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I. Introducfion}_

It 18 the purﬁose of this talk is to present some workl’2 which
provides a rigorous description of the‘equilibrium and metastable
'stétes of "van der Waals" systems', i.e. systems with long range weak
'poteﬁtials3. We consider a claséical (or quantumu) system of N
barticles confined to a cubical box of volume £, N = pf), and interacting

via a pair potential v(r) of the form,
v(z) = al@) + Yolx), (1)

-1 .
where Y is the dimensionality of the space considered and ¥ 1is a para-
meter which measures the range of the 'Kac potential! ¢(x).

The functions g(;) and ¢(x) are assumed to satisfy the following

conditions

qlz) = =,for r < T s la(r)] <D, r-v-i for T > r (2)
< =

(the first of these is technical and can probably be weakened, the

second is essential)
|¢(X)| < D3y'_v.€ for all y : (32)
¢<X) is continuous at y = O (3b) .

o= ﬁp(x)dy exists as a Riemann integral. (3e)

where o Dé’ D3 and € are positive constants and & may be either positive
or negative. To make the final results completely definite it is aléo

necessary to assume that ¢ satisfies either’ (ka) or (bb),

3 = Jop e lay>0 (ha)

©(0) = Minimum B(k). (k)
The physically interesting case of an attractive long range potential,

w(z)'f 0, is a special case of (ib).

We then show that in the van der Waals 1limit y - O, taken after
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the thermodymamic limit § ~ =, the Helmholtz free energy per unit volume
hag the form
s 1. . rA(pQ,Qy)
a(P;0+)'=yl_}_mo alp,y) = Mm, Aim (S5 ]
2 | ‘ ‘
= CE{a®(0) + Lop°} | - (5)
Here A(N,Q,y) is the Helmholtz free energy of the system with N particles
at some temperature T (not indicated explicitly): ao(p) is the Helmholtz
‘free‘energy per unit volume in the reference system, i.e, the system with
inter-particle potential q(r), and CE{f(p)} means, for any function (),

the convex envelope of that function, defined as the maximal convex

fﬁnctimn not exceeding f:

‘ CE{fQO)} z¢¥a§ ¢.for each value of p

(.) is convex ‘ :

(§) < £ (&) for all ¢ ) (6)
Since the maximum of any family of convex functions is itself convex,
the function CE{f(p)} is convex. If f(p) is convex, then CE{r(p)} and
'fOO) coincide; otherwise the graph of CE{f(p)} consists partly of convex
segments of the graph of f(p) and partly of segments of double tangents
of this graph (Fig. 1). The construction of CE{f(p)} from f(p) is some-

times called the double tangent construction, or Gibbs construction.

~ The corresponding pressure p(p,0+) ;y;imo p(p,y) is given by
p(p,0+) = p2 gﬁ-[a(p,0+)/p] which corresponds to applying the Maxwell

equal area construction to the generalized van der Waals pressure

Blp) = p°(p) + d0p°, (Fig. 2). P
) ~ P4
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II. Methods of Proof.

Our method of proof consists in f1nd1ng upper and lower bounds for
a(p,y) which, under the conditlons on the potential assumed before, coin-

clde in the limit v = 0. To accomplish this we divide the cubical volume

) into M smaller cubical regions (cells) Wseee s, each of volume

! ’ (Fig. 3). We then prove our results by taking

o a sequence of limits £} - =, 'y—l - ®, = ®©in
o ~_
the order indicated, i.e. the lengths appearing
in the problem satisfy the inequalities
F;'.9- 3 r, << wl/v << 'y-l << ﬂl/v. : (7)

The range'of the Kac potential is ﬁhus very small compared to the size
of the container but very large compared to the size of the cells, w),
which are in turn very large compared to the 'range' of q(g).
Ry

The size of the cells w is not an intrinsic parameter of the
problem énd is only introduced as an aid in the calculations where it
plays the central role of separating the total interaction energy of
the system

ve 3 la )+ feln )l (@

into a part coming from interactions between particles in the same cell
and part coming from interactions between cells. This leads, after
taking the triple linit of @Y 3> 325> /¥ » o, to a 'corresponding’
division in the Helmholtz free energy given in (5): a®(p) being a
purely intra-cell affair while %ape is the interaction energy per unit

-1
volume between cells when the system is uniform on the scale ¥y . For

- values of p (and T) for which
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o, D. 2
a(p,0+) = CE{a” (p) + 0p°} # &a°(p) + dop°, (9)
the value a(p,0+) coincides with that obtained by assuming the system

to eonsist of two phases with densities Py and Py (Figs. 1 and 2). That
this is indeed the state of the system can be seen by considering the

form of the distribution functions at these densitiesl and more explicitly

from the discussion which follows.






III. Restricted Configurations.

Starting from the partition functions of & system with an inter-
particle potential given in (1) we have'obtained a convex a(p,0+) which
contains, for suitable a°(p) and @, a linear part leading to pressure
igotherms containing a horizontal segment, (ef. Figs. (1) and (2) for
Py <p< pD). No meaning at all is attached to that part of‘the curve
a%(p) + %apg which lies above the curve CE{a®(p) + %apz} or to the
corresponding part of the pressure éurve p°(p) + éapz. Traditionally
however the parts of these curves (actually of similar curves obtained
 from the original van der Waals-Maxwell theory) lying between
Py <p< P3 and Pq <p< bD are assumed to represent the properties of
metastable states of unifdrm density corresponding to the supercooled
vapour and the superheated liquid respectively, the densitites Py and
pC being the limits of metastability6’7. We shall no; show how it 1s
possible to give a rigorous méaning to these states by considering the
properties of our system when it is confined to a restricted region of
the configuration space. |

To do this we imagine that our system of N particles in the box of
volume £ is restricted to a region in configuration space specified by
constraints on the number? Ni’ of particles in the cells a&,i=l,...,M,
(Fig. 3). A general restriction of this kind is expressed by ghe

4

requirement that there be a fraction. pj of the cells, Jj=1l,...,m whose

densities p, ='N,/w lie in the interval A, = (p/.y» p(j)), i.e.
i7 71 5 T P3)

_ (3)
P(s) Py = N,/wsp for p;M cells. (10)

M .
with jga Pj = 1 and ij an integer. Since there are altogether N particles
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" in the system we must choose the intervals.ﬁ% in such a way that there

exist densities QJ in Aﬁ

| P(y) S &y $P(J) : : (11)
for which ‘

m

& PJ-QJ - P | (12)
We can now define a restricted partition fumction Z'(FK%SL)4{pj,£3}|

for which the integrations in configuration space are limited to the
regions satisfying the condition (10). Z' is thus, unlike Z, &
function of the cell size w. It is now possiblevto find bounds on the
free energy per unit volume for the restricted partition function in

the triple limit discussed before. We find then,

-a(p,0+) S. a:_'(p,>0+" {pJ,AJ}) llm lim &2 [ln z' (pﬂ:QJ')’l{P )A ) ]

. 1y 2
< {gg? {JZE pla®(€;) + 20£,° + g,(6,)]  (13)

where
0 for £ in Aﬁ

(&) = :
%] ¢ ® for £ not in Aﬁ . (1)

and the minimum is taken over all possible values of the gj satisfying
(12). Similarly it is shown that

a<p,o+|{p A} ?{z pCE{a (!5)+§oasJ +g(g )11 (15)

Y

- If we now let the interwvals Aﬁ shrink to the points gj satisfying (12)

“the upper bounds (13) and (1l4) coincide yielding

a' (o0l lo6,)) = T p[aE,) + bag2] (6)






IV. Stable Metastable and Unstable Macroscopic States

We shall defihe the macroscOpié states, or simply states, of our
system S(pi,ﬁi,p} by the distribution {p,,£,},1=1,...,m, satisfying
(12). This gives (in the triple limit discussed before) the fraction
of cells, or systems volume, P, ét density & T To each state there
will then correspond a free energy per unit volume‘a'Qo,O+|[pi,£i})
given in (16).

For any given constraint C{p§,£§,p},j=l,...,n, that there be a
fraction of cells PS in the density interyal Aﬁ there will be in general
many states S{pi,gi,p],i=l,...,m, which will satisfy this constraint,
with m nqﬁ necessarily equal to n, it is only necessary thafA? Pi=Pj the

summation being taken over all those i for which gi is in AE.J We shall
indicate that a state S{pi,gi,p]'satisfies a certain constraint C{pg,ﬁﬁgp] .

by writing
S{Piygi:p} EC{Pj;A‘ij} (17)
Thus all states satisfy the constraint 1 =1, & = (0,=).
A state will be called stable S ,p} if its correspondlng

a'Q0,0+I{pi,Ei}) is lower than that for any other state. A state will
be called metastable sm{pi,gi,p} if its cdrrespbnding a'(p,o+]{pi,gi})
is lower than that for any other state S{pj,gj?p] satisfying the
constraint Cm{pi;ﬁg,P} where the p, are the same numbers as the p, of
the metastable state and the A& are intervals centered on thelgi of the
metastable state of width greater than some positive number 24, i.e.

it is possible to get from the state Sm{pi,gi,p} to a 'neighboring
state’ S(pj,ﬁj,p) € Cm{pi’Ai’p} without changing the density in any
cell by more than A. A maximally unstable state Su{Pi,Ei,p] is one

whose corresponding a’(p,0+|{pi,£i,}) is greater than that of all other

states in its 'neighborhood'. We shall call all the three types of
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states described here extremal states.

. Consider now the case where the functions "a.o(p) + —%apz have thé
form shown in Fig. 1, (e.g. there is only one intervé.l in which the
graph is a straight line; the results for more general situations are
innnediate).. It is then possib.le to show that: 1) For densities p such
that 0 < p < 'pA or P <p, regiqn I, where ao(p) + ;%O(pe coincides with
CE{ao(p) + %ozpe}, the stable state is one of uniform density p,=1,& =p;
2) For densities p such that Py <P <pgor p, <p <pp, region II,
where CE{a_(o) + éape} is linear and there is always some A> O such
thaﬁ Aao(p) + éoc,o2 is convex in an interval of size 2A centered on p
the stabil.e state is that of a two phase system_ at densities 51 and
52: 51 =.PA: 52 = PD,‘ Pl = (pB-p)/(pB-p) p2 = i—pl, and there is a
metastable state corresponding to the system being a uniform density p;
3) For densities in the range py <p < p,, region IIT, CE{a®(p) + Jop°)
is linear and'ao(p) + %ozpz is concave in an interval of size 2A about
p, the stable state is of the samé form as in region IT and the uniform
state is maximally unstable.

In order to justify the naming of stable and metastable states we
note‘that the probability W(C) of the unconstrained system being in a

region of configuration space R, corresponding to a given constraint
C{pi,Ai,p}, is given by

4 (c) = BRI (o0,0,y| {pi,Al})-Q'lA Q8| {p,,A1)] (18)
It follows then from (16), the definition of & limit and the
. uniqueness of the stable state, for sufficiently large w, ‘y_l and §2
satisfying (T) that if the stable state ss{pi,gi,p} ¢ C[pJ.,AJ.,p} then
the term in the square bracket on the right side of (18) will be larger

than some positive number h > 0. Hence
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tn W(e) < -Bn ir s {6 00 f Clpg, 003 (19)

and the probability of the system being in that region of coﬁfiguratibn
space will be arbitrarily emall for sufficiently large Q. Conversely
the probability that the system is in the part of configuration space
complimentary to R will be arbitraril} close to unity. We may thus con~
clude that the stable state will have unit probability in the triple limit
considered here. A similar analysis may_be carried out fof the pro-
bability of the metastable when the system is constrained ‘to be‘in_the
'neighborhood' of the uniform state. |

Thése considerations cen be used to understand (and perhaps prove .
rigorously) the form of the distribution functions given in ref. l.
They also indicate that in the mefastable state the distribution
functions wiil remain the same as in the reference system.' No»indica-
tion is given, however, about the dynamics, i.e. relaxation fate, of
metastable states. We believe, héwever, that if the system is initially
in the vieinity of the uniform (metéstable) sﬁate then fhe rate per
unit volume at whigh the system will leave this state (by droplet ori

‘bubble formation) will vanish in the triple limit considered herez.
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V. Finite Range Kac Potential.

In concluéion I would like to mention that Lebowitz, ,Stell‘and Baer have
:itawzloped7 a formal graphical method for obtaining expansions in y of |
the correlation functions and thermodynsmic properties of a system with
interparticle potential (1). These expansions have meaning only for thosé_
values of p and T for which the van der Waals system, y - O, is uniform.

The convergence of the expansion has not been investigated.






5.

-11-

References

JeL. Lebowitz and'O. Penrose, "Rigorous Treatment of van der Whals'-
Maxwell Theory of First Order Phase Transition" to appear in

J. Math. Phys. |

O. Penrose and J.L. Lebowitz, "Rigorous Treatment of Metastable
States for van der Waals. Systems",'in preparation.

As will be recognized immediately by the cognoscenti our analysis is
greatly indebted to the work of Kac, Uhlenbeck and Hemmer J. Math.
Phys. 4, 216 (1963) and of van Kampen, Phys. Rev. 135, 362 (1964).

While this talk is couched in the language of classical fluids our
results apply also to lattice gases (and thus to Ising spin systems)
and to quantum systems. The proof for gquantum systems, which requires
some new intermediate steps, was given by E. Lieb, "Quantum Mechanical
Extension of the Lebowitz-Penrose Theorem on the Yan der Waals Theory"
to be published. In Lieb's proof it is necessary to assume that aoQo)
is independent of whether the wave function or -its normal derivative

are assumed to vanish on the boundary of . While this seems

'obvious' it has not yet been proven.

When (4) is not satisfiedkéur lower bound on a(p,0+) may not
colncide with the upper bound for some values of the density and
teﬁperature.

J.C. Maxwell, Scientific Papers, (Dover Reprint, New York) p. hos,
see also M. Fisher, "The Theory of Condensation" Iecture given at
the University of Kentucky (Spring, 1965) and J. Ianger's article

in this volume.

JeL. Iebowitz, G. Stell and S. Baer, J. Math. Phys. 6, 1282  (1965);
G. Stell, J.L. Lebowitz, S. Baer and W. Theuman, "Seperation of the
Interaction Potential into Two Parts in Statistical Mechanies, IT,

to be published.






