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Abstract. The fluid limit N — oo is constructed for a sequence of ensembles of IV classical
point vortices in a finite domain A C R? whose ensemble densities (w.r.t. Liouville measure) are
Gaussian approximations to §(E — H). Letting the variance — 0 after N — oo has been taken,
one recovers the special class of nonlinear stationary Euler flows that is expected from the micro-
canonical ensemble. The construction improves over previous ones which either had to regularize the
logarithmic singularities of the point vortex Hamiltonian or had to assume equivalence of ensembles.
In particular, nonequivalence between micro-canonical and canonical ensemble prevails for certain
geometries where conditionally stable configurations with negative ‘global vortex pair-specific heat’
can and do exist in the micro-canonical but not in the canonical ensemble.
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1. Introduction

The motion of N classical point vortices in a two-dimensional, incompressible
Euler flow is governed [1-4] by the Hamiltonian

H(N)(rl,. e ,rN)

= Y cciGrr)+ Y (GF(r) + ™ (r)). (1.1)

1Si<j<N ISigN

In (1.1), r; = (2, ;) is the position of the ith vortex in an open, connected domain
A C R? with finite area |A| and piecewise regular Lipschitz boundary dA. Up
to a trivial factor 1/[c;], the Cartesian components z; and y; are the canonically
conjugate variables. The circulations c; are expressed as dimensionless muitiples
of a suitable reference unit. The pair interaction G(r;, r;j) = G(r;,r;) is Green's
function for —A on A, with 0 Dirichlet boundary conditions on A. The interaction
of a vortex with its own images, mediated by the boundary JA, is given by the
regular part of Green'’s function,

1 . 1, .
F(r) = %1__:3_-2- [G’(r, r)+ Er-lnlr - r] . (1.2)
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Finally, 12" is the stream function of an applied continuous background vorticity
supported in A,

In a pioneering paper (5] on turbulent flows, Onsager studied the microcanonical
ensemble of (1.1). The normalized phase space volume of the set {H(N) < E}in
the IV vortices phase space A", given by

o(E) =AY dNr, (1.3)

(HWN)<E}

withdVr = H?;l dr; and d7; = dx; dy; the two-dimensional Lebesgue measure,
is a monotonically increasing, bounded function. Onsager noted that, as a conse-
quence of this, Boltzmann’s entropy, S(E) = In ®'(E), must reach a maximum at
a particular value E,, of energy, such that ([5], p. 281): “negative ‘temperatures’ . ..
will occur if E > B, ... [and] then vortices of the same sign will tend to cluster,
... It stands to reason that the large compound vortices formed in this manner will
remain as the only conspicuous features of the motion; ... "

Onsager’s insight suggests the following question: Given N point vortices dis-
tributed according to the micro-canonical measure, which vorticity structures are
obtained in a suitable continuum (Euler fluid) limit N — oo? Considering for
simplicity the one-species micro-canonical point vortex ensemble, the conjectured
answer (cf., [6]) is the following. Fixing A and ¢ = E/N2 > 0as N = oo, the
Boltzmann entropy per vortex converges to a continuous function of ¢,

: 1 POAT2.\ —
N11_r>n°°-ﬁ In®'(N%e) = s(e). (1.4)

The micro-canonical equilibrium measure converges, for ¢ > 0 and in a suitable
topology, to a convex linear superposition of infinite products of one-vortex mea-
sures. The superposition measure is concentrated on those absolutely continuous
one-vortex measures with density p, that have entropy — f4 pe In{|A|pc] dT = s(e),
and which satisfy (the integral form of) Liouville's conformal PDE [7]

pete) = exp (8[a - [ Gr P ()er]), (L5)

with constants 3 and o chosen to satisfy [, p. d7 = 1 and the energy constraint
llpll%,-1 = 2¢. The solutions of (1.5) can then be interpreted as continuum vorticities
satisfying the stationary Euler equations for incompressible flows, cf. [8].

While heuristic derivations of (1.5) have been proposed in [9-13], a rigorous
proof of the conjectured answer has not yet been achieved. In rigorous works on this
problem (6, 14] the micro-canonical point vortex ensemble is replaced by a regu-
larized measure, the regularization being removed after the [imit N — oo has been
taken. In addition, in [6] the logarithmic singularities in H are regularized, while in
[14] the limit N — oo is restricted to situations in which the micro-canonical and
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canonical ensembles are equivalent. The Euler fluid limit of the canonical point
vortex ensemble in turn has been constructed without approximation in [15, 16],
following earlier work |17] on regularized interactions.

Our interest here is in extending the results of [6, 14]. While we, too, regularize
§(H — E), our work is not based on equivalence of ensembles, and we keep the
logarithmic singularities in (1.1).

The only limit results for §(H — E), obtained for neutral point vortex systems,
seem to be [18, 19], which however concem a different limit N — oo, The
construction of the Euler fluid limit N — oo starting directly from §(H — E)
remains open for future work, both for one and for neutral two-species systems.
The latter have the curious feature that the reciprocal temperature, obtained from
the micro-canonical ensemble in the Euler fluid limit N — oo, is bounded away
from zero [20].

2. Statement of Results

We consider a one-species vortex Hamiltonian (1.1) with ¢; = 1 and 4%? = 0, for
simplicity. For finite N, our regularized micro-canonical equilibrium probability
measure on A" is of the form

1 1 1 2
(N Ny — 2 N —_ 1 g N
Py (@¥r) = - exp[ N> (e H ) ]d 7, @.1)
where o > Oande are'ﬁxed real numbers, and
| 1 2
= Ne—[e — —_ N N
Z(N,&,0) /A o €[N (e = 77 HM) ] dr. (2.2)

The micro-canonical ensemble is obtained in the limit ¢ — O at fixed N in
(2.1), giving a delta measure concentrated on {H(N) = E} with E = NZ, as
can be easily verified using geometric measure theory [21]. We are interested in
the asymptotic evaluation, as N — oo, of (2.1) for fixed £ and ¢, which is the
continuum Euler fluid scaling for H.

Let P(AN) denote the probability measures on AY, Forany N € N, we define
the entropy of pn € P(AN) relative to the uniform measure |A|~Vd¥ r by

S(en) = - /A Lonin (1A o) dr, 2.3)

if on is absolutely continuous w.rt. Lebesgue measure, having density py, and
provided the integral on the r.h.s. of (2.3) exists; S(on) = —oo in all other cases.
For 9| = ¢ € P(A), we define a one-vortex penalized entropy functional by

Rea(0) = 5(0) = 507 (£ = 5 [ p0)@ (0} or) 2.4



46 MICHAEL K.-H. KIESSLING AND JOEL L. LEBOWITZ

for those o(dr) = pdr, with p a Lebesgue probability density, for which S(g) >
—oc, and R, ,(g) = —oo otherwise. Here, S(g) = S(g) is the one-vortex entropy
as defined in (2.3), and

(G * p)(r) = /A G(r,v)p(t) dr". 2.5)

We write M, for the set {¢o¢,»} of maximizers of R, ,.

By @ = AN we denote the A-valued infinite exchangeable sequences, and by
P®*(§2) the permutation-invariant probability measures on §2. According to the
theorem of de Finetti [22] and Dynkin [23] that every u € P®*(QQ) is given by a
convex linear superposition of product measures of the form

pn(dP7) = /P iy IO "), 2.6)

where pun (d®7) € P(A™) is the nth marginal measure of 4. By a theorem of Hewitt
and Savage [24), the product states o®N are the extreme points of the convex set
P¥(Q2). Hence, (2.6) is also the extremal decomposition of ;.

THEOREM 2.1. For each e € R and o > 0 fixed, we have

.1 N B
Jim ~in [|AI"YZ(N,¢,0)] = Reo(e0) @7

with 9. o € M ;. Moreover, (2.1) has at least one limit point, convergence under-
stood in weak LP sense, p < oo, in the corresponding subset of P**(Q). The
decomposition measure v(u'®?)|dp) of any limit point u(&9) is concentrated on
M., C P(A).

The subsequent limit o — O now gives the anticipated variational principle for
the micro-canonical ensemble. We denote by L}’*’(A) the subset of the positive
cone of L'(A) whose clements satisfy Jp pdr =1, and by Li;:(A) the subset of

Ly ¥ (A) for which

1
el =5 [ [ o0G(r )p()drar’ = . @8
Notice that Green’s function G is the kernel of a positive operator.

THEOREM 2.2. For fixed € € R, define Ry 5(0e,0) = 34 (¢).
Part 1. Let € > O. Then the limit

s(e) = ;1_% 34(€) | (2.9)
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exists and satisfies the variational principle
L+
s(z) = max {S(o)l o(dr) = pdrip € Ly} }. (2.10)

Any maximizer p. for (2.10) satisfies the Euler-Lagrange equation
pe(r) = exp (ﬁ [a - / G(r, r’)pe(r’)dT’D ) @.11)
A .

where [3 and o are real numbers to be chosen to ensure p € L

Furthermore, let M, denote the set of maximizers p. for (2 10) Aso =0, let
u(€) be a weak limit point of the measure (¢ on Q. Then u€) € P*(R), and its
de Finetti-Dynkin decomposition measure v(u\®)(dp) is concentrated on M,.

Part 2. Let € < 0. In this case limgy_,g $4(€) = —o00.

3. Penalized Entropy Functionals
We shall need the following properties of the penalized entropy (2.4).
PROPOSITION 3.1. For each ¢ € R and g > 0 fixed, the functional R o(g) takes

its maximum at an absolutely continuous p. If g is a maximizer of R, o(0), then its
density p solves the Euler-Lagrange equation

___exp(v(G*p)(r)) . |
P = e G+ A a7 oD
where
7== 1 (e—%/pG’*pd'r). (3.2)

Proof Let p € L}’+(A) N {S(g) > —oo} and 0 < A < 8=. It was shown in
[16] and [15] that the Gibbs variational principle together with a simple bound on
the configurational integral, based on convexity and an explicit computation, imply
that there is a constant C' > —oo that may depend on A and A but not on p, such
that

mf (——-/ / p(r)G(r,r")p(r)dr d7’ +A/pln |Alp) d ) >C. (3.3)

Whence, for p € L, *(A) N {S(o) > —oo} we have that p € H~'(A), where
H=!(A) is the ||.|},_, norm closure of C*(A). We remark, cf. [25], that (3.3) is
related by convex duality to Moser’s [26] corollary

mf[ /IVuIzd'r—/\ln l

A “dT] > C foru € H} (3.4)
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of the Trudinger [27] — Moser [26] inequality (see also (28, 29]), which implies
the embedding HJ(A) — L?, where L? is the Orlicz space with defining function
¢ = exp(t*) — 1; see [27). Here, Hj(A) is the closure of C§°(A) w.rt. the norm
induced by Dirichlet's form. By (3.3), we see that the set {p: S(p) > s}, with
s > ~o0, is H~! norm bounded, therefore it is H~! weakly closed and compact.
It now follows {30] that S(g) is H~' weakly upper semi-continuous. Therefore
R ;s takes its maximum on any subset of P(A) of the form {g(dr) = pd7r : p €
Ly (A)S(0) > s > —oo).

Next, since S(g) < 0, we have that R, ; = —oo for ||pllg-1 = o0 at least as
lloll%=1, s0 Re 4 is coercive in H~! topology. Whence, the maximum of R, (o)
over P(A) is taken in the interior of H~!(A) so that 4, (3.2), is well defined for
any maximizer p. In addition, the entropy functional guarantees that a maximizer
is also in the interior of L}‘*. We thus see that the maximum is at a stationary
point and satisfies the Euler-Lagrange equation. Taking the Gateaux derivative and
applying the Fundamental Lemma of Variational Calculus gives (3.1). a

COROLLARY 3.2. For each ¢ € R and o > 0, the maximizers of R¢ 5(g) over
P(A) have density pe 5 € (LY 0 L®)(A).

Proof. Solutions p € L}'+ of the Euler-Lagrange equation (3.1) with finite one
particle entropy are in H~!, by (3.3). Therefore,  exists and so does

Y(r) =v(G*p)(r). G

Moreover, || V3|l 2 < oo, by convex duality. By (3.3), this implies the regularity
condition

/A ¥ dr < oo, (3.6)

which implies that there exists some A € R such that v satisfies the conformal
Liouville [7] equation in A, :

—AyY =)eY, 3.7

with O Dirichlet conditions on dA. By 3.6 the right-hand side of (3.7) is in L!,
whence by a theorem of Brezis and Merle, i.e., Corollary 2 on p.- 1229 in {31], we
have ¢ € L°, whence by (3.5) and by (3.1) now p € L*°. a

We need to generalize (2.4) to the N-vortices measures. Let g be a symmetric
probability measure on AN . If g is absolutely continuous w.r.t. Lebesgue measure,
let py € L:"*(AN ) denote its density. We define a penalty of oy by

1 1 2
Peolon) = Nz [ (e = 52 H™) en(a¥7) (3.8)
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if the integral exists, and P. ,(pn) = oo otherwise. An N vortices penalized
entropy functional is now defined by

Seo(on) = S(on) — Peglon) (3.9)

where S(gy) is givenin (2.3), and P »(on) in (3.8). In particular, for 4 € P¥(Q2),
let un,n € N, be the nth marginal measure. If uy, is absolutely continuous w.r.t.
Lebesgue measure, let pp, be its density. An n-vortices entropy of un is given by
S(n), see (2.3). In addition, we define S(u_,) = O for k € NU {0}. The penalty
of uy, is given by Pe o(un), with Pg o(.) as in (3.8).

We are now in the position to define a penalized mean entropy functional on
P*(£2). We restrict P**() to the subspace Pg*(£2) for which the penalty exists
for all marginals of y,

P3X(Q) = {1 € P™(Q) : Peg(pn) < ooforalln < oo}. (3.10)
For each u € F5*(Q), a mean penalty of 4 is now uniquely defined as the limit
.1
Peo (1) = lim ~Peo(pn). 3.11)

Also, for each u € P**(f2), a mean entropy of y is uniquely defined as the limit

.1
$(w) = Lim ~S(pn)- ' (3.12)
A penalized mean entropy functional on F;*(Q) is finally defined by

Se,o (1) = (1) — Pe o (1) (3.13)

To see that s, ,(u) is well defined, recall first that the map n — S(un) is non-
positive, S(un) < O for all n, monotonic decreasing, S(uy’) € S(un) forn’ > n,
and strongly sub-additive, i.e. forn/,n” < n,and withm =n —n’ = n”,

S(pn) < S(pr) + S(pnv) + 8™ (pm) = ST™ (u_pm). (3.14)

(See [32, 16] for the proofs.) Regarding (3.12), sub-additivity (3.14) implies (see
Lemma IX.2.4 in [33]) that, if sp = inf,{n~"'S(us)} > —oo, then s(u) = so.
Otherwise s(u) = —oo. In particular, if S(un) = —oo for some n = ng, then by
the monotonic decrease also S(u,) = —oo for all n > ng. Second, regarding 3.11,
for u € P5*(R2), de Finetti-Dynkin decomposition and a simple computation yield

1
;Pe,a(#n)

= ) v(p|do) [55’7 (e - %/ApG:«,od'r)2 +0 (%)J (3.15)
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N

so'that (3.11) is given by the n-independent term on the rh.s. of (3.15). Hence,
(3.11) 1s well defined. It follows that (3.13) is well defined.

PROPOSITION 3.3. Foranye € R and o > 0, the penalized mean entropy s¢ » (1)
is affine, i.e. for 0 < q < 1, and p, ' € P3¥(Q), we have

Se,olqp + (1 = qlp’) = gse o () + (1 = @)sc o (1) (3.16)

Proof. As in [32], one finds that the mean entropy functional is affine. More-
over, p; , (1) is clearly affine. Therefore, the penalized mean entropy of u is affine.0

COROLLARY 3.4, For any € and 0 > O, the penalized mean entropy takes its
finite global maximum on a subset of the extreme points of P;*(Q). In particular,

max Seq(p) = Re.a(@)' 3.17)

max

HEPHQ) 9€P(A)
Proof. Tt is well known that the supremum of an affine function over a convex
space can be computed by a maximizing sequence restricted to the set of extreme
points of the convex set, given here by all o®N € Pg*. But ¢ ;(0%") = R, ;- (o).
By (3.1), the supremum of R, , is 2 maximum. Let o , be a maximizer for R, ..
Clearly, the corresponding product measure 925 is a maximizer of s, ,(1). a

4. The Fluid Limit N - cofore > 0

To prove our Theorem 2.1 we establish sharp lower and upper bounds on In Z as
N = .

PROPOSITION 4.1. Fore € Rand o > 0, we have

oo 1 ~N
_ > . '
lim inf = In [IAI Z(N,e,a)] /peg?fg(A)Re,a(e) (4.1)
Proof. We first note that In Z satisfies the following variational principle,
= -N
pNeg:lﬁ'x(AN)SE)d(gN) =In [[Al Z(N,e, a)] , 4.2)

and the maximum of S, is taken if and only if g equals the finite V probability
measure (2.1). The proof of (4.2) is straightforward. In fact, when r; — rj, or
r; — OA, the worst singularities in H(™) are logarithmic. Therefore, for each
6 > 1, S, s(on) is well defined for py € (L}’“" N L*9)(AN), In particular,
let uN) = pNeo) then dulM /dN7 =: n(N) ¢ (L} A L) (AN), with supp
(™M) = &Y, Whence, Se.o(4(™)) exists, This justifies the computation

Seo (W) =1In [IAI"NZ(N,¢,0)] . 43)
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Taking now an arbitrary symmetric g, either S¢ s (on) = —o0, or, incase S; , (on)
does exist, we have from the convex1ty estimate tlnt > —1+¢, with equality holding
only for t = 1, and from [ 7(¥) d¥7 = [ pn d¥r, that

o) = Sealom) = [ (G ) nMa¥ez0, @)

with equality holding if and only if px = n(N) almost everywhere. This completes
the construction of the variational principle (4.2).
Now recall that M, , C P(A) is the set of maximizers for R, ;(p). Let g¢ ¢ €

M; ;. By 4.2, we have In [IAI‘NZ(N, €, a)] > Se,,(gg",\’). By Corollary 3.2, p¢ o

has density in L}’+ N L, Therefore, a simple computation for Se,,,(g,;‘?f,V ) now
gives, for any finite N € N, fixed ¢ € R and o > 0, the estimate

3 2
In [IAI=¥ Z(N,&,0)] > NRe,0(0c,0) +2 3NN =T @45)
k=01=0

with all a ; independent of V. In particular, the ax exist because pe,» € L2(A).
Dividing (4.5) by N and taking N — oo proves Proposition 4.1. 0

The counterpart of Proposition 4.1 is the following:

PROPOSITION 4.2, For ¢ € Rand o > 0, we have

hmsup [IAI NZ(N,e, a)] < max Req(0). (4.6)
N=oo pELYT(A)

We prepare the proof of Proposition 4.2 by the following Lemmma. We con-
tinue to write u() for (M%), and we set n&") = du$") /d™r, where dul") =
pi (drr) = pM)(dnr @ AN-™),

LEMMA 4.3. For everye € R, 0 > 0,n € Nand p € [1,00) there is a

C(n,p,€,0) < oo such that IIn(N)IIL,(An) <C,
Proof. Clearly, ny, (M < < |AN-"Z-1, while

Z- (NE o) € IAl— exp[—NRe,o(e,0) + O(1)]

by 4.5. In case that R¢;(0e,s) = O, which occurs iff p,y = |A|~! and
IAI=Y1%,-, = 2¢, we have 75"} < C|A|~", and the proof is complete in this
case. Here and in the following, C denotes a generic constant, independent of NV,
that may change from line to line. Let, therefore, ¢ and o be such that p¢ , # |A|™!,

in which case R¢ ¢ (0e,0) = —h < O strictly. We then obtain the nonuniform L™
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bound Y < C|A|7™ exp(RN). To prove that for p < co we have n,({V) € LP(A™)
uniformly in NV, it suffices to show that Hnﬁ,“”nm(,\n) < C for N > Ny. The fol-
lowing constructions are valid if N is big enough. Furthermore, we assume p>1
(the case p = | is trivial).

Pick a domain A C A such that |A\A| = e P*N|A|, with dist(9A, 9A) >
be~PMN for some fixed positive b, The L bound for n,(,N) and summation give

/ (771(1N))p d®r
An
= n
= (N) Pdn
/§><’°)/(A\A)~ /An_;.("n P d"r
SO~ (1 - e 4 [ Ve @)

Since eP*N (1 — (1 — eP*N|") = n 4 O(e V), it suffices to show that n&") €
LP(A™) uniformly for N big enough. :

By the permutation symmetry of H™), we can consider n$"’ as function of the
first n coordinates. Proceeding as in (4.7), we obtain

1 1 1 2 N
U&N)(l‘h--- arn) < E./,-;N—n CXP[—N‘Z-SE(E - -ﬁiH(N)) ]j=l;I+l de +

+CIAI™™ MV (1 = [1 — e=PN|N -1y, (4.8)

with limy_,0 €V (1 = [1 — e"’"”&”‘") = 0, for p > 1. To control the integral
over AN~ in (4.8), we write HV) = H() 4 g(N-n) L w(Nn) where it is
understood that

H(")=H(")(r1,...,rn) and H(N—n)=H(N—n)(rn+1)~-)rN)'

Clearly, WV = 30 5N | G(ri,r;). Using now (W(Vm) 4 HMN2 5 9,
next G(ri,r;) > Oon A x A, and ¢, > F(r;) > —e*N + ¢* on A, where
€* = ph/4r, and where ¢, and ¢* are N -independent constants, it is easily seen
that

_N%(e - %H‘”’)z

1 1 2
~ N (€ = = f(N=n)
<~Naz(e = 2B ") +art

1 - 1 ooy
+ar = (W) 4 F0V)] +ay 5z AN, (4.9)



THE MICRO-CANONICAL POINT VORTEX ENSEMBLE 53

where H) and HV=") are obtained from H(™ and H(V-") by deleting the
image interactions ¥ F', and where a; (N) = na‘za‘(f5[+e‘)+O(N“), a(N) =
0" He+e*)+O(N-Y), and a3(N) = no-2¢* +O(N '), independent of position.
Clearly, there exist N-independent constants cisuchthat 0 < ¢; —a; < 134 =
1,2,3, if N is big enough. Inserting (4.9) into the integral in (4.8), and then
applying Holder’s inequality with & = 47N/ncy, 8 = 87N2/(N — n)cs, and
Yl =1=a"!'- 371 we get

1A - 25 (N—- - N,
nS‘N) se"' CC2N !H(")Z—lzl/‘y”eagN 2N ")”Lﬁ”eazN t( n)”L°> (410)

with
o i 1 2
) = — e — =7 (N=-n) N-n
Z(N,e,0) = //_\N_n exp[ 7N202 (e N2H ) ]d T. (4.11)

Clearly, exp(czN"fI(")) € L?(A") uniformly for N big enough. Tuming to Z,
‘we have the following estimate. Let A denote the difference between the left side
of (4.9) and  times the first term on its right side. Let (---) denote expected value
w.r.t,

A" d" ® Z~' exp[-yN(20%)! (¢ — N-2H(V ~M)} dV-"r € P(AM).

Then Z > exp({A))Z, as a consequence of A C A, exp(---) > 0, and Jensen's
inequality applied w.rt. (-- ). Hence, in (4.10), 2-12"/7 ¢ e=(4) Z~1/a~1/8 By
applying now Jensen’s inequality w.r.t. |A|=(N=n) gN=n2 45 the integral (4.11),
and noticing that & ~ NV and 8 ~ N, we find that Z~1/2=1/8 < C. Moreover, the
fact that the map =2 — N~'In[|A|-(N-" Z(N, ¢, 0)] is nonpositive, decreasing,
convex, and bounded below by C/c? implies that ((¢ — N-2H(N =) < ¢
cf. the strategy in the proof of Lemma 3 in [16]. This estimate and the obvious
boundedness of the remaining terms in (A) show that e=(4) < (. Finally, the two
terms in (4.10) given by the L* and the LA norms, respectively, are bounded above
independently of NV, which was proven in [16, 15]. This concludes the proof. 0O

Proof of Prposition 4.2. By Lemma 4.3, each sequence {yS,N)};‘V‘;] on A" lives
in a weakly LP(A™) compact subset of P(A™), any p € (1, 00). By Tychonov’s the-
orem, the sequence {u(" }8%=1» considered on Q, is restricted to the corresponding
weakly LP(Q2) compact subset of P<=(Q), in the product topology. Existence of
limit points now follows by the theorem of Bolzano and Weierstrass.

Let now u(Ve) £ (o) for 4 subsequence {N;}$2, then pi¥) K (o)
for any n. Pick any n and let Ny > n. Then N = [Nk/n]n + no, where [Ny /n]
is the integer part of Ni/n, and ny < n. Since @ and F have only logarithmic
singularities, Lemma 4.3 and a direct computation give

w;Peo (1) = - [%e]  , (u) 4.0 () @.12)

el n.
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We next let Ny — 20 in (4.12). Clearly, N7 '[Ny/n] = n=!as Ny — ~o. This
and weak L* convergence give

| | 1

i —_— (N/C) _— (E,O‘) —
Jim Pe (W) = ~Pey () +0 (n) (4.13)
for all n. In particular, the subsequent limit n — oo in (4.13), recalling (3.11),
gives

i, g Pes (49) = (167), 19

On the other hand, for the entropy functional we have

imoup 7.8 (4) <5 (). @19

This follows from sub-additivity (3.14), nonpositivity, and weak upper semi-
continuity [30], see [16, 15]. Combining the estimates (4.15) and (4.14), we get

limsup -Z—:,—Se,a (,LL(N))

N—oo -

S SUp Se (ue) < SUpSe o () = max Re,q (o), (4.16)
n &,a

where sup,(,») means supremum w.r.t. all limit points of {u( M, sup, means
supremum w.rt. all elements in P3* (), and max, means maximum w.r.t. all ele-
ments in P(A). The last step is Corollary 3.4, a

Proofof Theorem 2.1. Part 2.7 of Theorem 2.1 follows directly from Propositions
4.1 and 4.2, Corollary 3.4 then implies that any limit point 4(¢9) is a maximizer
of S¢,5 (). Suppose now v(u(€:9)|dp) is not concentrated on M, ;. Then, with the
help of Proposition 3.3 and extremal decomposition, we arrive at the contradiction

Seya(y(e’”))
= Joen (' |dg)R, 4 (o) < Re o (0©7) = s, 5 (u(&), @17
Therefore, v(u(*?)|dg) is concentrated on M, . -

5. Vanishing of the Variance o2 for N = oo

After having taken N — oo, we now turn to the subsequent limit ¢ — 0.
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Prbof of Theorem 2.2, Let first 0 < € < oo. Using that Li;j C L:’+, then
using the fact that the penalty term vanishes for p € L}.j:, and finally using

Proposition 2.1 of [14], which states that max{S(p) : p € L{;’:(A)} is well defined
for 0 < e < oo, we have :

so{€) = max Rcy(g)> max R.,(g) = max S(p), .1
(€) peELIF(A) e (@) PEL}T(A) " PELYT(A)

for all & > 0. In particular, since max{S(p) : p € L:;:(A)} > —00, we thus
have inf;5038,(¢) > —o0. On the other hand, a direct computation shows that

the derivative of the map o2 — N~!In [!A]'NZ(N, g, a)] is nonpositive, hence

the map o~2 — s,(€) is monotonic decreasing. We conclude that the limit (2.9),
defining s(e), exists for e € RT,

Now let u(¢) be a limit point of the measure 4% on Q. Since ple9) e pex(Q),
also u(®) € P**(), whence a de Finetti-Dynkin type decomposition measure
v(u(®)|dg) exists. Clearly, by (5.1), v(1(*)|dp) is concentrated on the subset of
absolutely continuous p. Let p, denote any density in the support of u(y(€)|dg),
~ andlet p; , — pe aso — 0, weakly in L}""(A). By the nonpositivity of the penalty
term, weak upper semi-continuity of entropy, and an obvious variational estimate,
we have

lim sup 5, (¢) < limsupS(ecs) < Slee) & max (). 62)
a0 o—0 peLl;':'(A)

Therefore, (5.2) and (5.1) prove that

s(e) = max -S(p). (5.3)
PELYY(A)

Repeating almost verbatim the argument (4.16), with S replacing R, -, we find that
pe is the density of a measure in M,. By Proposition 2.3 of [14], the density of any
0c € M; satisfies the Euler-Lagrange equation (2.11) for (2.10), with B and « real
numbers chosen to satisfy the constraints p € L};:' (A). This proves our theorem
fore > 0.

Let now € < 0 be fixed. Then, since G is the kemnel for a positive operator, we
have

1 2
(E -5 /A Pe,0G * Pe g dr) > e, (5.4)

With (5.4) and S(g) < 0, we find s,(¢) € —€2/202. Thus,

limsup 3,(g) = —o0. (5.5)
a0 :
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Similarly, if ¢ = 0, cither liminff‘.xpe,gG * p; ,dr > 2C > 0. In that case,
repeating the above argument with C* replacing €2, we get (5.5). Or, if S P0G *
pe o dr — 0, then limy_o supp (0 o) N A = @, whence any limit point of p, ,
concentrates at JA. Once again we find (3.5). g

6. Nonequivalence: An Outlook

By standard arguments, the limit of the canonical free energy per vortex pair,
established in [15] and [16], coincides with the Legendre—Fenchel transform of the
limit of the micro-canonical entropy per vortex, while the reverse transformation
gives the convex hull of the entropy per vortex. If the entropy per vortex and
its convex huil coincide, we say that (thermodynamic) equivalence of ensembles
holds.

Equivalence has been proved for vortices in a disk domain when the Hamil-
tonian is postulated to be the only conserved quantity, [14]. However, since by
rotational symmetry angular momentum is a conserved quantity too, we are enti-
tled to consider a constrained micro-canonical ensemble in which the generalized
angular momentum per vortex is also fixed. Nonequivalence of the so-constrained
micro-canonical and correspondingly constrained canonical vortex ensembles in
a disk is evidenced in the Monte Carlo study of [34). These authors found an
energy region in which the map ¢ — s(¢) (constrained entropy per vortex) is
convex instead of concave. While the entropy maximizing vortex structures in this
region have negative vortex-pair specific heat, globally, they do exist stably in
the finite volume micro-canonical ensemble with angular momentum constraint.
Most remarkably, similar structures are observable in actual experiments, see the
discussion in [34]. Interestingly, for the same system in an infinite domain [13, 35]
equivalence of the constrained ensembles has been established in the works [15,
36, 37]. A detailed account of more examples of nonequivalence is in preparation
and will be published elsewhere.

Finally, it should be recalled that this discussion concerns the high energy tail of
the finite NV vortex distribution., The low energy tail of neutral vortex systems has
been treated rigorously in [38], where the traditional thermodynamic limit for S/N
as a function of E/N at fixed density N/|A] is constructed and the thermodynamic -
equivalence of ensembles established.
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