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Time past and time future

3 What might have been and what has been
) . N .

Z, Point to one end, which is always present.

T.S. Eliot in Four Quartets

rgmann and Melba Phillips, who taught me

Dedicated to my teachers, Peter Be
statistical mechanics and much, much more.

8.1 Introduction

Let me begin by declaring my premises: for the purpose of this article, my motion
of time is essentially the Newtonian one — time is real and the basic laws of physics
are time reversible, they connect the states of a physical system, possibly of the
whole universe, at different instants of time. This of course does not take account
of relativity, special or general, and is therefore certainly not the whole story. Still
I believe that the phenomenon we wish to explain, namely the time asymmetric
behavior of macroscopic objects, would be for all practical purposes the same in
a non-relativistic universe. I will therefore focus here on idealized versions of the
problem, in the simplest context, and then see how far the answers we get go towards

its solution,
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8.3 The Problem

Given these premises I will start by formulating the problem concerning the Originﬁ
of the distinction, ie. asymmetry, between past and future in a non-relativistic
universe. Now this distinction is so obvious in all our immediate experiences that )
it is often quite hard to explain just what exactly is the problem which needs ap ;
explanation. On the other hand it is equally hard, once the question has been
formulated, to answer it in a way that puts an end to the discussion once and for all,
There appears to be no way to convince some people, including sometimes one’s self,
that the problem has really been resolved, once and for all, by Boltzmann and that
there is no need to worry about it (and hold conferences about it) again and again,
Let me quote Schrodinger (selectively) in one of his many discourses about this
problem [5]: “the spontaneous transition from order to disorder is the quintessence
of Boltzmann’s theory ... This theory really grants an understanding and does
not ... reason away the dissymmetry of things by means of an a priori sense of
direction of time variables... No one who has once understood Boltzmann's theory
will ever again have recourse to such expedients. It would be a scientific regression
beside which a repudiation of Copernicus in favor of Ptolemy would seem trifling.”
Schrddinger continues however, ... nevertheless objections to the theory have been
raised again and again in the course of the past decades and not (only) by fools but
(also) by fine thinkers. If we ... eliminate the subtle misunderstandings ... we ...
find ...a significant residue ... which needs exploring ...”

I will come back to the “significant residue” after I formulate the basic problem
in an idealized setting: Consider an isolated macroscopic system evolving in time, as
exemplified by the schematic snapshots of a gas in the four frames in Fig, 8.1. The
dots in this figure represent schematically the density profile of the gas at different
times during the undisturbed evolution of the system and the question is to identify
the time order in which the sequence of snapshots were taken. The “obvious”
answer, based on experience is: time increases from left to right - any other order
is clearly impossible. Now it would be very simple and nice if this answer could be
justified from the laws of nature, But this is not the case, for the laws of physics,
as we know them, tell a different story: if the sequence going from left to right is a
permissible one, so is the one going from right to left. This is most easily seen in
classical mechanics and so I shall use this language for the present. I believe that
the situation is similar in quantum mechanics and will discuss that later.

8.4 Mathematical Formulation

The complete microscopic (or micro) state of an isolated mechanical system of N
particles can be represented by a point X in its phase space I, X = (11,021,795 09y,
I'ns2y) € T, r; and p; being the position and velocity of the ith particle. The
Hamiltonian time evolution of this micro state is described by a flow T, ie., as ¢
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a b c d

Fig. 8.1. Snapshots of macroscopic density profiles of an isolated container of gas at four

different times.

varies between —oo and +0, T,X traces out the trajectory of a point X € T, with
T T, = Toysn and Tp the identity. Thus if X(to) is the micro state at time to then

the state at time ¢, is given by

X(t)) = T X (t0):

Consider now the states X(to) and T.X(to) = X(to +7), © > 0. If we reverse

(physically or mathematically) all velocities at time to + 7, We obtain a new mi-~
croscopic state, which we denote by RX(ty + 7). We now follow the evolution for
another interval  to get T:RT-X (to). The time reversible nature of the Hamiltonian
dynamics then tells us that the new micro state at time fo + 27 is just the state at
X(to) with all velocities reversed, i.e. T.RT: X (to) = RX(to).

Let us return now to our identification of the sequence in Fig. 8.1. The snapshots
clearly do not specify uniquely the microscopic state X of the system; rather they
represent macroscopic states, which we denote by M. To each macro state M there
corresponds a set of micro states making up a region 'y in the phase space .
Thus if we were to divide the box in Fig. 8.1 into say a million little cubes then
';,,the macro state M in each frame could simply specify the number N; of particles in
ube j, j=1,.., 106, In order to make the volume of T'y finite let us assume that
e are also given the total energy of this gas which, like the total particle number
“ YN, = N, does not change from frame to frame.
© Clearly this specification of the macroscopic state contains some arbitrariness, but
this need not concern us right now. What is important is that the snapshots shown
in the figure contain no information about the velocities of the particles so that
if X € 'y then also RX € I'y. (The technical reader might worry that we have
eft out the velocity field from the macro description in Fig. 8.1. However, since
8 the figure is meant to be solely illustrative I will continue to use only the particle
density). Now we see the problem with our definite assignment of a time order to
the snapshots in the figure: going from a macro state M, at time t;, to another
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S macro state M, at time t, = t; +1, T > 0, means that there is a micro state X e
;'f‘ for which T;X =Y € I'y,, but then also RY € I'y, and T:RY = RX €T H

the snapshots depicting M,, & = a,b,c,d, in Fig. 8.1 could as far as the law‘s%
mechanics (which for the moment we take to be the laws of nature) go, correspOnd
f‘ to time going in either direction.

i It is thus clear that our judgement of the time order in Fig. 8.1 was not based On
i the dynamical laws of evolution alone; they permit either order. Rather it was base
. i (’ on experience: one direction is common and easily arranged, the other is never seen.”:

o 5’§ But why should this be so? ‘

8.5 Boltzmann’s Answer

‘ The answer given by Boltzmann’s statistical theory starts by associating to each |
, macroscopic state M and thus to each phase point X (through the M(X) which it ',
defines) a “Boltzmann entropy”, defined (up to multiplicative and additive constants)

as

Sp(M) = log |I'm|
where |I")| is the phase space volume associated with the macro state M, ie. ||

N
is the integral of the Liouville volume element []dr; dvy; over I'yy. Boltzmann’s
iy !i, . . |=l . ) .

i stroke of genius was to see the connection between this microscopically defined

entropy Sz(M) and the thermodynamic entropy S.,, which is a macroscopically
defined, operationally measurable (up to additive constants), extensive function of
macroscopic systems in equilibrium. Thus when the gas in Fig. 8.1 is in equilibrium
at a given energy E and volume V,

Seq(E,V,N) = Nsgy(e,v) = Sp(Meg), e=E/N,v=V/N, (8.1)

where M.,(E,V,N) is the macro state observed when the system is in equilibrium
at a given E and V. By ~ we mean that for large N, when the system is really
macroscopic, the equality holds up to negligible terms when both sides of (8.1) are
divided by N and the additive constant, which is independent of e and v, is suitably
fixed. We require here that the number of cells used to define M., should grow
more slowly than N. For a lucid discussion of this point see Chapter V in Oliver
g Penrose’s book [2].
Boltzmann’s great insight at once gave a microscopic interpretation of the mys-
' terious thermodynamic entropy of Clausius as well as a natural generalization of
] entropy to nonequilibrium macro states M. Even more important, it gave a plau-
sible explanation of the origin of the second law of thermodynamics — the formal
iz (if restricted) expression of the time asymmetric evolution of macroscopic states
iii ; occurring in nature. It is certainly reasonable to expect that when a macroscopic
constraint is lifted in a system in equilibrium, as when a seal which was confining the
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Cuy gas to half the box in Fig. 8.1 is removed, the dynamical motion of the microscopic
nce phase point will “more likely” wander into newly opened regions of T for which
s of Iy is large than into those for which T'u is small. Thus if we monitor the time
ond evolution of the macro state M(¢) (short for M(X (£))) we expect it to change in such

a way that Sp(M(t)) will “typically” increase as time increases.
ton In p_articular the new macroscopic equilibrium state Mg which will be reached by

1sed the system as it evolves under the new, less constrained, Hamiltonian in the bigger
een. box can then be “gxpected” to be one for which [y has the largest phase space
volume, i.e. Sp(Meq) = Sg(M) for all M consistent with the remaining constraints.
Note that when we take the system in Fig. 8.1 to be macroscopic, say one mole
of gas in a one liter container, the ratio of I'm,, of the unconstrained system and
the one constrained to the bottom half of the container (roughly |Tar,l/ T p,!) is of
order 1019, We thus have “almost” a mechanical derivation of the second law.

each :
shit ;* The eventual attainment of a macroscopic equilibrium state of the gas in the
nts) £ larger box is expressed by the seroth law of thermodynamics: it certainly depends
’ on the microscopic dynamics having some reasonable ergodic behavior. The precise
, requirements are unknown but are probably very mild since we are interested in
" systems with very large N. The latter is required in any case for the whole business
Tl B&  of thermodynamic equilibrium to make sense (see discussion later) and should
Ann’s be generally sufficient for producing adequate ergodic behavior of real systems,
including deterministic chaos with its attendant sensitive dependence on initial
:.ﬁned conditions and small pertubations. We shall assume this to be the case and not
ically discuss it further. Very large N also takes care of the objection against Boltzmann
on of involving Poincare recurrence times.
yrium
(8.1) 8.6 Mathematical Elaboration
srium Boltzmann’s ideas are, as Ruelle [4] says, at the same time simple and rather subtle.
really They introduce notions of probability as indicated by the use of such words as
1) are “likely”, “expected”, etc, into the “laws of nature” which, certainly at that time, were
itably ‘quite alien to the scientific outlook. Physical laws were supposed to hold without
grow “any exceptions, not just almost always. Thus it is no wonder that many well known
Oliver bjections were raised against Boltzmann’s ideas by his contemporaries (Loschmidt,

ermelo, ...,"see S. Brush [6] for a historical account) and that, as Schrédinger
ote in 1954, objections have continued to be raised in the past decades. It appears

, mys-
ion of to me, in 1992, that although ideas of probability, unpredictability and chaos are
plau- 130W part of the general scientific and even popular world outlook, Boltzmann’s
‘ormal feminal ideas are still not universally accepted or understood. Let me try to explain
how I understand them. To do this I will formulate a bit more precisely the nature

‘,f.,‘,‘t:he probability distribution to which the notions of “likely”, “expected”, etc. used

;}he previous paragraph refer. (One can actually make these ideas very precise
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mathematically but that does not necessarily illuminate the physical reality - in ) Na
it can obscure it.) i thes
Let us first consider the gas in Fig. 8.1a to be in equilibrium in the bottom half of < tim

the box - excluded from the other half by a wall. Observations and analysis shg
that the exact values of certain types of phase functions f(x) such as the number
of particles contained in some subset of the volume, their kinetic energy in that
region, or the force exerted by the gas on some region of the wall, will fluctuate
in time about some stationary mean value. The single and multi-time statistics of
such observations (obtained by independent repetitions of a specified experiment or
situation) will be stationary in time — that is more or less what is meant by the system
being in equilibrium. Furthermore the relative magnitude of these fluctuations will

decrease as the size of the region increases. A quantitative theory of this behavior I
- both averages and fluctuations, including time statistics — can be obtained by the bet
use of the Gibbs microcanonical ensemble [2]. This ensemble assigns probabilities ens
to finding the micro state X in a phase space region A, consistent with the specified cor
constraints, proportional to the volume of A. for
These probabilities can be interpreted either subjectively or as a statement about are
empirical statistics. Whatever the interpretation it is important that such ensembles tec
are, by Liouville’s theorem, time invariant under the dynamics. For our purposes bec
we shall regard these probabilities as representing the fraction of time (over a tha
sufficiently long time period) which the system spends in A since, for the reasons ’
discussed earlier, we can assume that macroscopic systems are effectively ergodic, of
For such systems the microcanonical ensemble is the only stationary measure for inf
which the probability density is absolutely continuous with respect to the projection ma
of Liouville measure on the energy surface in ' [7]. (The central role played ou
by Liouville measure is to be noted but, aside from its intuitive “obviousness” vel
and experimental validation, it is only partially justified at present [even assuming to
ergodicity]. Perhaps the best justification is that in the classical limit of quantum syt
statistical mechanics equal Liouville volume corresponds to equal weight for each be
quantum state. There are also some interesting stability arguments for singling out
these Gibbs ensembles.)
The microcanonical ensemble thus provides a quantitative measure for the fraction
of time a typical equilibrium trajectory will spend in untypical regions of the phase Hi
space, €.g. in regions where Sp(M) differs significantly from its maximal value. The ni
fractions of time Sp will be decreasing or increasing are the same — in fact the be
behavior of M(t) is entirely symmetric around local minima of Sg(t), c.f. [8], p. 249. il
Stppose now that we compute the time evolution of a microscopic phase point, al
which is “typical” of such a microcanonical ensemble, when the constraining parti- be
tion is removed. Then it can be proven in some model systems, and is “believed” ca
to be true for systems with realistic potentials obeying Newtonian laws, that the di
time evolution of the momentum and energy density will be described to a “high h:
degree of accuracy” by the appropriate time asymmetric macroscopic equations, e.g. ve
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Navier-Stokes type equations of hydrodynamics [8,9]. A particular consequence of

these equations is a detailed prediction of how Sp(M(t)) increases monotomically in

time. This is of course more than is needed for just having S increase but I want

to discuss it a bit here becauses it fleshes out Boltzmann’s statistical ideas for more

general systems than the dilute gases which can be treated by Boltzmann’s kinetic
equation. |

The requirement that we start with an equilibrium state is actually too restrictive.

We can also start with a nonuniform macroscopic density profile, such as the state

M, given in Fig. 8.1, and consider micro states typical of local equilibrium type

ensembles consistent with M. We then find again evolution towards states like M,

for subsequent times.

In the above statement the words in quotes have the following meanings: “typical”

behavior is that which occurs with large probability with respect to the given initial

ensemble, ie. the set of points X in the ensemble for which the statement is true

' comprise a region of the energy surface whose volume fraction is very close to one,

% for N very large; “believed” means that the basic ingredients of a mathematical proof

: are understood but an actual derivation is too difficult for our current mathematical

technology; “high degree of accuracy” means t
become exact when the ratio of microscopic to macrosco

that is in the so called hydrodynamic scaling limit, c.f. (8,9].
The main ingredient in this analysis is first and foremost the very large number

of microscopic events contributing to the macroscopic evolution. Since the direct
" influence between the particles of the system takes place on a microscopic scale the
macroscopic events satisfy, for realistic interactions (and here is where the gap in
our mathematics is greatest), a “law of large numbers” which means that there is
very little dispersion about specified deterministic behavior, ie. that we are able
 to derive macroscopic laws not just for averages over ensembles but for individual

systems — with probability approaching one when the micro-macro scale separation

becomes large.

hat the hydrodynamic equations
pic scales goes to zero —

8.7 Typical versus Averaged Behavior

erages is not just a mathematical

- Having results for typical micro states rather than av
deriving observed macroscopic

%njcety but goes to the heart of the problem of
‘behavior — we do not have ensembles when we carry out observations like those

‘illustrated in Fig. 8.1. What we need and can expect to have is typical behavior. This
i"{ilso relates to the distinction (unfortunately frequently overlooked or misunderstood)
between irreversible and chaotic behavior of Hamiltonian systems. The latter, which
n be observed in systems consisting of only a few particles, will not have a uni-
lirectional time behavior in any particular realization. Thus if we had only a few
haf_d spheres in the box of Fig. 8.1, we would get plenty of chaotic dynamics and
Very good ergodic behavior (mixing, K-system, Bernoulli) but, we could not tell the
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Se({pm}) = log Tyl = Sp(M). k have increasin’

evolution of th

time order of any sequence of snapshots. To summarize: when a constraint is lifted
from a macroscopic system in equilibrium at some time ¢ then in the overwhelming 1
majority of cases, i.e. with probability approaching one with respect to the micro-
canonical ensemble, the micro state X (t) will be such that the subsequent evolution !
of M(t) will be governed by irreversible macroscopic laws. !

We may regard the above (I certainly do) as the mathematical elaboration (and \
at least partial proof) of Boltzmann’s original ideas that the observed behavior of
macroscopic systems can be understood by combining dynamics with phase-space
volume considerations.

This may be a good point to compare Boltzmann’s entropy - defined for a micro
state X of a macroscopic system — with the more usual entropy Sg of Gibbs, defined
for an ensemble density p(X) by

Se({p}) = — J p(X)llog p(X)]dX.

If we now take p(X) to be the generalized microanonical ensemble associated with
a macro state M,

Ty~ fXel

0, otherwise

pu(X) = {

(

then clearly,

2
3}
A

iy

It is a consequence of this equality that the two entropies agree with each other (and ]
with the macroscopic thermodynamic entropy) for systems in local equilibrium, up g ! the pertur.bed
to negligible terms in system size. ¥ in “chaotic”

It is important to note however that the time evolutions of Sg and S¢ are very : backward Om’j'
different. As is well known, Sg({p}) does not change in time when p evolves This behavt
according to the T evolution, while Sp(M) certainly does. In particular even if we ¥ of Y will tend
start a system in a state of local thermal equilibrium, such as M, in Fig. 8.1, S¢ the unperturb

would equal Sp only at that initial time. Subsequently Sp would typically increase ? of RY is tows
while Sg would not change with time. Sg would therefore not give any indication somewhat anf
that the system is evolving towards equilibrium. This is connected with the fact ‘ to get a sma.l
discussed earlier that the micro state of the system does not remain typical of the right to get. i
local equilibrium state as it evolves under Ti. Clearly the relevant entropy for macroscopic
understanding the time evolution of macro systems is Sp and not Sg. Unfortunately comparable 1
this point is often missed in many discussions and leads to unnecessary confusion. The di.ffere
The use of Sg in nonequilibrium situations is often a convenient technical tool but entropy-1ncr
is not related directly to the behavior of an individual macroscopic system. to unders.tan
the case 1n |
is stable this

8.8 Irreversibility and Macroscopic Stability predictions

Coming back now to the time ordering of the macro states in Fig. 8.1 we would our ability

say that the sequence going from left to right is typical for a phase point in I'y,. type of velo
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The sequence going from right to left on the other hand while possible is highly
untypical for a phase point in [y, The same is true if we compare any pair of the
macro states in that sequence: eft to right is typical, right to left atypical for the Iy
representing the initial state. Experience tells us that there is no “conspiracy” — if we
do something to a macroscopic system and then leave it isolated, its future behavior
is that of a “typical” phase point in the appropriate Ty This then determines our

time ordering of the snapshots.

Mechanics itself doesn’t of course rule out deliberately creating an initial micro

state, by velocity reversal or otherwise, for which Sp(t) would be decreasing as ¢
increases and thus make the sequence in Fig. 8.1 go from right to left — it just
seems effectively impossible to do so in practice. This is presumably related to the
following observations: the macroscopic behavior of a system with micro state Y in
the state M), coming from Ma which is typical with respect to I, 1.€. such that T.Y
is typical of i, Se(My) < Sg(My), is stable against perturbations as far as its future
is concerned but very unstable as far as its past (and thus of the future behavior of
RY) is concerned (10]. That is the macro state corresponding to T,Y is stable for
¢ > 0 but unstable for t < 0. (I am thinking here primarily of situations where the
equations describing the macroscopic evolution, €.g. the Navier-Stokes equations,
In situations, such as the weather, where the forward macroscopic
i.e. sensitive to small perturbations, (4], all evolutions will still
n the forward direction. For the backward
he unperturbed one has decreasing Sp while
hort time] increasing Sg. So even
s much more stable than the

"

(N
5=

are stable.
evolution is chaotic,
have increasing Boltzmann entropies i
evolution of the micro states however t
the perturbed ones have [at least after a very s
in “chaotic” regimes the forward evolution of M i

backward one.)
This behavior can be understood intuitively by noting that a random perturbation

of Y will tend to make the micro state more typical and hence will not interfere with
the unperturbed behavior of increasing Sp for all ¢t > 0 while the forward evolutions
of RY is towards smaller phase space volume which requires “perfect aiming”. It is
somewhat analogous to those pinball machine type puzzles where one is supposed
to get a small metal ball into a particular small region. You have to do things just
b right to get it in but almost anything you do gets it out into larger regions. For the
i macroscopic systems we are considering the disparity between relative sizes of the
comparable regions in the phase space is unimaginably larger.
. The difference between the stability of the macroscopic evolution in the forward,
ntropy-increasing, direction and its instability in the reverse direction is very relevant
o understanding the behavior of systems which are not completely isolated — as is
he case in practice with all physical systems. In the direction in which the motion
/is stable this lack of complete isolation interferes very little with our ability to make
-predictions about macroscopic behavior. It however almost completely hampers
our ability to actually observe “back motion” following the application of some
Q’?e of velocity reversal as in the case of spin echo experiments. After a very short




e e
et

. The same happens also in computer simulations where velocity reversal is easy t

B
{6
15
L
¥

e
g ‘
A

time in which Sy decreases the outside perturbations will make it increase again [4

accomplish but where roundoff error plays the role of outside perturbations.

8.9 Remaining Problems
8.9.1 Significant Residue

I now turn to the “significant residue” of Schrédinger. As for the “subtle misun
derstandings” I can only hope that they will be taken care of, The point is that”
when we consider a local equilibrium corresponding to a macroscopic state like M,, Al
and compute, via Newton’s equations, the antecedent macro state of a typical micro S
state X € I'y,, we also get a macro state like M, and not anything resembling
M,. This is of course obvious and inevitable: since the local equilibrium ensemble 488
corresponding to the macro state M,, at some time ¢, gives equal weight to micro
states X and RX it must make the same prediction for t =t, — 7 as for t = t+ 1.
(The situation would not be essentially changed if our macro state also included a
macroscopic velocity field.)

We are thus apparently back to something akin to our old problem: Why can
we use statistical arguments based on phase space volume (e.g. local equilibrium
type ensemble) considerations to make predictions about the future behavior of
macroscopic systems but not to make retrodictions? Now in the example of Fig.
8.1 if indeed the macro state Mj, came from M,, and we take its micro-state at that
earlier time to be typical of equilibrium with a constraining wall, i.e. of T M,, then
its micro state corresponding to M, is untypical of points in Ty, : by Liouville’s
theorem the set of all such phase points has at most volume {T'am,| which is much
smaller than Iy, |. Nevertheless its future but not its past behavior, as far as macro
states are concerned, will be similar to that of typical points taken from Ty, Itis
for this reason that we can use autonomous equations, like the diffusion equation, to
predict future behavior of real macroscopic systems without worrying about whether
their micro states are typical for their macro states. They will almost certainly not
be so after the system has been isolated for some time ~ although in the real world
the inevitable small outside perturbations might in fact push the system towards
typicality — certainly if we wait long enough, i.e. we are in an equilibrium macro
state.

The above analysis thus explains why, if shown only the two snapshots M, and
M, and told that the system was isolated for some time interval which included the
time between the two observations, our ordering would be M, before M, and not
vice versa. This would in fact be based on there being an initial state like M,, with
even lower entropy than M,, for which the micro state was typical. From such an
initial state we get a monotone behavior of Sp(t) with the time ordering M,, M, and
M_.. If on the other hand we knew that the system in Fig, 8.1 had been “completely”
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'”Jisolated for a very long time, compared to the hydrodynamic relaxation time of
" the system before the snapshots in Fig. 8.1 were taken then (in this very very very
" unlikely case) we would have no basis for assigning an order to the sequence since,
‘as already mentioned, fluctuations from equilibrium are typically symmetric about
" times in which there is a local minimum of Sp. In the absence of any knowledge
' about the history of the system before and after the sequence we use our experience
- to deduce that the low entropy state M, was the initial prepared state [11].
 The origin of low entropy initial states poses no problem in “laboratory situations”
. such as the one depicted in Fig. 8.1. In such cases systems are prepared in states
L of low Boltzmann entropy by “experimentalists” who are themselves in low entropy
. states. Like other living beings they are born in such states and maintained there by
. eating low entropy foods which in turn are produced by plants using low entropy
" radiation coming from the sun, etc., etc. But what about events in which there is no
human participation, e.g. if instead of Fig. 8.1 we are given snapshots of a meteor
and the moon before and after their colision? Surely the time direction is just as
obvious as in Fig. 8.1.

To answer this question along the Boltzmann chain of reasoning leads more or
less inevitably (depending on considerations outside our domain of discourse) to a
consistent picture with an initial “state of the universe” having a very small value of
its Boltzmann entropy, i.c. an initial macro state M, for which [Ty, | is a very small
fraction of the “total available” phase space volume. Roger Penrose, in his excellent
chapter on the subject of time asymmetry [3], takes that inital state, the macro state
of the universe just after the “big bang”, to be one in which the energy density is
uniform. He then estimates that [T, |/ITam, | ~ 10719 where My is in the state of
the “final” crunch, with |T'y,| ~ total available volume. This is a sufficiently small
number (in fact much smaller than necessary) to produce all we observe. The initial
“micro state of the universe” can then be taken to be typical of T'y,.

In R. Penrose’s analysis the low value of Sp(M,), for a universe with a uniform
density, compared to Sp(My) is due to the vast amount of the phase space cor-
responding to macro states with black holes, in which the gravitational energy is
very negative. I do not claim to understand the technical aspects of this estimate,
which involves the Bekenstein-Hawking formula for the entropy of a black hole; it
certainly goes beyond the realm of classical mechanics being considered here. The
general idea, however, that the gravitational energy, which scales like N2 for a star
or galaxy, can overwhelm any non-gravitational terms, which scale like N, seems
intuitively clear.

8.10 The Cosmological Initial State Problem

I hope that I have convinced you that, as Schrédinger says, “Boltzmann’s theory
. really grants an understanding ...”. It certainly gives a plausible and consistent
picture of the evolution of the unvierse following some initial low entropy state M.
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The question of how M, came about is of course beyond my task (or ability) to
answer. That would be, as Hawking puts it, “knowing the mind of God” [12]. Still,
as R. Penrose has pointed out, it would be nice to have a theory which would force,
or at least make plausible, an initial M, so special that its phase space volume T,
is infinitesimally small compared to the proverbial needle in the haystack, see Fig,
7.19 in [3]. He and others have searched, and continue to do so, for such a theory,
While these theories properly belong to the, for me, esoteric domain of quantum
cosomolgy there is, from a purely statistical mechanical or Boltzmannian point of
view, a naturalness to a spatially homogeneous initial state M,. Such an M, would
indeed be an equilibrium state in the absence of gravity. It is therefore tempting to
speculate that “creation” or the big bang was “just” the turning on of gravity, but I
am told by the more knowledgeable that this is quite unreasonable. The initial state
problem is thus very much open. It is by far the oldest open problem.

Within the context of special (or singular) origin theories of which the big bang
is a special example, widely accepted as the truth, there is nothing, not even time,
before the intial state. There is an alternate suggestion, dating back to much before
the advent of black holes or the big bang theory, in which one doesn’t have to
assume a special singular creation. Boltzmann speculated that a low entropy “initial
state” may have arisen naturally as a fluctuation from an “equilibrium universe.”
This is in some ways a very appealing minimal hypothesis requiring no beginning
or end or special creation. All you have to do is wait “long enough” and you will
get any state you want, assuming that a microcanonical ensemble and some mild
form of ergodicity exist for the universe as a whole. This requires, at the minimum,
some short range regularization of gravity. We shall not worry however about such
“technical details” since, as we shall argue next, such a hypothesis is very implausible
for other entirely conceptual reasons.

While the obvious objection to this hypothesis, that such a fluctuation is enor-
mously unlikely, can be countered by the argument that if indeed the history of
the microstate of the universe is typical of trajectories in I' then, without waiting
for some huge flucuation, we humans would not be here to discuss this problem,
there remains a more serious objection. As pointed out by Schrddinger and others
and particularly by Feynman [1], the actual “size” of the observed ordered universe
is too large by orders and orders of magnitude for what is needed. A fluctuation
producing a “universe” the size of our galaxy would seem to be sufficient for us to
be around. In fact using purely phase space volume arguments the “most likely”
fluctuation scenario of how I come to be here to discuss this problem is one where
only “I” or even only my consciousness really exists, i.e. one in which the smallest
region possible is out of equilibrium — and this happened just this instant. While
irrefutable as an academic debating position this is, of course, even more in conflict
with our observed macro state (e.g. our memories). Merely accepting that what we
observe and deduce logically from our marvelous scientific instruments about the
world is really there, the idea of a recent fluctuation seems “ridiculous” and therefore
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Imakes the whole fluctuation from equilibrium scenaria seem highly implausible. In

B2 fact Feynman after discussing the problem in some detail concludes (in the tape of
‘?' his lecture) that “...it is necessary to add to the physical laws the hypothesis that in
% the past the universe was more ordered, in the technical sense (smaller Sg), than it

is today — to make sense, and to make an understanding of the irreversibility” [1].

I should say however that, even after rejecting the “fluctuation from equilibrium”
scenario, the evidence or argument present for any particular, minimal Sg initial
state of the universe, is not entirely without difficulty. Let me present the problem
in the form of a question: given that [Ty, | is so extraordinarily small compared to
the available || ~ |y, | and hence that every point in I'ym, is atypical of T, how
can we rule out an initial micro state which is itself atypical of I' M, — whatever the
original M, was? This could correspond to a scenario in which Sp first decreased,
reaching a minimum value at some long ago time. Since we do not assume this
scenario that the trajectory of the universe is typical of the whole " — in fact we
permit a singular initial condition as in big bang theories — some of the objections
to a long ago fluctuation from equilibrium scenario are not so telling. Also in this
type of scenario we need not assume any symmetry about the minimum entropy
state.

The alternatives come down to this: if we accept that the Boltzmann entropy was
minimal for the initial state M,, then the initial micro state can be assumed to be
typical of I'y,, while in a universe in which Sy first decreased and only then increased,
the initial micro state would have to be atypical with respect to M,. It seems to
me that there is a strong rationale for not accepting such an additional improbable
beginning without being forced to it by some observational considerations. This
seems to be the point which Schrédinger tried to illustrate with his prisoner story
[13]. The concluding moral of that story in which the poor prisoner, who has (very
probably) missed his chance for freedom by not being willing to trust probabilities
in his favor after realizing that the initial state he was dealing with had to be an
unlikely one, is “Never be afraid of dangers that have gone by! It is those ahead
which matter.”

8.11 Quantum Mechanics

The analysis given above in terms of classical mechanics can be rephrased, formally
at least, in terms of quantum mechanics. We make the following correspondences:

(i) micro state X < wave function wry,...,rN)
(i) time evolution T,X <> unitary Schrddinger evolution U,y
(iii) velocity reversal RX <> complex conjugation
(iv) phase space volume of macro state ITm| <> dimension of projector on macro
state M.
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This correspondence clearly preserves the time symmetry of classical mecha i
It does not however take into account the non-unitary or “wave function collaps
(measurement) part of quantum mechanics, which on the face of it appears tinj
asymmetric. In fact this theory “is concerned exclusively with the predictioi]ﬁ%
probabilities of specific outcomes of future measurements on the basis of the regyj;
of earlier observations. Indeed the reduction of the wave packet has as its operation;
contents nothing but this probablistic connection between successive observationg,
The above quote is taken from an old article by Aharonov, Bergmann and Lebowity
(ABL) [14] which to me still seems reasonable now. In fact I will now quote the
whole abstract of that article: rff

“We examine the assertion that the “reduction of the wave packet,” implicit in
the quantum theory of measurement introduces into the foundations of quantum
physics a time-asymmetric element, which in turn leads to irreversibility, We argue
that this time asymmetry is actually related to the manner in which statistica]
ensembles are constructed, If we construct an ensemble time symmetrically by usmg‘
both initial and final states of the system to delimit the sample, then the resulting
probability distribution turns out to be time-symmetric as well. The conventional
expressions for prediction as well as those for “retrodiction” may be recovered
from the time-symmetric expressions formally by separating the final (or the initial)
selection procedure from the measurements under consideration by sequences of
“coherence destroying” manipulations. We can proceed from this situation, which
resembles prediction, to true prediction (which does not involve any postselection)
by adding to the time-symmetric theory a postulate which asserts that ensembles
with unambiguous probability distributions may be constructed on the basis of
preselection only. If, as we believe, the validity of this postulate and the falsity of its
time reverse result from the macroscopic irreversibility of our universe as a whole,
then the basic laws of quantum physics, including those refering to measurements,
are as completely time symmetric as the laws of classical physics. As a by-product of
our analysis, we also find that during the time interval between two noncommuting
observations, we may assign to a system the quantum state corresponding to the
observation that follows with as much justification as we assign, ordinarily, the state
corresponding to the preceding measurement.”

I interpret the ABL analysis as showing that one can conceptually and usefully
separate the measurement formalism of conventional quantum theory into two parts,
a time symmetric part and a second-law type asymmetric part — which can be traced
back, using Boltzmann type reasoning, to the initial low entropy state of the universe.
(Of course it is not clear how to discuss meaningfully the concept of measurment in
the context of the evolution of the universe as a whole.)

I believe that my colleagues agree with this interpretation of our work, Aharonov
in particular has emphasized and developed further the idea described in the last
sentence of the Abstract. He assigns two wave functions to a system ~ one coming
from the past and one from the future measurement. It is not clear to me whether
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w111 lead to new insights into the nature of time. Aharonov does think so and
here are others too who feel that there are new fundamental discoveries to be made
bout the nature of time [11]. While this is certainly something interesting to think

out, it definitely goes beyond my introductory premises so I will not pursue this

i
“irther here.

8.12 Concluding Remarks

‘The reader who has gotten to this point will have noticed that my discussion has
mfocused almost exclusively on what is usually referred to as the thermodynamic arrow
of time and on its connection with the cosmological arrow. I did not discuss the
asymmetry between advanced and retarded electromagnetic potentials or “causality”
[11]. It is my general feeling that these and other arrows, like the one in the wave
‘packet reduction discussed in the last section, are all manifestations of Boltzmann’s
' general principle, and of the low entropy initial state of the universe. For this reason

increase of entropy if and when the universe stops expanding and starts contracting,

Let me close by noting the existence of many well-known and some obscure
connections between “entropy” and degree of order or organization in various
physical and abstract systems far removed from the simple gas in Fig. 8.1. It
is my feeling that, at least when dealing with physical objects containing many
microscopic constituents, e.g. macroscopic or mesoscopic systems, the distinction
between Boltzmannian and Gibbsian entropies, made earlier for simple systems,
is always important and needs to be explored. I am therefore suggesting that
there is interesting work to be done on obtaining more refined definitions of such
concepts for complex systems like a Rembrandt painting, a beer can, or a human
being. It is clear that the difference in Sp between a Rembrandt and a similar size
canvas covered with the same amount and type of paint by some child is orders of
magnitude smaller than the entropy differences we have been talking about earlier.
The same is true, I am afraid, for the entropy difference, if at all definable, between
a living and a dead person. We therefore need more refined, logically consistent and
physically meaningful definitions or organization for a given complex system than
f those currently available in information or complexity theory.

Note added in proof:- For a more extensive discussion of some of the points
discussed here see, J. L. Lebowitz, Physica A194, 1 (1993).
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