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Abstract: We study the evolution of a one dimensional model atom with §-
function binding potential, subjected to a dipole radiation fleld E(t)z with E(t)
a 2m/w-periodic real-valued function. Starting with an initially localized state
and E(t) a trigonometric polynomial, complete ionization occurs (the probability
of finding the electron in any fixed region goes to zero).

For more general periodic fields and 1 (z,0) compactly supported (this is a
technical point making the exposition cleaner), we construct a resonance ex-
pansion, More precisely, we prove that 1(z,t) has a unique decomposition into
a quasi-bound state e~*"vt4),(z,t) and a dispersive component tg(z, t) (both
square integrable in space, with o4 and v(z,t) independent of (z,0)). The
quasi-bound state 9p(x, t) is 27 /w periodic in time and exponentially decaying
in space. The dispersive part is given by a Borel summable asymptotic power se-
ries in t~1/2 with coefficients varying with . In the event So, = 0, then ¥(z, t)
is a Floquet eigenstate and orthogonal to ¥4(z, t).

1. Introduction

The ionization of an atom by an electromagnetic field is one of the central
problems of atomic physics. Despite this, there are few exact results available
for the ionization of & bound particle by a realistic time-periodic electric field
of the dipole form E(t) -  (an AC-Stark field) for fields of arbitrary strength.
The most realistic results we are aware of are based on complex scaling ([18,19,
34]) and show ionization of certain bound states of the Coulomb atom as well
as defining resonances for small electric field.

The lack of rigorous results for large electric field is true not only for realistic
systems with Coulombic binding potential, but even for model systems with
short range binding potential [3,5,17]. The most idealized version of the latter
has an attractive é-function potential in 1 dimension. Its spectrum consists of
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just one bound state plus the continuum [10]. This model, in which all states
are explicitly known, has been studied extensively in the literature. Even for
this simple model, the only rigorous results (known to us) concerning ionization
involve short range external forcing potentials rather than the dipole interaction;
see however [4,16,24] for some rigorous bounds on the ionization probability by
a dipole potential for finite time pulses. In this paper we extend the results of [9,
10,29] to the case of dipole interactions. Finally, it is worth mentioning results
in the related field of stochastic ionization [21,22], which treats the case where
the radiation field is incoherent. '

We consider the time evolution of a particle in one dimension governed by
the Schrodinger equation (in appropriate units):

32
16 (x, t) = (—@ - 26(3:)) P(z, t) + E@t)z(z, t) (1.1a)
¥(,0) = Po(z) € L*(R) (1.1b)

Here, (z,t) € R x R, E(t) is real valued, smooth and E(t) = E(t + 2n/w).
Taking to(z) initially localized state (e.g. ¥o(z) = e I2l, the bound state of

Hy = —02—25(z)), we prove that for E(t) a non-zero trigonometric polynomial,
N : — 3
E(t) =) (Bne™! + Bpe~nvt) (1.2)
n=1

the system always ionizes, That is, for ¥(z, t) solving (1.1),

L
lim [¥(z, t)|*dz = 0, VL € R* (1.3)

t—oo f_r,

with the approach to zero at least as fast as O(t~1).

We go further than this and prove that for: general periodic E(t) and for
compactly supported initial data, ¥(z, t) can be uniquely decomposed into a sum
of L*(R, dz) functions, ¥(z,t) = e~"tyy(z,t) + Ya(z, t). The function y(z,t)
is 27 /w periodic in time and exponentially decaying in space, and e ~***¢)y(z, t)
corresponds to a quasi-bound state. Note that o, < 0, since otherwise unitary
evolution would be violated. The term 94(z, t) has a Borel summable transseries
expansion in time with power law terms in ¢~"/2 for n > 1. In fact, letting

7= _gaba (14)

then for small values of v, 2 gives the dominant part of the ionization rate for
most experimentally relevant times [3]. The ionization rate 2 will always be
small when the strength of the radiation field is small.

The term %4(z,t) has a Borel summable transseries expansion in time with
power law terms in ¢~™/2 for n > 1, which allows the unique definition of ¥ (z, t).
We note that the polynomially decaying component of the wavefunction has
actually been observed experimentally in quantum systems [30], although under
significantly different! physical conditions.

1 In [30], they studied luminescence decay of dissolved organic materials after pulsed laser
excitation,
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Furthermore, setting E(t) = ¢E(t), one can show that o} and 5(z,t) have
convergent power series expansions in € when w™! ¢ N, When € — 0,
e~ oty (w,t) — e~ 1l the bound state of Hy and 1y(z, t) goes to the projec-
tion of 1(z,t) on the continuum states of Hy. This shows that the resonance is
the analytic continuation, in ¢, of the bound state. The Fermi golden rule and
multiphoton generalizations can be recovered by doing perturbation theory in
our formalism. This will be presented (in greater generality) in a separate work.

When E(t) is not a trigonometric polynomial, the Floquet Hamiltonian (see
below) may have time dependent bound states, and ionization may fail. This is
uncommon, but there are examples of time periodic Schrédinger operators for
which there exist such bound states [10,27,29).

Our results are restricted to the one dimensional case. We believe, however,
that these results can be extended without too much difficulty to the three
dimensional case with a é-function binding potential (see Section 4.3). We also
believe that the techniques used here can be used for quantitative calculations
in realistic physical problems, although this is not done here.

1.1, Outline of the strategy. Due to the fact that the binding potential §(z)
has support {0}, the behavior of ¥(0,¢) and the initial condition completely
determine the behavior of the solution.

Our main tool is the study of the analytic structure of the Zak transform of
1(0,t) (with (0,¢) = 0 for ¢ < 0),

Z[P(0,))(oy1) = Y bt/ (0, t + 2 /w) (1.5)
JE€Z

in the complex o domain. It is sufficient to consider the strip 0 < Ro < w,
which we shall do henceforth (see Definition 1 for an explanation of why). It
is also sufficient to consider only & = 0 since that is the support of the é-
function binding potential. Unitary evolution of the wavefunction implies that
Z[¥(0, )](o, t) is analytic in & for S¢ > 0.

For E(t) = 0 and (y(z, 0)|e~ 12!} 5 0, Z[(0, -)](o,t) has a pole at o, = —1 +
|1/w|w corresponding to the eigenvalue —1 of the unperturbed Hamiltonian. The
residue at the pole is e *11/*J«t If we consider o outside the strip 0 < Ro < w, we
will find this pole repeated at the points o, +mw (see Definition 1, in particular
(3.6¢)).

When E # 0, the pole gives rise to the term e ~*4(z, t), with the residue at
the poles corresponding (by a linear transformation) to the Fourier coefficients
in time of (=, t). There is also a branch point at o = 0 which gives rise to the
dispersive part of the wavefunction.

The proof of complete ionization, (1.3), involves proving that any Floquet
bound state (solution to (1.8), below) must be zero. This is done by solving the
Schrodinger equation without the d-function at zero, and showing that solutions
which decay exponentially as z — —oo can not be matched continuously at
@ = 0 to solutions which decay exponentially as £ — +oo0. This consequently
implies that S < 0.
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1.2. Statement of results, We consider the Schrodinger equation with a time
periodic Stark Hamiltonian (1.1) on R1*1. E(t) is given by (1.2) (possibly with
N = 00) for some set of E,, (at least one of which is not zero).

Subject to these assumptions, we prove two theorems:

Theorem 1. Suppose o(z) is compactly supported and in H' (finite kinetic
energy). Then the wave function v (z,t), the solution of (1.1), can be decomposed
uniquely into a quasi-bound state (or bound state, if Sap = 0) and a dispersive

part Ya(z, t): -
Pz, t) = e~ Pp(, 1) + Yu(z, t) v (1.6)
where Sop, < 0, Yp(z,t) is 2m/w periodic in time and continuous in x. In par-

ticular Soy is uniquely determined by E(t), and ¥p(z,t) can vary at most by a
constant factor. The resonant term ¥ (z,t) is a Gamow vector, taking the form:

Zn wﬁe—- a+nwcce—-z‘nwte—ib(t)m—ia(t)-}-z‘b(t)c(t) z<0

q’bl’(m’t) = {Zn 1»[)71126 oHnwe o —inwt o~ ib(t)z—ia(t)+ib(t)e(t) 4 >0 (17)

The functions a(t),b(t) end c(t) are defined in Section 1.3, in particular (1.11).
Pp(x, t) is an eigenvector of the Floguet Hamiltonion:

(—iat - 5%; — 26(z) + E(t)m) Uy (z,t) = ovihp(z, t) (1.8a)
Jim ap(2,t) = lim gy(x,t) =0 ' (1.8b)
'l,[)b(m, t) = 1,[)1,(1:, t+ 271'/(4)) (1.80)

When oy € (0,w), then p(z,t) decays with x, and it is an L*-eigenvector of
the Floguet Hamiltonion. In this case, the functions p(x,t) and ¥a(z,t) are
orthogonal, i.e. (¥p(z,t)|9a(,t)) 2R, dz) = 0.

Finally, $4(z,t) is Borel summable, i.e.:

pa(z,t) =D eILB i Dj n(z)t™"/? (1.9)
n=3

JEL
where LB is the Borel summation operator, see [7,15].

Theorem 2. (Ionization) Suppose E(t) is a trigonometric polynomial, i.e.
E, =0 for n > N. Then for any vo(zx) ionization occurs:

L
. 2,
tliglo . |¥(z, )| dz =0 (1.10)
If ¢o(x) € LY (R) N L2(R), then the approach to zero is at least as fast as t=*. If
in addition vo(z) is compactly supported, then the decay exponent v = —Soy is
strictly positive (cf. (1.4), (1.6)).

Remark 1. The PDE (1.8) is formally overdetermined, since it has 4 boundary
conditions ((1.8b) and (1.8c)). This makes nonzero solutions to (1.8) unlikely,
although there may be some special forms of E(t) for which such a solution can
be found. The proof of Theorem 2 is essentially a proof that in the case of E(t)
a trigonometric polynomial, there are no nonzero solutions to (1.8).
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Remark 2. Although Theorem 1 applies only to compactly supported initial con-
ditions, it implies Theorem 2 immediately. We apply the following well known
result to the operator family T'(t) = 1_r,1)(z)U(t) (U(t) is the propagator for
(L.1)):

If T(t) is a uniformly bounded family of bounded operators on L3(R), and if
T'(t)u — 0 for u in a dense subset of L%(R), then T'(t)u — 0 for all u € L*(R).

Remark 3. If 1o(z) is not compactly supported, then there can be other expo-
nentially decaying components in (1.6). These come from the initial data being
spread out over all space and are present even for solutions of the free Schrédinger
equation. They also vary with 1o (x), unlike ¥s(z,t). We assume that 1o (z) is
compactly supported simply to remove this technical point, not for any funda-
mental reason. See Remark 8 for an explanation how one might proceed with
%o(z) not compactly supported.

1.3. Equivalent formulations. Here we describe some equivalent formulations of
(1.1). This material is essentially taken from chapter 7 of [12]). We will use (1.13)
in the proof of Theorem 2 and (1.12) in the proof of Theorem 1. We first define
some auxiliary functions:

¢
aft) = / b(s)ds = aot + ay (2) (1.11a)
0
= En inwt E’n —inwt

= — —e 1.1
b(t) ; (inwe + —inwe (L11b)

= E’ﬂ inwt E" —inwt | — = inwt A —inwt

oft) =2 Z (inw)2° + (—inw)2® = Z (Cre™t + Cre )

=1 n=1

" (1.11c)

where a,(t) is 27/w periodic and has mean 0, and ap = (w/27) fozw/w b(s)2ds.
Note that (1/2)¢/(¢) = b'(t) = B(t).
Define vy (z,t) = etie®) e+t (@—c(t)y(z—c(t), t); then the following equation
for 1, is equivalent to (1.1):
2

10y (,t) = (—6—(13 —28(z — c(t))> by (z,t) (1.12)

This is the velocity gauge, and the equivalence can be verified by a computation?2.
Similarly, there is an equivalent equation in the magnetic gauge. We obtain it
by setting ¢p(z,t) = eTie®etib®)zy (g ).

iOps (2, t) = (_6‘9—; — 26(z) + 2ib(t)6z) ¥a(z, t) (1.13)

Remark 4. Suppose that either 1p(z,t) or ¥,(z,t) are time-periodic solutions
of (1.13) or (1.12). Then t(z, t) is a time quasi-periodic solution of (1.1), and
e'®ty(z, t) is time-periodic.

? Equation (1.12) differs from what one finds in [12]. In [12], they take B(t) = fot E(s)ds and
é(t) = fot b(t)dt, which implies that &(t) = c(t) + co + cyt. Regardless, the essential feature,
namely (1/2)c”(t) = b/ (t) = E(t) is preserved.
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1.4. Organization of the paper. In Section 2, we assume Theorem 1 to be true
and use it to prove Theorem 2. In Section 3 we prove Theorem 1. In Section
4 we make some concluding remarks, and discuss possible directions of future
research. Some technical material is presented in appendices.

2. Ionization

Assuming Theorem 1 to be true, we need to show that the Floquet equation
(1.8) in the magnetic gauge has no nonzero solutions. This implies ionization
for compactly supported initial data. Since compactly supported functions are
a dense subset of L%(R), this implies ionization for all 1o(z) € L?(R).

We prove that there are no nonzero solutions to (1.8) by taking a hypothetical
solution ,(z, t) and showing it must be zero.

In Section 2.1, we solve (1.13) without a binding potential (the —28(z) term)
and characterize the solutions. We then expand the hypothetical bound state
1p(, t) in this basis, and derive necessary conditions on the coefficients to meet
the boundary conditions (decay at # = 0o and continuity at z = 0).

In Section 2.2, we use the characterization of solutions we constructed in Sec-
tion 2.1 and show for E(t) a trigonometric polynomial that it is impossible to
construct solutions to (1.13) which are continuous at the origin. The basic tech-
nique is to analytically continue, in the t variable, both ¥ 5(0_,t) and ¥g(04,t)
(which we suppose are equal) and use the Phragmen-Lindelof theorem to show
that an associated function must be entire and bounded (and therefore constant).
This implies that any solution to (1.8) must be zero, and ionization occurs.

2.1. Solutions to the free problem. By Theorem 1, we need to show that (1.8)
has no nontrivial solutions. After switching to the magnetic gauge, we observe
that this is the same as showing that if ¥s(z,t) solves

opthp(x,t) = (—iB; — B2 — 26(x) + 26b(t) 8 )bs(, ) (2.1)

with boundary conditions (1.8b) and (1.8¢c), then v (x,t) = 0.
We first study a simpler problem, namely (2.1) without the é-function binding

potential.
opth(z,t) = (—i8; — 82 + 2ib(t) 8y )b (a, t) (2.2)
Taking 1(z,t) = ey, (t) as an ansatz, we obtain an ODE for ¢, (t):
Brpa(t) = —i (=0 — A% + 20Ab(t)) @ (t) (2.3)
This has the following family of solutions (recalling that ¢(¢) = 2b(t)):
(p,\(t) = e~ iBatgAc(t) (2_4)
By = -0 — )2

To ensure 27/w periodicity (in time), we must have (—o — A%) = mw,m € Z.
This implies that A = 4v/mw + o (the branch cut of 1/z is taken to be —iR™).
Therefore, (2.2) has the family of solutions:

O+ (m, t) — ei/\mcce—imwte:i:,\mc(t) 2.58.)

Am = —tVo +mw (2.5b)



Ionization in a 1-Dimensional Dipole Model 7

2.2. Matching solutions. Given the family of solutions to (2.2), we can attempt
to solve (1.13) assuming we know ,(0,t). We have four boundary conditions to
satisfy (applying Theorem 1):

¥ (0, t) = ¢b(0—,t) = ¢b(0+’t) (2'63)
O55(0+4, 1) — Bpths(0-,2) = —2¢(0,2) (2.6b)
a;1—1—>n;o 1/)13(_1” t) = mll»ngo ’t/)b(-{-&),t) =0 (26C)

Consider now a hypothetical solution ,(z, t). We can expand % (z, t) in terms
of the functions ¢, + in the regions z < 0 and = > 0 separately (we neither
need nor prove this fact, but all solutions of (2.2) can be expanded in this way).
Thus we can expand ¥ (z,t) as follows:

— Em (d)r[rlz, ()Dm,-i-(x’t) + ¢7€1,—‘Pm,—(w, t)), z<0
i) = { Frezfyr oo b W roma@i)z>0 27

We now state our first result,

Proposition 1. Let ¢y(z,t) be a solution of (1.8) in the magnetic gauge. Then
there exists a pair of sequences Ym + € I12(Z) such that:

L
lat) = { Gt omeotd £ <0 28)

The equality holds pointwise.

We only sketch a heuristic argument why the oscillating and growing compo-
nents are absent; the proof can be found in Appendix A. It is straightforward,
but uses results proved in Section 3.

Form > 1 (recalling o, € [0,w) and examining (2.5b)) the functions ¢m, +(z, t)
are oscillatory in « as £ — ztoo. Thus, if the coefficients 1/1,Ln’ﬁ: (m > 1) were not
zero, then 9y (x, t) would not decay as z — oo, violating (2.6c).

Similarly, we observe that ¢y, 4 (z,t) are exponentially growing when m < 1
as & — +00, S0 1/),},1 + must similarly be zero. The same argument applied to

the region & < 0 shows that ¥% , must be zero when m < 1. Therefore after

dropping the =+ in the coeflicients 1/)51‘,1, we obtain the result we seek.
Substituting (2.8) into the continuity condition (2.6a) yields:

Z ¢#e—imwte>\mc(t) — Z ¢ge—imwte——>\mc(t) (2_9)

m<1 m<1

We now state a fact about the decay of the Fourier coefficients of the hypothetical
Floquet solution. The proof of this fact uses the results of Section 3, and will be
deferred to Appendix B.
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Proposition 2. Suppose E(t) is a trigonometric polynomial with highest mode
N, that is B(t) = YN | (Bnet™t 4 Epe=t), Set z = e~™t, Then (0, t) has
the decomposition:

Do(0,) = £(2) +9(z7") (2.10)

The functions f(:) and g() are entire functions of exponential order 2N, and
g{(0) = 0. This shows in particular that ¥u(0,t) is continuous.

The correspondence between ¥y(0,t) and f(2), g(2) is as follows. Let 1; denote
the j’th Fourier coefficient of ¥4(0,t), that is ¥5(0,t) = 3=, 1;e"*t. Then letting
[, 9; be the Taylor coefficients of f(z), g(z), we find f; = y_; for j > 0 and
g; =; forj <0.

Finally, we state a result we use, proved in most complex analysis textbooks,
e.g. [32].

Theorem 3. (Phragmen-Lindelof) Let f(z) be of ezponential order 2N, that
is |£(2)| < CeCV™ | Let S be a sector of opening smaller than w/2N. Then:

sup |f(2)| = sup|f(2)|
z€dS z€S

‘We are now prepared to prove the main result.

Proof of Theorem 2. 'The basic idea of the proof is as follows. We assume the
existence of a 1, (z, t) satisfying (2.8). We then study the behavior of (0, ) in
the complex ¢ plane and show ,(0,t) must be zero.

We describe the case N = 1 now (i.e. E(t) = E cos(wt); the case N # 2 is
treated below). The key idea is that we can use (2.8) to obtain an asymptotic
expansion of ¥3(04,¢) and 3(0_,t) on the open right and left half planes in the
variable z = e~%* (respectively); to leading order 5(0_,t) ~ L 2me~CI®2l and
(04, ) ~ YE2me~CIR2l (note that m and C may be different). This asymptotic
expansion shows that f(z) decays exponentially along any ray z = re'® in the
open left or right half planes. .

In fact, the asymptotic expansion allows us to observe that f(z) (the part
of 15(0,t) which is analytic in z) must be bounded except possibly on the line
tR. The Phragmen-Lindelof Theorem (Theorem 3) combined with Proposition
2 allows us to conclude that f(z) is bounded on the line ¢R. This shows f(z) is
bounded on C and hence zero.

Since f(z) is zero, ¥(0,t) = g(z) ~ gmz~™ for some M € N (since g(2)
is analytic). But we previously said also that 15(0,t) ~ 9% 2me~CI®2l, Two
asymptotic expansions must agree to leading order; the only way this can happen
is if g(2) = ¥(0,2) = 0.

The main difference between the case N = 1 (monochromatic field) and N > 1
(polychromatic field) is that instead of the exponential asymptotic expansions
being valid on the left and right half planes, they are valid on sectors of opening
m/N; this we need to apply Theorem 3 to the boundaries of these sectors.

‘We now go through the details.

Step 1: Setup

By Theorem 1, we need to show that (1.8) has no nonzero solutions. Toward
that end, let %(z,t) be a hypothetical solution to (1.8). By the hypothesis of
Theorem 2, we let E(t) be a nonzero trigonometric polynomial of order V.



Ionization in a 1-Dimensional Dipole Model 9

Let z = e~™?, Let €(2) = E;\{__l (Cj2% + C;279) where the C; are the coeffi-
cients from (1.11c). We apply Proposition 2 to 15(0,¢) and (2.9) to obtain:

¥(0,1) = f(2) + g(z7")
= Z ,lpyl;lzme+)\m¢(z) - Z wgzme—)\m@(z) (2.11)

m<1 m<l

The first equality holds by (2.10), the second by (2.8) with & = 0. A priori,
equality holds only when |z| = 1. However, both of the latter two sums are
analytic in any neighborhood in which they are uniformly convergent. Thus,
f(2) + g(27") is the analytic continuation of the sum if the sum is convergent
on any neighborhood containing part of the unit disk.

For the rest of this proof, we make the following convention. The functions
YL E(2) are defined by

Pr(2) = ) phametint@) (2.12a)
m<1

P(2) = Y pfameInt) (2.12b)
m<1

for those 2 where the sum is convergent.

Step 2: Convergence of the sum

We show now that the sum in (2.11) is convergent on a sufficiently large
region.

For |z| > 1 and R€(z) > 0, consider the sum Y, ., ¥ 2me~*m%(=), In this
region, since R€(z) > 0, we find that e’®*) < 1. The coefficients Y F are
bounded uniformly in m (since they are an I? sequence, by Proposition 1). For
|2] > 1, 2™ is geometrically decaying as m — —oo. Therefore the series is
absolutely convergent when |2| > 1 and R€(2) > 0.

The same statement holds with Y, ., %% 2™et*»%(2) in the region where
RE(2) < 0.

Let us define the following sets:

St ={zeC:|z| > 1,R€(2) > 0 and also z is connected in
{z: R€(2) > 0} to the unit circle}

S~ ={z€C:|2|] 2 1,R€(z) < 0 and also z is connected in
{z: R€(2) < 0} to the unit circle}

A schematic diagram indicating the structure of these sectors is shown in
Figure 1 for the case where N = 2,

By Proposition 2, we see that 1%(2) is analytic in S* and ¥(2) is analytic
in 8, since the sum in (2.12) is convergent there.

We now show that all connected components of St and S~ must be un-
bounded if €(2) is non constant, Suppose either ST or §~ had a bounded con-
nected component, denoted by B. If B does not intersect the unit circle, then
R€(2) would be zero on B. By the real max modulus principle, R€(z) would
be zero inside B, and hence it would be zero everywhere.
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If B does intersect the unit circle, we will extend B by using Schwartz re-
flection across the unit circle. Note that €(z) = €(2—1). Therefore, if we define
B’ = BUB™! (with B! the image of B under the map z - z~!), we observe
that RC(2) = 0 for z € OB’. Again, the real max modulus principle shows that
€(2) must be zero on B, hence everywhere.

Finally we show that the regions St and S~ “fill out” to open sectors as
|z] = co. That is to say, if S is some sector in which 2% > 0, then for any ray
{re® : r > 1} contained in S, 3R = R() so that the truncated ray {re : r >
R(0)} Cc ST,

Without loss of generality3, let us suppose that Ciy € R*. For very large |2|,
we write €(z) = E;V:l Cy27 +Cjz~3 = Cn2zN 4 O(2N—1). Then setting z = re’®,
we find that 7~V €(re?) = CetN% + O(r~1). Thus, for r sufficiently large and
N6 # (2m+1)7/2, we find that r— €(re?) has either strictly positive real part
or strictly negative real part. In particular, if |[N§ F7/2| > ¢, then IR = R(¢, §)
so that Rr~Ne&(re®) is bounded strictly away from zero.

Motivated by the above, we define the following subsets of C (with j =
0...N—1):

A}, = {re : r > R(e, 6),
6 € [-n/2N 4215 /N + ¢, 7 /2N + 27 /N — €]} (2.13a)

A= {re® : r > R(e,0),
9 € [—m/2N +2r(j +1/2)/N + ¢, /2N +2r(j + 1/2)/N — €]} (2.13b)

Clearly, for sufficiently large R, AT, \ Bg C ST and A; .\ Br C S™. Here, Bp
is the ball of radius R about 2z = d.’ ’

Step 3: Asymptotics of f(2)

We now show f(z) = 0. We begin by writing f(z) as follows:

oo x
f(z) = Z a2 =— Zgnz_" + Z q/),’},z’"e"\qu), ze 8t (2.14a)
n=0 n=1 m<1
x oo
flz) = Z fa2" =~ Zgnz_" + Z PLpmetIne@) 5 e §- (2.14b)
n=0 n=1 m<l

‘We let the sectors Sk, k == 0...2N 41 be a set of sectors of opening 7 /(2N +1)
arranged in such a way that the boundaries of Sy avoid the rays rei™(2+1)/2N
Therefore, for sufficiently large |z|, the boundaries of S) are contained in either
the region AIG or A except for a compact region. On 88k, f(2) is decaying as
J2| = oo, by a simple examination of (2.14). For |2| small, we observe that f(z)
is entire, and therefore bounded on compact regions.

We have shown that f(2) is bounded on 8S%. Applying the Phragmen-Lindelof
theorem, f(z) is therefore bounded on Sj. Since U2*t1S), = C, we find f(z) is

3 Suga ose Cn = pe'¥, Then rather than choosing z = e™!, we would substitute z =
gilwt— }?V)I
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constant. Since we know that along any ray contained in Afe, f(2) is decreasing,
we know f(2) =0.

Step 4: Asymptotics of g(z)

We will now show that g(z) = 0. We rewrite (2.14) with g(2) on the left side.

o0

Zgnz'" = Z PR me=Ine(2) 5 g+ (2.15a)
n=1 m<1

o0

Zgnz‘" = Z PLametIn€) 5 g (2.15Db)
n=1 m<1

Since the left sides of (2.15a) and (2.15b) are (convergent) asymptotic power
series (for sufficiently large |2|), while the right sides of (2.15a) and (2.15b) are
(convergent) asymptotic series of exponentials, we find that the right side decays
much faster than the left side. This is impossible unless both sides are zero.

To make this clearer, we can rewrite (2.15a) as (with (2.15b) treated simi-
larly):

95277 (1 +0(1)) = pfz*e P (1 + o(1))

‘We can rewrite this as:

g e et - (0]

Here, j is the smallest integer so that g; # 0 and k is the smallest integer so
that pf # 0.

The limit of the left side is 0 as |2| — oo (inside the region A;:E). But the
limit of the right side is 1.This is impossible. |

3. The Floquet Formulation

In this section we prove Theorem 1. This is done by studying the time dependent
solution of (1.1). To do so we define an auxiliary function Y (t) = ¥(c(t),t) and
derive a closed integral equation (of Volterra type) for it via Duhamel’s formula.

We then apply the Zak transform (defined below) in time to the integral
equation for Y'(¢). This yields an integral equation of compact Fredholm type
for Z[f)(o,t), the Zak transform of Y (). The integral operator is shown to be
analytic in ¢. The analytic Fredholm alternative to this equation shows that
Z|f)(o,t) is meromorphic in ¢'/? with one pole. The pole corresponds to a
resonance or bound state, while the branch point corresponds to the dispersive
part of the solution.

In Section 3.3 we extend these results from x = 0 to the entire real line. We
show that the wavefunction, considered in the magnetic gauge, can be decom-
posed in the form (1.6). If Soy, = 0, then Koy, € (0,w) and 1 (z, t) corresponds to
a Floquet bound state. The wavefunction ¥4(z,t) decays with time, in particular
la(z, )l Lo < C()~1/2, where (8) = (14 ¢2)'/2,
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3.1. Setting up the problem. Here we work in the velocity gauge and study (1.12).
Recall that c(t) is 27 /w periodic. We rewrite (1.1) in Duhamel form, using the

standard Green’s function for the free Schrédinger equation, (4rit)=!/2¢i=*/t;
Yo(2,t) = Yy,0(z,t)

+% / / exp (’i“(”t i )J(m’——c(t’))ﬂpv(m’,t')d:c'——hj(ttl—_t,) (3.1)

where we have defined:
o0z, t) = ePatap, (2, 0) = /R (dmit) =Y 2eilo=2' "ty (o 0)da!
If we do the ' integral explicitly and change variables to s =t — ¢/, we find:
Yo(z,1) = Puo(z,1)
+2i/0texp<i(it—%%:i)2> Py(elt — 8),t —~9)

We now substitute z = ¢(t), to obtain a closed equation for ¢, (c(t), t):

bu(e(t), t) = Pu,0(c(t), t)

it (e(t) — et — 8))2 S
+ \/;/0 exp (2( (t) 4S(t ) ) Pyle(t —s),t — S)% (3.3)
Set Yo = thu,0(c(t), t) and Y () = (c(t),t) to obtain:

=Y, t)—l—\/'/ ( _Cit_s)) )Y(t—s)—% (3.4)

We will show that either Y () — 0 as t — oo or (3.4) has quasi-periodic in
time solutions. The main tool of our analysis will be the Zak transform.

Definition 1. Let f(t) =0 fort < 0 and |f(t)| < Ce® (a € RY). Then f(t) is
said to be Zak transformable. The Zak transform of f(t) is defined (for So > a)
by:

(3:2)
4mis

Z[f)(o,1) Zew(t+2"’/“’)f(t+ 2mj Jw) (3.5)
JjEZ

and by the analytic continuation of (3.5) when So < a, provided that the ana-
lytic continuation exists (treating Z[f](o,t) as a function of o taking values in
L2([0, 27 Jw), dt) ).

Proposition 3. Z[f](o,t) has the following properties:
iatw )
£() = w? / =it Z(f)(0, t)do (3.62)
i

If Z[f)(o,t) is singular for So = a, this integral is interpreted as the limit of
integrals over the contours [i(a + €),i(a + €) + w] as e — 0 from above.

Z[fl(o,t + 27 /w) = Z[f)(0,1) (3.6b)
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Z[fl(o +w,t) = ¢ 2[f](0, ) (3.6¢)
If p(t) is 2w /w-periodic, then:
Z[pfl(o,t) = p(t)Z[f](0,t) (3.6d)

With the exception of (3.6a), these results all follow immediately from (3.5).
See Remark 7 for an explanation of (3.6a).

Remark 5. Suppose f(t) is Zak transformable, and uniformly bounded in time
(a = 0). Suppose further that the analytic continuation of Z[f](s,t) has a
singularity (say at o = 0). Then (3.6c) still holds, in the sense that for any
direction 8, Z[f](c 4 w + 0%, t) = et Z[f](o + 0e?, t).

Remark 6. More information on the Zak transform can be found in, e.g., [13,
p.p. 109-110]. Our definition differs slightly from that in [13] — we let o take
complex values,

Remark 7. One can relate the Zak and Fourier transforms as follows. Let f(k) =
[ e*tf(1)dt denote the Fourier transform of f(t). Then:

Z[f](a',t) = 5(% Zf(o- +nw)e—inwt

nez

This follows by applying the Poisson sum formula to (3.5). In fact, (3.6a) can
be derived immediately from this relation.

This relation implies that our approach is equivalent to the Fourier/Laplace
transform analysis done in [1,8,9]. The Zak transform is used simply for algebraic
convenience.

We proceed as follows. Applying the Zak transform to (3.4) yields an integral
equation of the form

y(a, t) = yo(a, t) + K(a)'y(a, t) (37)

with y(o,t) = Z[Y](0,t), yo(o,t) = Z[Yo|(c,t) and K (o) the Zak transform of
the integral operator in (3.4). K (¢) will be shown to be meromorphic in ¢ as
a compact operator family from L?(S1,dt) — L?(S!,dt), except for a branch
point at o = 0.

We will then use the Fredholm alternative theorem to invert (1—K(c)). Once
this is done, we find:

¥(o,) = (1 ~ K(o, ) "'y0(0 ) | (38)

The poles of (1 — K(0))~! will correspond to resonances, and a branch point at
o = 0 will correspond to the dispersive part of the solution.
To begin, we determine the analyticity properties of Z[¥p](0,t).

Proposition 4. Suppose o(x) is smooth and compactly supported. Then near
o =0, yo(o,t) has the expansion:

Z[Yol(0,8) = yo(0,t) = o~ 1/2(1/2) /R Yo(@)de + f(02,8)  (3.9)

The function f(o/2,t) is analytic in o'/2, and is in L*(St,dt). Also:
I12[Yo) (0, D)l g1,y < Cre %1%
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Proof. Consider Yp(t) = vy o0(c(t),t) for t > 0 only (and Yo(t) = 0 for ¢ < 0).
Then (with slight abuse of notation):

Yo(t) = xwr+(t) / eikel® gkt (o) dlo
R
Computing the Zak transform yields:

Z[Y()](U, t) — Z eio(t—ij/w)XR+ (t _ 27rj/w) / eikc(t)eikz(t_%j/w)’tr/;o(k)dk
R

i€E
- / etke® o (k) Z eia(t—Zwi/w)eik"‘(t—27r.7'/w)XR+ (t —2mj/w)| dk
R J€Z
_ / eikc(t)d“)o(k) Z '__.f___iL dk
R o #(k? + 0 +1w)

=o71%(1/2) / Yo(y)dy + a"2(1/2) / (em Ve O=vl — 1)go(y)dy

R R
+ Z _emr / e Votnwle®—vly, (\dy (3.10)

g 2¢y/o +nw Jp

The interchange of the sum and integral between lines 1 and 2 is justified (for
So > 0 and ¢ fixed) since the sum over j is absolutely convergent, as is the
integral over k. The result is valid for arbitrary o by analytic continuation.

The change inside the square brackets between lines 2 and 3 comes from
the Poisson summation formula in the ¢ variable, and the fact that the Fourier
transform of xg+ (£)e!®*+9) is —i(k? + o 4 ¢)~1(with ¢ dual to t).

The first term on the right side of (3.10) agrees with that in (3.9). Since
(e=V@le®~vl 1) is analytic in o/2, the second term is analytic in o'/2. The
second and third (which is analytic in ) terms become f(o,t).

Since 1o(z) is supported on a compact region, |c(t) — y| is bounded (say by
C,) and exponential growth follows.

Remark 8. Suppose that instead of being compactly supported, 1o(z) = eI,
the bound state of —A — 26(z). In that event (k) = 1/(k% + 1) which is
singular at k = 4. We can carry through the same computation, but Z[Yy](o, )
will have an extra pole at So = —1 stemming from the poles of Jzo(k:). This pole
corresponds to an exponentially decaying component of e*4*g(z). When Y (t)
and (=, t) are reconstructed, this pole will correspond to a similar exponentially
decaying component of ¥4(z,t). This pole is not a resonance; a resonance is a
pole which is created by the potential and which is not present under the free
flow.

We now determine the Zak transform of the integral operator in (3.4) and
compute the resolvent of it.
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3.2. Construction of the resolvent. We now apply the Zak transform to (3.4) to
construct an equivalent integral equation.

Proposition 5. Let f(t) be Zak transformable. Consider the integral operator:

Ky f(t) f / ex( ‘Zf"s))z)f(t—s)% (3.11)

Then if So > 0, we find:
Z|Kv f)(0,t) = K(0)f(0,t)

- \/g /0 " exp <z(c<t)—‘zgtl))2> ei””Z[f](a,t‘—s)% (3.12)
Proof. Rewrite (3.11) as

\/% /Ot exp < (c() - c<t = s)>2) fi—s) flr
\/,/ exp< _Ct_s))2>f(t—8)x}n+(8)% (3.13)

Applying Z to both sides of (3.13) we get

Z[Ky f)(o,t) = 3 el t2milo) [k £ 1)
JEZ

\/>Z gio (t+2mi/w) / exp < (t S))2> flE+2mj/w— S)XW(S)%

j€L
\/'/ exp( —C(t—s))2> gios

{Z glo(t— s+27r3/w)f(t — s+ wa/w)} XR+(8 )jsg

J€Z

- \/g/ow exp <i———(c(t) — Zg — S))2> e Z[f)(o,t — S)% (3.14)

This is what we wanted to show.

We now show that the operator K(o), constructed above, is compact. We
decompose K (o) as Kr(c) + K1(o) (defined shortly), and treat each piece sep-
arately.

Proposition 6. Define Kr(c) : L*(S1,dt) — L%(S!, dt) by:

7o =y% [ e

Then, Kr(o) is compact and analytic for o > 0, 0 # 0. It has a 0= /2 branch
point at 0 = 0, and can be analytically continued to So < 0 and the analytic
continuation has a branch point at 0 =0 (recall 0 < 0 < w).
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Proof. We compute this exactly by expanding f(¢) in Fourier series and inter-
changing the order of summation and integration:

\/’Z Fae -mwt z(a+nw)s = nwe—inwt (3'15)
n€Z ¥

neZ

This is valid for o > 0, as well as o = 0 but in this case we must treat the
integral as improper.

Thus, in the basis e~*"“*, this operator is diagonal multiplication by (o +
nw)~1/2, Compactness follows since the diagonal elements decay in both direc-
tions. Analyticity for o # 0 follows by inspection of the right side of (3.15), and
choosing the branch cut of /o + nw to lie on the negative real line.

Proposition 7. Define K1,(0) : L*(S*,dt) — L*(8?,dt) as:

=% [ oo (- ‘j‘t‘s”z)— 1] e se-9 % @16)

Then Kr(o) is compact for So > 0 and analytic for So > 0. It has continuous
limiting values at So = 0. Near o = 0, K1(0) is analytic in 0*/% and behaves
to leading order like O(c'/?).

Proof. Rewrite (3.16) as

Prlw & (c(t) — ot — 5))? gio(s+2mh/w)
/o § [exp (1W> _1] N (t-s)ds  (317)

Provided So > 0, the sum is decaying at least as fast as k~3/2, Each term in the
sum is continuous. Thus the sum is absolutely convergent to a smooth function
in t and s. The region of integration is compact, and so is K.(o).

To show the analyticity in 0'/2, we change variables in (3.16) to z = o's. Then
(3.16) becomes:

Fr o (1 B0 ) 2y

The integrand is analytic in 0'/2 with no constant term, hence K (o) is analytic
in 072 with leading order behavior O(c'/2).

We now analytically continue K(o) to the strip 0 < Ro < w.

Proposition 8. Let K'(c) be the integral operator defined by:

27 fw
K'()f(t) = /0 K (t, 8)f(t — 5)ds (3.18a)

K=o [ s [o (=) o] 2 ey

Then K'(0) is analytic and compact for 0 < Ro < w, and vanishes as Jo — +oo.
In addition, K'(c) is the analytic continuation of K (o).
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Proof. Step 1: Analyticity

For R € (0,w), we observe that the integrand in (3.18b) is exponentially
decaying at £o0. The integrand is singular only when p = 0 and when p = s+2mn
for n € Z.

To show that the integral in (3.18b) makes sense, we need to show it is
finite. We do this by shifting the contour of integration. Let y(t) = t for ¢ €
R\ [-27/w,27/w], and () = e'"=@t+2m/4] for ¢ € [—2r/w,2r /w]. That is,
v(t) travels along the real line, and circles upward around the disk of radius
27w /w. Then:

o s) = /Mi _ ::z_m [exp <(c(t) - Zﬁf - s))2) _ 1] d—i‘;

+ %e"” [exp (W) - 1] —«/-—1;——3_ (3.19)

The integrand in the first term is analytic since p stays away from 0 (thus
avoiding the essential singularity at p = 0). It is exponentially decaying both for
large positive p (at the rate e(?=“)?) and for large negative p (at the rate e~ P).

The last term is singular, but integrable at s = 0, and analytic elsewhere.
Thus, k'(t,s) has only a singularity of order s~1/2, and is analytic elsewhere.
This shows that K'(o) is a compact family of operators, analytic on ¢.

Step 2: Vanishing of the operator as So — —o0

To show the kernel vanishes as 8¢ — —o0, we shift the contour as follows.
We break up the integral in (3.19) as follows:

/R+Oz‘ f::’)_m [eXp (W) _ 1] %%

o SR DS N |
[—oo—ie,—i€) [—ie+0~,0~] [0+, —iet07F] [—ie,00—i€]

1— ::::_m [exp <(C(t) — Z;t — S))Z) - 1] % + Residues  (3.20)

The residues take the form 22ie#os [exp (€@=cCt=sD") _ 1] L 505 s >
w is Vis

is
—¢, and hence decay exponentially. Similarly, the integrals over [—co — ie, —i€]
and [—ie, 0o — ie] decay at least as fast as e~¢/%?!, The integrals over the small
region are simply Laplace-type integrals, and can be bounded by:

/Io,—ie] 1- :::—iws [exp <(c(t) - Z;t - S))2> _ 1] %
dz

<C e~%0r 2 < C|Qs‘a|_l/2
[0,e] z
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Thus for s # 0, k'(t,s) — 0 as So — —oo, hence K'(c) vanishes by Fatou’s
lemma,

Step 3: Continuation of K (o)

To show that K'(¢) = K(o) if So > 0, we simply move the contour of
integration in (3.18b) upward and collect residues:

o T o (=) 1

op ot — ))2
— lim / e’? [exp ((C(t) c(t = s)) ) _ 1] a
N—oo | JRysanN/jw 1 — e¥PWs 4p /P

+é%fjeia(s+2wj/w) [exp ((4(22 ~ é 5/ ))) ) B 1] m]

J=

:

We then integrate this kernel against an L2(S1,dt) function f(t) and obtain:

2m/w °°
/ 27rz

j=0

_2_51' pio(s+2m3 /w) [exp <%M__%) - 1] —z_(erl—Wf (t —s)ds

oL e ()

This is in agreement with (3.16). Hence, K'(c) = K (o) for So > 0, Ro € (0,w)
and therefore K'(o) is the analytic continuation of K (o).

Now that it is justified, we write K’ = K. In addition, now that Kr,(c) and
Kp(o) are defined, it is clear that Kp(o) + K1(0) = K (o).
We now show that K (o) has no more than exponential growth as So — o0,

Proposition 9. K (o) satisfies the following bounds (ignoring a small neighbor-
hood of 0 =0):

1K (o)l £ g2 12y < CeCr/elSel (3.21)

In addition, as So — 400, ”K(‘7)||,c(L2,L2) — 0.

Proof. We break K (o) up as K(o) = Kp(o) + Kr(c). The first term, Kr(c) is
bounded (away from ¢ = 0) simply by inspecting (3.15)
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We return to (3.19) to compute a bound on K(c). Note that the kernel
k'(t,s) is exponentially bounded. This follows because &'(¢, s) can be written as:

(3.19) = / ' [exp ((c(t) —c(t—s))z) _ 1] .

=27 /w27 [w) 1 — ewp—iws 4p \/ﬁ
e’? (ct) — et — S))2> ] dp
+ —Cexp (AT 2
pl=2m/w,ap>0 1 — eVPTIWs [ *P ( 4p VP
2mi iogs (C(t) - C(t - S))2 1
+ e [exp (T 1| o= 62)

"The first integrand is uniformly bounded, independent of So. The second integral
term is the integral over a compact region, which has a maximum modulus equal
to Ce(m/@)S7 af p = §27/w (with C depending on the rest of the integral). The
last term is similarly bounded.

Now we show that K(o) vanishes as S0 — to0. To show that K,(o) vanishes
as 8o — oo, examine (3.16) and apply the dominated convergence theorem.
One finds that that Kp(o) vanishes as So — +o0o (and —o0) simply by in-
specting (3.15). Thus, we have shown that K (o) = Kp(c) 4+ K(0) vanishes
as o — +00.

We now observe that since K (o) is a compact operator on L?(S%, dt), the
Fredholm alternative applies to (1—K(o))~!. Therefore, it makes sense to study
properties of solutions to the homogeneous equation K (o) f(t) = f(2).

Proposition 10. Suppose f(t) = K(0)f(t) for some o € (0,w). Then y(e™?)
satisfies the equation (the integral must now be interpreted as improper):

iwty __ _7’_ * (C(t) - C(t - S))2 iops, ( tw(t—s) ﬁ
e = /% [Texp (=D oy st & (3.9
Proof. This follows from the definition of K (o).

We have now shown that K (o) : L2(S?, dt) — L*(S?, dt) is an analytic (in o)
family of compact operators. This allows us to construct the resolvent.

Proposition 11. Suppose (1 — K(0))™! has a pole of multiplicity n at a point
op. Then near op:

(1-K@) =Y —-—y((;)fyi))l? +D(o) (3.24)

where D(o) is analytic near oy. Yo, ;(t) solves (1 — K(0b))Yo,,j(t) = 0. The
functions y(t) is an L*(S?) function.

If oy = 0, then the same result holds, except that the poles are in the variable
/o instead of (o — o).

Proof. This is merely the analytic Fredholm alternative theorem. There is only
one technical point regarding the behavior near o = 0 due to the fact that K (o)
is singular there.

j=1
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This can be remedied as follows. The function y(o,t) satisfies the following
equation:
(1= Kp(o) — Ki(0))y(o,t) = yo(o, ) (3.25)

‘We expand Kr(o)y(o,t) as in the proof of Proposition 6. Due to the fact that
Kr(o) is singular only in the 0'th Fourier component (see (3.15)), we find that:

(1 - Kr(o)(1 — Po) — Kr(0))y(o,t) + 0 ~2 Pyy(o, t)
= 571/2(1/2) / Yo(@)dz + F(0V2, 1)
R

Here, P, is the projection onto the 0'th Fourier coefficient of a function. Take
as an ansatz that Poy(0,t) = (1/2) g Yo(x)dz. Then, since Kp(o)(1 — Po) —
K1(o) is compact and analytic in ¢'/2, we find that

y(0,t) =1 = Kp(o)(1 = PBy) — K1(o)] " F (0%, ¢)
is meromorphic in /2, This implies that our ansatz was consistent.

Proposition 12. (1 — K(0))™! has precisely one pole, counting multiplicities.
Therefore, it can be decomposed as

(1- K(o))™ = @?gﬁ + D(o,8) (3.26)
when oy # 0, or
(1-K(@) ™" = —--Y”(t)%(t”') + D(0,t) (3.27)

when op = 0. D(0,t) is analytic in a'/2.

Proof. This result is the analytic implicit function theorem, applied to compact
analytic operators. One can find a precise proof in [23, page 368-370] where that
result is theorems 1.7 and 1.8 (see also the discussion following theorem 1.7).

8.8. Time behavior of ¥(z,t). We have now shown that K (o) is a compact an-
alytic operator. By the Fredholm alternative, (1 — K(c))~! is a meromorphic
operator family. By deforming the contour in (3.6a), we can determine the be-
havior of Y (t). Once this is complete, we can calculate 9y (x, t) and 1q(z, t) and
finish the proof of Theorem 1.

Lemma 1. Let (1 — K(0))™! have a pole at the point o, = o+ iy # 0. Then
Y (t) can be written as:

Y(t) = e~V (t) + D(t) (3.28)
with Yy(t) the residue at 0. The function D(t) is given by:

D(t)=> e ™tLBY Dt/ (3.29)
j=3

neZ
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where LB is the Borel summation operator. The sum over j is convergent in 11,

This shows that |D(t)| < C/(t)=3/2 (where (z) = V1 + z2).
Supposing that o, = 0, Y (t) = D(t) except that in (3.29) the sum starts at
7 =1 rather than j = 3.

Proof. Because (1 — K(c))~! is meromorphic in o, y(o,t) can be written as

Y(8) (Y (H)lyo (o, £))

o—0p

y(ort) = (1 - K(0))'yo(0,t) = +D(o)yo(o,t)  (3.30)

We compute Y'(t) using (3.6a), and shifting the contour:

177 .
Y(t) = w-! / =ity (o, t)do

04

—iM40y. ~iM4w
=w™! / e ty(g, t)do + w1 / e~ y(g, t)do
04 —iM
—iM+w

77
+w‘1/ y e~ *y(o,t)do + Residues = w"l/ y e""y(o,t)do
— M -

—~iM+0 . ,
Tt / ey (0 + 04, 1) — e~0eHVey (0 1w t)do
0
+ Residues  (3.31)

We integrate from 0+ to w— due to the singularity at ¢ = 0. The residue term
is given by (2m/w)ieotY,(£) (Y} () |yo(o, t))1, if M > —Soy.
To show Borel Summability, we must show that D(t) is the Laplace transform
of an analytic function (in particular analytic in 61/2). We do this as follows.
We take the limit as M — oo (justified shortly). By (3.6c), we can change
the integral in the last line of (3.31) to:

—i00
w‘l/ e~ y(o +04,t) —y(o +0_,t))do (3.32)
0

Note that y(o, t) is analytic in /2, and thus y(c + 0,,t) — y(c + 0_,¢) can be
expanded in a Puiseux series in ¢'/2 (and a Fourier series in t). Watson’s lemma
yields:

—1i00
(3_32) = w1 / e—iot Z g~ inwt ZD nO.J/2do_
0

neEZ

~ 12 mthDJ, J/2 ‘9/2 (3_33)

neZ j=3

This is what we wanted to show.

When o, = 0, the result follows simply by noting that the sum over 5 in (3.32)
starts from j = —1 rather than j = 0, thereby letting the sum on the right of
(3.32) start at j = 1 instead of j = 3.

It remains to show that we can take the limit as M — oo. Begln by writing

y(o,t) = (1~ K(0))~yo(o, t). By Proposition 8 K (o) — 0 as Yo — —oo. Thus,
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by the Neumann series, (1 — K(c))~* — 1 (and hence is uniformly bounded, say
by C), and then

—~iM 4w )
/ e "ty(o,t)do
—iM

—tM+tw
<C e-—]%a]t !yo(o., t)l do < Ce—|%altng|%a|
—iM

with Cy given in Proposition 4. Thus for ¢t > Cy we find that this term vanishes
as M — oo.

We now reconstruct 1(z,t) in the velocity gauge. The basic idea is as fol-
lows. We know that ¥,(c(t),t) = D(t) + e~i9*Y;(t). Using the fact that é(z —
c(t)y(z,t) = 8(z — c(t))u(c(t), t), we find that ¥, (z,t) satisfies the following
equation:

iat"/)v(w’ t) = —821/)1) (:C, t) - 25(5” - c(t))"/)v (:C, t)

= '“831/)1) (a:,t) - 25(53 - c(t))1/)v (c(t)’t)
= —~0%u(x,1) — 26(z — c(t))[D(t) + e Y5 (t)]

Assuming that D(t) and Y;(¢) are known, this can be solved by Duhamel’s
principle. We break it into pieces, and do exactly that.

Proposition 13. The expansion (1.6) holds.
We first state a lemma, proved in Appendix C.
Lemma 2. Let G(o,z,t) be defined by:

G t e~ Vornaldl —inwt 5.34
(O',CCy )—‘%2—-——- Me ( . )
Then the operator '
!
f(w,t) Lad G(U,CD _ wl,t _ tl)f(w[,tl)wdt dw/
Br /st o

is analytic in o as a bounded operator from HP(Brx St, dzxdt) — HP+Lhe+t1/2(Bpx
S, dz x dt), except near o = 0.

Proof of Proposition 13. By Zak transforming the Schrodinger equation in the
velocity gauge, we obtain the following (with ¥ (o, z,t) = Z[¢](0, z,t)):
(o +18,)¥ (0, z, 1) — Yo(z) = —A¥(0, z,1) — 26(z — c(t))¥ (0, c(t), )
= —AU(0,x,t) — 26(z — c(t))y(o, 1)

Bringing the Laplacian term to the left, the initial condition to the right and
inverting the differential operator yields:

U(0,2,t) = [+0 +1i0; + Al "  o(x) — [+0 + 8, + A7 28(z — c(t))y(o, 1)
(3.35)
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Of course, this formula holds apriori only for So > 0. For S¢ > 0, we have the
formula:

[0 +i8, + A" = Zﬂ
yerd 2o+ nw

By Lemma 2, G(o,z,t)x is an analytic family of operators in a Thus, the op-
erator G(o,,t) is the analytic continuation of [0 +i8, + A]™'. As stated in
Lemma 2, G(o, z,t) is well defined and acts as a smoothing operator Plugging
the explicit form into (3.35) yields:

e” e = Q(o, z, t)*

¥(o,2,t) = G(o, 2, 1) * Yo(x) — G(o, z,t) % 28(x ~ c(t))y(a, 1)
= G(o,3, ) % $0(z) — G(0, 3, 8) % 26( — o(t)) LI (A)lo(0: £))

o — 0y
— G(o,2,t) *26(z — c(t)) D(o, t)yo(o,t) (3.36)

Following the proof of Lemma 1, we wish to recover 9(z,t) by inverse Zak
transform, and pushing the contour into the lower half plane. This results in:

W

P(z, t) = w“l/ e~ (g, z,t)do
0

+

—iM+0y —iMtw
= w‘l/ e "W (o, @, t)do + w! / e~ (0, 2, t)do
04 —iM

W
+w? / e~ (0, 1, t)do + Residues
—tMH4w_

—tM4w .
=w™! / e (o, z, t)do
—iM

—iM+40 ) .
+wt / e (o + 0y, 2, t) — e” 0N (o 4 w_, z,t)do
A :
+ Residues

The Dispersive Part

//CALCULATE THE BOREL SUMMABLE PART//
The Residue Term, o, # 0

The residue term takes the form

—ae" G0y, 2, 1) % 26(z — c(t))Ya(t) = ety (a, t)
with & = (Y;(t)|yo(o, t)). For |z| > sup, |c(t)|, we find:

- ge-mta(ab, 2, 8) % 20(z — ot)) V()
— ~wut/ / - a+nwlm m' ~1nw(t~t')25($l —c(t’))Yb(t’)daz’dt’
o3 + T
—\/m|a: e(t’y |

- _ ~1abt —mw(t~t')Y dt' (3.3
/ D T W)t (337)
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For |z| > sup, |c(t)|, we have the simple formula that either |z — c(t)| = & — c(t)
or |z — c¢(t)] = c(t) —  depending on the sign of z; plugging this into (3.37)
yields:

(e—inwteﬁmc(t) le(t))

[ ) — —i
___l;e iopt Ze Votnws ,—inwt , T >sup, |c(t0$.38a)

oy Vo +nw
—i —votnwe(t)
_ O oyt VoFnwz ,—~inwt (e iwte |Yb(t)> < _
e E e e — , & < —sup, |¢(8)B8b)

nez

In fact, (3.38a) is actually valid in the region {(z,t) : > c(t)}. This follows
simply by observing that this extension solves the Schrédinger equation (¢ +
18 + A)(-)(z,t) = 0 on this region, while no other extension does. The same
argument shows that (3.38b) is valid on the region {(z,t) : z < c(¢)}.

Thus, we have shown that the residue term is given by (3.38). All that remains
is to evaluate the residue term at z = ¢(t). This can be done as follows. Making
the observation that ¥(c, c(t), t) = y(o, ), and substituting this observation into
(3.36) shows that y(o, t) also satisfies the equation y(o,t) = G(o,x,t) * ¢o(z) —
G(o, z,t) x 26(z — c(t))y(o, ).

Equating this and equation (3.7) shows that K(o) = —G(o,%,t) * 26(z —
() l(@,ty=(c(t),t)- Now, since K (o) (t) = Y5(t), we find that at z = c(t), (3.38)
evaluates to e ~i+*Y} (). This shows the residue term is equal to Y3(t) at & = c(t);
thus vy(z, t) is actually a (non-L?) eigenvector of the Floquet Hamiltonian.

a

//FINISH PROOF OF THEOREM 1.//

4. Concluding Remarks

In this paper we studied the interaction of a simple model atom with a dipole
radiation field of arbitrary strength. We obtained a resonance expansion, in
which resonances can be resolved regardless of their complex quasi-energy. In
particular, we obtained a rigorous definition of the ionization rate vy = —2J0y
and Stark-shifted energy, Roy.

We applied this result to show that complete ionization occurs (y > 0) when
E(t) is a trigonometric polynomial.

We conclude by discussing possible future directions of research,

4.1. Perturbative and numertcal calculations. The main feature of our method is
that it turns a time dependent problem on R into a compact analytic Fredholm
integral equation. This implies that a family of finite dimensional approxima-
tions can be used (in the Zak domain) to approximate solutions to the time
dependent Schrédinger equation. We have carried out perturbative calculations
in this manner, recovering Fermi’s Golden Rule and the multiphoton effect.

We believe that the quasi-energy methodology used here and in related pa-
pers [6,10,9] can be used for quantitative calculations of interesting physical
phenomenon. Phenomena which we believe can be treated by our methods in-
clude LICS (Laser Induced Continuum States) [33,20], High Harmonic Genera-
tion [26,25], multiphoton ionization [5,28] and others. It is our aim to develop
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an efficient calculation method based on our formalism and obtain quantitative
results for some of the physical phenomena mentioned above.

4.2. Resonance theory. Significant effort has been devoted to the rigorous def-
inition of resonances and quasimodes, especially in cases when the scattering
matrix is unavailable. The best results we are aware of are those of [19,34],
based on complex scaling, and those based on analytic continuation of the S-
matrix, e.g. [2]. We provide an alternative definition: a quasi-bound state is the
coefficient of an exponentially decaying term in the asymptotic expansion for
¥(x,t) near ¢ = co. We aim to study the consequences of this definition, and
determine whether it is compatible with other definitions, and hopefully use it
to provide a more complete picture of the time evolution of ¥(z, t).

4.3. Estension to 3 dimensions. In the case of Hp = —A — 26(x) with & € R3,
a similar equation to (3.4) can be derived. Due to the fact that &(x) is not in
H~R3), ¥(z,t) becomes singular at t = 0. However, there exists a unique
weak solution (zx,t) of the form y(z,t) = Y (t)/ || + ¥c(x,t) where ¥.(x,t)
is continuous and ¥,(0,t) = Y(t)*. Y(t) satisfies an integral equation similar to
(3.4). The kernel even satisfies the property of being of exponential order two, so
that Proposition 2 is likely to hold. Everything we have just described is proved
in [14].

For this reason, we believe most of our results can be adapted to the three-
dimensional case (although we do not plan to pursue this). This belief is strength-
ened by the fact that similar results have been extended in the past. The paper
[10] proves an ionization result similar to this one, using similar methods, but
treating the system with time dependent Hamiltonian H () = —A—(2+¢(t))d(z),
which [6] extends to 3 dimensions.

A. Proof of Proposition 1

Recall the construction of @b(k, t) given in (77) on page 77. We will reconstruct
¥p(x,t) by inverse Fourier transforming (77).

[isthtean =3 [ ey
| nez i(k? — op — nw)

Note that e®2h, (k) = (e~!nwt|eik(@=ct)Y,(t)) decays like e~Sk(=—¢(t) for
z > c(t) and eSF(e)=2) for & < c(t). Therefore we can push the contour of
integration upward (when z > ||¢(t)|| ;.. ) and downward (when & < — ||c(t)|| ;oo )s
and collect residues.

When o + nw > 0, there are no residues (see the discussion in the proof of
Proposition 77, case 3) since hy(k) is zero where k? = oy, + nw. Let M denote
the least integer for which o4 + nw > 0.

4 This implies that all solutions in 3 dimensions are weak solutions (in the sense that they
are not in H1(R3), which causes many of the technical difficulties. The weak solution is uniqne,
however, and propagation in L2(R) is unitary, so these difficulties are only technical.
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Pushing the contour up yields:

Pu(z,t) = {Zn<M 6”"“”% \/W Vievinule, 4 < — le(®)ll 2o
S apt 6 i3/ o F )T, 5> (o)

Equating hn(—i4/|os + nw|) with ¢, _ and hp(—iy/|os +nw|) with ¢¥p 4
yields the result we seek when |z| > J|c( )|| Loo®

By transforming from the velocity gauge to the magnetic gauge, we can di-
rectly continue the results to £ = 0 (corresponding to z = ¢(t) in the velocity

gauge).

B. Proof of Proposition 2
We aobserve that by the results of Section 3, if a bound state exists, then:

P5(0,t) = e¥B/ 4~y (1)

Setting z = e~ and y(z) = Y,(t), we wish to show that y(z) = f(2) + g(2)
with f, g both entire of exponential order 2n. This is equivalent to showing that:

|Ys(t + ia)] < Cexp[C’ exp(|]2Nwa)]
The function Y (¢) satisfies the equation:

27w mfw
Y(t) = /0 K (£, 8)Ya(t — 8)ds = — /0 Tt — )Y (s)ds

with k'(t, s) as defined in (3.18b). Thus we obtain the bound:

2m/w
|Yp(t +ia)| < / |kt +ic, t + ia — 8)||Yu(s)| ds (B.1)
0

and it suffices to bound |¥'(t + ia, t + ia — 5)|. From the definition of &' (t, s), we
find:

k/(t +ia,t +i0 — 3)
W eop (e(t +ic) — c(s))? dp
- 2mi /Rq.m 1 — ewpta—iw(t—s) |:eXp ( » 1 \/ﬁ

Supposing a/w > 1 (permlsSJble, since we are interested in the behavior as
a — o), then the integrand is analytic for z = re®?, 0 <r < 1and 0 <6 < .
Thus, we can deform the contour from R + 0i to y = 8{z: Sz < Oor |z| <1}

Note that for some constant C, |¢(t +ia)| < CeN¥Iel since ¢(t) is a trigono-
metric polynomial of order N.

We find that there are 3 regions of integration which contribute to &'(t +
ia, t+1ia —s). The regions of integration contributing come from the region near
1 — ewpto—iw(t=s) = (the pole of the integrand), large p and small p.

If the pole is closer to R than 7/w, we deform v up to encircle it, staying at
a distance piw away from it. Otherwise, we ignore it. Therefore, in any case, for
2 € %, 1 — ewpra—iw(t=$) js yniformly bounded away from zero.
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We then split v = 7< Uy Uy where v« = {p € v : |p| < (CeNvlal 4
le(s)ll L )?} and 5 = v \ v<. We therefore find that:

|K'(t + 0, t + i — 8)| < |residue]

C[k &P [exp <(c(t +ia) — c(s))z) B 1” dp

1 — ewpHa—iw(t—s) P |p|
op ; _ 2
+C e [exp <(c(t +ia) — c(s)) ) 3 1” dp
>

1 — ewpta—iw(t—s) P \/H
<C

The residue can be bounded by:

|residue|
eol—atin(t=s))/w | gy (c(t+1a) —e(s)® | _ 1
o [ p((—a+z’w(t—s))/w) 1] V(o +iw(t - s))/w
< Cexp(Cle(t +ia)|?) < Cexp(C exp(2Nw|al))

<C

We bound the integral over the compact region < simply by taking absolute

values:
e°? (c(t +ia) — c(s))?
'/Y< 1 — ewpta—iw(t—s) [exp ( P —1

For the integral over vs, we use the fact that if |2| < 1, |e* — 1| < ez|:

9

Vrl

< |v<| Cexp(C exp(2Nw|a)))

e°P (c(t +ia) — c(s))z) ] dp
- ex -1 —=
'[Y> 1— ewp+a—tw(t—s) [ b < P \/E’-l
/ e’” @Vl + lle(s)ll peo ) | _dp
' 1~ ewp+c't—«£w(t—s) |p| |p|
o e? —_
< Ce?Nwled 1= et P 3/2| dp < C exp(C exp(2Nw |a]))

Combining these estimates, we find that k¥'(t + ic,t + i — s) has the required
growth as a — o0, hence Y;(t) does. The same argument applies as o« — —o0.

C. Proof of Lemma 2

Proof of Lemma 2. We first compute the decay properties of this sum.
Consider the sequence —+/o + nw. For n positive, the real part of this se-
quence behaves like —/nw. This implies that:
Z e—Votnwl|z|
———————l

—inwt (Cl)
n>Ro/w 2vo +nw
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is convergent to a function which is continuous for real ¢, and analytic in o for .
o # nw (since the Fourier coefficients decay faster than any polynomial).
For n < Ro /w, we can write —/o + nw as:

—Vo+ 1w = |o 4 nw|'/? ¢i$n/2
.k
¢n = 7 + arcsin (—\—m—l/—,z)

o+ nw|

For large negative n, we find that:

®n ~1r—30/|a+mu|1/2

Thus ® [~/ +nw] ~ cos(n/2-0/ |o +nw|"/2) ~ So/ |o + nw|/? = O(n-1/2),
This implies that for @ restricted to a compact set, e~VeF™I2! js hounded above.

This implies that the operator f(t) — [q G(o,a,t — ') f(t')(w/2m)dt is a
uniformly bounded (in @, for z € Bg) family of operators mapping H* (8%, dt) —
Het1/2(81, 4t). By differentiating with respect to z, we find that the z-derivative
of this operator family is a uniformly bounded family of operators mapping
He(Shdt) - go(Shdt), which is discontinuous at z = 0.

We have therefore shown that the operator:

7
@ [ [ Gl -at -0y, )
Br Js1 2

™

is a bounded analytic family of operators (for o in a compact set not containing
Z€ero)

This implies that uniformly, for x in the compact set B and & restricted to
a compact set which is separated from ¢ = 0, G(g, z,t)x is a smoothing operator
mapping H?*(Bg x S*,dz x dt) — HA+1e+1/2(Bp x 81 d x dt). 0
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