t;¢€) . 1
dt Tttt e)

e¢] T1+l o +e 1+1
M1, &) = e 4™ / oo (e
0 ntltean
o° 1;[+1 T +e I+1
_/ ot 12(1—2) dq ). (219)
0 tltearn

It is easy to check that (z; — 1 )2 is analytic for small €5, regular in ¢ and nonzero at
€y =0 forall g.

Furthermore, the integrands in (219) are clearly bounded by an L' function uniformly
in € (see (210) and (218)), ensuring €;-analyticity of the integrals. O

+1,

we have

Returning to the original variable t we get

1 1 _ _1
Lwiwab, o=~ [ )
i i Jey,

/n exp [i(2l +1)0 — 2msin9] d6
0
m (2«/%) _i [Yzm (2«/@) + Gopa (2«/%)] (220)

2z

and
L[ ()

b g Ca0

2dr

1
—My(Vab,0) =
i

0
=/ exp [i(21+1)9—2\/absin9] d6

-7

= et (2v/ab) +i [ Yo (2/ab) + Gt (2vab) | 221)
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where Jp;+1 and Y41 are the usual Bessel functions of order 2/ + 1 and
1 [ .
Gors1(v) = — / {exp[(zl + 1]+ (=12 exp[— (21 + 1):]} e vsinh! gy
T Jo

2 [ .
== /0 sinh ((2/ + 1)) e~V gy (222)

. 6% €2 . ..
Tl =104/1— 1 =i + Series in €. (223)

Thus, asymptotically, to the leading order in A, we have with v = 2+/ab,

B \/E wj(a)
b wa(a)
[Z2 (Jar2(v) — i Yar2(v) — iGops2 () + (Japs2 (v) + i Yara (v) +iGara (v)) ]

[Z2 (Jo1(v) = i Y21 (V) — iGopr1 (V) + (o1 (V) + i Va1 (V) +iGorr1 (V) ]
x (1+00)). (224)

The discussion on w)(a)/w(a) shows that

L _ Jo@uy@ — fi@w @

~ mi(@wa(a) — my(a)wh(a)

(225)

is an analytic function of the extended parameter set X for X = (f 4 ) € IDT;r x D as
long as the denominator for 4 is nonvanishing as A — 0.

We can prove it is nonvanishing by simplifying the leading order expression in A for
w)(a)/wa(a), defined as w’z’o(a) /w3.0(a) under the further assumption that a and ¢ (as
in the definition of g) are sufficiently large.

5.6.2. Further simplification for large a. For large a, there is additional simplification
since

Dot (2v/ab) % i¥aper (2/ab) ~ (i)

T 241 /4p1/4

P [ii (2“/%+ %)] : (226)
a2 (2\/%) +iYoun (2@) ~ (i)

T2 /Api/A
. T
X eXp [:I:z (2\/a - Z)] . (27
and from Watson’s Lemma, we get
Gt (2v/ab) = 01/a), Garea (2Vab) = 0(1/Va). (228)

It follows that for large a,

/ 2
wyo(@ r (m -z ) (1 N O(a—l/z)), (229)

wro(@) a \Z%2+mn
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where

n = ie4’*/w, 7 = exp [%}, rp = ivab.

5.6.3. Nonvanishing of the denominator of 4 in (225) Now, defining
m=m(a), m' =m\(a), [ = fola). ["= fia),
we have to the leading order in A, for large a,
n —Z%2+00) ,
—af
n+2Z2+ 0, a"1/?)

N n —Z2+0@0) 3 ,
r —— | —am
P F 225000 a 1) 4

f[4r2(m1 — 22+ O] — 4af [n1 + 2>+ O(V)]

m[4ray(ny — Z2) + O] — 4am’ [m + Z2+ O]

The denominator of A4 is

/

N Y m
D=-mlz2(4a™ +ar,+00)) + 1 (4™ — 4ry + O
m m

We note that

1 b
m=mi@=-Ms ., ,Qua)=e* Qo) M (1+1 — = 21+2, Zaa)
a 2a° 20{

eoza

~ @0t ] [1 +0 (aa)*])] for o large,

ri+1-2£
and for large « in the fourth quadrant

eaa

r+1-42L)
a=vVA2—ic— c'?exp [—i%] as A — 0.
Therefore, D can be zero for large enough ¢ (i.e. large f) only if

72 (2ﬁac1/2(1 —i) [1 +0 ((ca)_l)] +4i~/£)

m' =m(a) ~ Qa)""da

= —n (2J§ac1/2(1 — i) [1 +0 ((ca)*l)] - 41\/5) +OM).

Taking the absolute square of both sides, we obtain,

2P (12av2eP (1+ 0 a™") + [4v/ab — 2av2¢ (1+ 0\ )

[1 + O(aa)_l],

731

(230)

231)

(232)

(233)

(234)

(235)

(236)

- ([2ax/2_c]2 (1 + O(c_la_l> +[4vab + 2av/2¢(1 + O(C_la_l)]z) + o).

This is impossible, since |Z| < 1. This means that for large enough a and ¢ (that is,
B large), D cannot be zero. It means that the resolvent is well-defined as p = 0 is

approached from the closure of H.
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Note 58. Note that the denominator of 4 in (232) vanishes at points in the region | Z| > 1,
where, as a result, the resolvent Mg has poles. From the relation between Z and p, it
follows that p = 0 is an accumulation point of a sequence of poles in the left half plane
approaching zero tangentially to iRR.

5.7. Stationary phase analysis needed to calculate the ionization rate. We know that
the solution p(is, x) is analytic in the extended parameter («/i s, Z )), where

Z =explinb/ (2v/5)]. (237)

So, for X = («/E, Z) e Df x D,

o0
Ps,x) = > s Fi(2). (238)
Consider

Gis) =Y s"?F (exp [%D . (239)
S

=4

It is clear that G(s) is a C! function of s in [—a, a]. Integration by parts gives

/a G(s)e™tds = o™ ). (240)

—a

Now note that

F;(exp[ ]) ZD,lexp[ f] (241)

Jj=0

with D;; decreasing exponentially with j, because of analyticity of £(Z) for | Z] < 1.
For 0 < < 3, it follows there exists constants ¢ and C independent of ;j so that

> IDj| < Ce. (242)

It follows that for large ¢, we have

3 0 a .
ib . X
|Z Z Dj,l/ exp [ﬁ] s Pds| < Cle_“/;. (243)

I=1 j=[ya1+1 -

a
’ / elstSI/ZdS
—a

Further, for large ¢,

C
< 72 (244)
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Therefore,
/ Z I/ZF/(Z)) Hlds = > / s F(Z)eD ds (245)
—4 =0 0<I<3

~ Z ZD;// l/zexp[i [st+j%Hds

0</<3 j=1

()

We first evaluate the terms of the form

a
/ /2gits id 15 g (246)
—a
for large 7, where
jmb
di = —.
)

The contribution from fi) , 1s obviously small, at most O(1/¢), uniformly for all ¢, since
the integrand vanishes exponentially ass — 07. So we only consider, for 1 < j < [ﬁ],

12 itstidis\?
/ sl ettstidis™ 1 g g (247)
0

We have a point of stationary phase at s = s¢,;, where

d; 2/3
so;=(5) - (248)

Note that 5o, ; < 1 for ¢ large since j is restricted to j < J/t. It is then convenient to
rescale s = 59, ;¢, to obtain
1 [T 12\] 172 2725 15
80,/ / “ exp [ivj (q +2¢~ Y )]q/ dgq, where v; = 5t 3. (249)
" 0 d
J

Using standard stationary phase arguments we obtain that, for large ¢, and hence large
v
J>

j +1/2 v,

a/s0s sy Celvi

1+1/2 . _ 0 B
|S0,.1/ /0 exp [“)j (q +2q 1/2)] gPdg — ——0L — -in/4

VY
(2
<% (250)
vy

For large ¢, the dominant contribution comes from the term with / = 0 and so

(V7] - [Vi]
a /2 V) ) ]
/ Blis,x0)etds = > Dy YT it <ot Y e <yt (@251)
NGT

j=0 j=0
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The sum over j is clearly convergent because of the exponential decay of D; o; hence

[ﬁ] in the upper limit can be replaced by oo. From the definition of so ; and v;, it
follows that

a .
/ P(is, x)eSlds = O (z—5/6) . (252)
—da

At all other singular points, p = inw, n € Z, the behavior is similar, and a similar
calculation gives a e/t —3/6 contribution. Since ¥ € H, there is sufficient decay in n
to ensure that the sum over all such contributions is convergent.

5.8. Calculation of ji. Substituting the explicit expressions for m (r) and m—1)(r),
it may be checked that in both cases, 7 = 0 and T = 1, corresponding to (i) and (ii)
respectively

i = Ka? 5(7‘)](2) +ka 5(r)](1) +](O) ,  where (253)
(2 _ 4% ( _ H(ak)H(g —{/k)) N H"(¢) L+ Ay H'(¢)
Sr Hak—-)H©Q ) HO 2 as(r) H(Q)'
(1 201 =27)Q H(ak)H(& —¢/k)) b
Jk =7 2.2 - t—

ass H(a(k—1)H() ag
+|:_21«/§+ ws ]H/(;)
o 2002

as 20 H()'
(0 5597wt sQ7 (1+21) I ( s
= —_— - w — (wng — 1 ,
R T To A To TS 4 e e

where s(r) = frl VR($)ds, ¢ = kar and ji := s[Lymy — Qmy_1]/my. Recall that
H(¢) satisfies

H' =2 (1 _ e 2Ooarg) ;_k) H + (—l(l D i) H, (254)

2ka? 4ka2(0) ;2 atk
where
a=2 Q(O), (255)
5(0)

and that H (¢) has the following asymptotic behavior:

l(l 1) log¢ 1
H()~ 2% +%1 gC+ O( ke ,{—2), (C,k— o0, , C<ka). (256)

Now, we claim that for any » € (0, 1), |j,£2)+k_1j,§1)| < Ck™2.Inthe regimer < 1,
we use Taylor expansion:

Q= Q(O)+Q(0)— + 0(

) , 5=25(0) — \/Q(O 2+ O(kZ) (257)

and substitute » = ¢/(ka) in j(z) +k1 (1) ; we then use o = 24/2(0)/s(0), (254)
and the asymptotic behavior (256) to evaluate H(ak) and H(a(k — 1)) to find 1(2) +

k2
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k! j,él) ~ k™2g(¢) for some bounded differentiable function g(¢), with asymptotic
behavior g(¢) ~ const./¢ for large ¢. When 7 is not small, we use the asymptotic
behavior (256) to evaluate all terms involving the function H and to find the same
inequality |j,§2) +k_lj,§1)| < Ck™2.

Therefore, jx(r) = O(1) in all regimes. Further, it is easily checked that in the
regime k > ¢ > 1, jy(r) = O (1, §_1) = O(1/(kr), 1). Since the asymptotics is
differentiable (since H satisfies a second order differential equation), it follows j; () =
O(k~'r=2,1). When r is not small, using (256), it is readily checked that j; = O(1).

5.9. Generalizations. In fact, the same asymptotic arguments hold more generally if
M
Vit x) = Z eVeQ;(r)
j=M
with Q; (r) satisfying the conditions we used for . We substitute for r = O(1),

M
exp klogfo(r)+2klfj/ij(V) ,
Jj=1

Cy
no—k(r) = m

and calculate the error term Ry, as before. By requiring that the O (k?~2//M) terms vanish
for j =0, .., M, we obtain (M + 1) first order differential equations for f;. To leading
order

1 2/M
folr) = [ / \/Q_M(s)ds} ,

The expressions for f;(r) for j > 1are more complicated and involve arbitrary constants
to be determined from the information for small k at » = 1. Again because of the pres-
ence of ¥ 21(I + 1) in Ly, the remainder is O (r~2), which is O (k%) whenr = O(k™").
We write

M H (akr)
-
8no—k(r) ~ cxexp | klog fo(r) +j§_1 KNGO saar @Y
Then, if ¢ = O(1), we find to leading order H(¢) ~ Hp(¢), where
I(I+1)
H{ —2H} — THO =0,

where now o = 2,/Q2_/(0)/s(0) and s(r) = frl V2_p(s). As for M = 1, we have to

require Hy(¢) ~ 1 as { — oo. This leads to

2
H(¢) = \/;é (2K (©).

For nonzero g,,—, the constant multiple in (258) is expected to be nonzero. On the other
hand, the asymptotic behavior as ¢ | 0, Ho(¢) ~ c,¢~" implies that the behavior at
r = 0 of g,,—/7 is not acceptable unless every g, vanishes identically.



736 0. Costin, J. L. Lebowitz, S. Tanveer

*

The analysis is likely to extend to systems with H¢ replaced by
Hy =—A—=b/r+W(r),

where b may be zero and W (r) = O@(r—17¢) for large » and is in L% (R3?). Under these
assumptions, W (r) does not participate in the asymptotics, to the orders relevant to the
proofs.

5.10. Further remarks on the asymptotics.

Remark 59. A weaker statement than Theorem 4 suffices to complete the proof of The-
orem 1. For instance, it suffices to show that for sufficiently large j, |Ri ;| < 1, where

P g, () = iP5 mg, ()1 + R, ()],

Remark 60. Stronger results than those in Proposition 36 hold. Noting that for any integer
q > 0 we have

||Ak_,-+q-.--/4kj+2~/4k‘/~+l-/4kj[ﬁ - 1]”00 X H ( (k T /)2) ”ﬁ - 1”007

q'=0
while
Akj+q-"Akj+2Akj+lAkj[l] =1+ O(kj_l)v

and the fact that ||ij+q}~l loo < c*kj_z, it follows that the sequence ﬁk, satisfying

he = Aghg—1 + Hyhya,

has the property lim_, o i = 1. Indeed, this is in accordance with the heuristic argu-
ments presented in § 5.9. While these results completely justify the formal asymptotics,
they are not needed in the proofs and we omit the details.
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