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ABSTRAGCT. The possibility of deriving a compressible Navier-Stokes behavior by a scaling
limit starting from the Boltzmann equation is discussed. The scale invariance turns out
to be the main tool for the matter. We consider a Boltzmann flow in a channel and
introduce a suitable scaling limit for this system. We find the limit equations under this
scaling describing the hydrodynamical dissipative behavior of the compressible gas in the
channel. We prove an existence and uniqueness theorem for these equations. Finally we
study a stationary case for the previous system under the effect of an external force.

1. INTRODUCTION.

The problem of deriving the Euler (E) and Navier-Stokes (NS) hydrodynamical
equations from the Hamiltonian equations of motion of atoms is one of the main open
problems of non-equilibrium Statistical Mechanics. The Euler behavior is rather well
understood from the conceptual point and with the addition of suitable randomness can
actually be proven in a rigorous way ), (see also ) for a review on the subject). The
idea is that the space-time scale separation between the microscopic (particle) and the
macroscopic (hydrodynamical) descriptions is responsible of the Euler behavior in the
sense that the locally conserved microscopic fields, averaged over macroscopic domains
(of size e~1) for times of order e~ converge, in the limit ¢ — 0, to hydrodynamical
fields ¢ = (p,u,T), p being the density, u the velocity field and T the local temperature,
satisfying the Fuler equations

8yp = E() (11)

In probabilistic terms (1.1) can be interpreted as a law of large numbers.

The situation is quite different for the Navier-Stokes equation. This equation, which
describes the behavior of a real fluid in the presence of the viscosity, does not have an
immediate interpretation in terms of scale separation. This is clear from the fact that

the NS equation does not have a space-time scale invariance property like the Euler
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equation. If we restrict our attention to the Euler time scale *)*) the viscous terms in

the NS equation can be understood as a first order correction to the equation (1.1):

B = B(%) + eF () (1.2)

It is not clear that such first order corrections are uniquely determined, c.f. discussion
for a hard rod system in Ref.%). In the context of the Boltzmann equation, they can be
computed using the Hilbert method or the Chapmann-Enskog procedure, producing
very different equations (linear and nonlinear NS equation respectively). .

The point is that different F's in (1.2) cannot be distinguished on the Euler time
scale, because the corresponding solutions tend to coincide to lowest order in the limit
¢ — 0. On the other hand the viscosity produces significant effects on very long times,
i.e. times of order ¢~! with respect the Euler time scale (hence of order ¢~% with respect
to the microscopic scale), so that the first order corrections F(¢/) become important
for these times and give rise to distinctive behavior. Not surprisingly there are many
difficulties to finding corrections to (1.1) which would be valid for such long times:
if the Euler solution is unstable, a perturbation of order ¢ could produce explosive
behaviors at such long times. Even assuming enough stability properties to control the
explosion of the corrections, they could however be sensible to the initial conditions.

Our purpose is to investigate situations in which it is really possible to distingush
between (1.1) and (1.2) in the limit ¢ — 0. There are eséentially two possibilities: either
to look at boundary effects in a stationary situation, and in the last Section of this
paper we shall discuss this possibility in a very simple example; or to analyze the long
time behavior of microscopic systems. Because of the absence of scaling invariance
in the compressible Navier-Stokes equation one cannot hope to get such long time
behavior as a scaling limit in general, but in the situations discussed in Sections 2 and
3 it is possible to find a limit regime, which is on the other hand the same as predicted
by the NS equation with viscosity of order ¢ on times of order e*.

We shall consider as our starting point a Boltzmann fluid, i.e. one described by
the Boltzmann equation, instead of a particle system. This is a real simplification of
the problem because the transition from the microscopic scale to the kinetic scale is a
non trivial step in the above program. Although not fully understood, we take it as
accomplished, because the Boltzmann fluid retains the difficulties pointed out above,
related to the instabilities of the macroscopic equations. Moreover, since the Euler limit
of the Boltzmann equation is controlled, one can hope that in this context one has to
face only the technical difficulties specific of the Navier-Stokes problem. This turns out
to be true at least in the case of the Incompressible Navier-Stokes (INS) equation, that

can be obtained from the Boltzmann equation via a suitable scaling limit. In fact the

2



INS equation is invariant under a space-time scaling of parabolic type, together with
the scaling of the mean velocity.

The situation is much more complicated in the compressible case and the main sub-
ject of this work is the presentation of some special systems described by equations
which have scaling invariance properties, but at the same time exhibit compressible
behaviors. We conclude this section with a short overview of the results on the hydro-
dynamical limits for the Boltzmann equation.

The Knundsen number Kn is the ratio between the mean free path and the char-
acteristic macroscopic length, hence it is proportional to the previously introduced
parameter e. It is well known that the limit behavior for Kn — 0, under the hyper-
bolic scaling ( z = ¢~'z/,t = ¢~ ) corresponds to the compressible Euler regime; this
result goes back to Hilbert. From the rigorous point of view, Caflisch 6) proved the
following:

Let p,u,T be a smooth solution of the Euler equations for ¢ € [0,%o]; then there exists
a solution f¢(z,v,1) of the rescaled Boltzmann equation such that, for ¢ < ¢9, we have

in some suitable norm

”f€ - M(p,u,T)H <ce
for € small enough, with M(p,u,T) the Maxwellian with parameters p,u, T

To get sensible viscous effects one has to take the Reynolds number Re finite while
" taking the limit Kn — 0. Since the Mach number Ma = U/c (where U is a typical
velocity and ¢ is the sound velocity) is related to Kn and Re by the relation Ma ~
Re x Kn we have to consider Ma ~ e. This corresponds to the incompressible regime.
To have a non trivial behavior, of course, the time has to be very long and therefore
one has to consider the parabolic space-time scaling ((z = ¢~ 'z, = e~2¢/).

De Masi et al. V) proved that, if u(z, ) is a smooth enough solution of the incompressible
Navier-Stokes equation on a torus for ¢ € [0,%5], one can construct a solution f€ to the
rescaled (parabolically) Boltzmann equation, with special initial conditions, such that,

for t € [0,%], in a suitable norm
1 = M{p, e, T < e

where p and T are suitably chosen positive constants. Moreover they proved that,
on times that are long on the Euler scale, but short on the Navier-Stokes scale the
solution of the rescaled Boltzmann equation behaves in the limit as the solution of the
incompressible Euler equation.

Partial results in this direction have been obtained in situations in which much less
regularity is available (see Refs. %), More recently the restrictions on the initial

conditions for the Boltzmann equation assumed in Ref.”) have been removed in Refs
10),11)



2. THE COMPRESSIBLE REGIME.

As discussed above, in order to get limiting behaviors on the Navier-Stokes scale
we have to look for scale invariant situations, and this is in general incompatible with
finite Mach numbers. In the following we shall discuss an example in which the Mach
number and the Reynolds number can both stay finite thanks to special symmetry
properties.

We consider the motion of the fluid in a 2-dimensional infinitely long periodic chan-
nel. In this case there is a stationary Euler behavior, so that we can hope to get long
time behavior without facing the explosion of the Euler modes. Let z € R be the
direction of the channel and let us choose periodic boundary conditions on the other
direction, y € Sy, 51 being the unit circle. We assume that the density p,, tempera-
ture Tp and velocity field U, depending only on y with U, parallel to the z direction
(Us(y) = (uo(y),0)) is a stationary solution to the compressible Euler equations for an

ideal fluid

Op+V-(pU)=0
p(8U +U-VU)+V(pT) =0
p(0:T +U -VT)+pTV-U=0. (2.1)

Taking now po, Ty, Uy as initial condition for the Navier-Stokes equation the behavior
is no more stationary. The effect of the viscosity, together with the non-homogeneity
of the initial velocity,rgives rise to a gradient of temperature and, as a consequence, to
a flow in the y direction. Our goal is to recover this behavior in a suitable scaling limit
starting from the Boltzmann equation.

! in microscopic units. The

The width d of the channel is assumed of order ¢~
Reynolds number Re, roughly speaking, is the ratio between the dissipative term and
the transport term in the Navier-Stokes equation; since in our case the space depen-
dence is only in the y direction, the magnitude of the transport term is proportional
to the y-velocity , Uy. Hence the Reynolds number for the problem is: Re ~ |Uy|d/v.
Therefore, to keep it finite we are forced to consider U, of order . On the other hand
the Mach number Ma ~ U,/c is finite, and the flow is compressible.

Since on the Euler scale the solution is stationary, we look at long times and consider
the rescaled (parabolically) Boltzmann equation which, due to the symmetry in the z

direction, can be written:

Ocf + €My - 8, f* = 72 Q(f°, f4). (2.2)
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with the initial condition

F*(y,v,0) = M(po, T, Uo) (2.3)
The solution is constructed as a series in ¢ via a Hilbert-like expansion similar to the
one introduced in Ref.”). Of course we do not expect that it converges, but only that
it is asymptotic to the solution. The argument below is formal: we shall determine
consistently all the terms in the expansion, but to prove the asymptotiticity we need
to control the remainder term after a suitable truncation of the series, and this step is
not yet complete.
Since we expect that the solution to the lowest order coincides with the local equilib-
rium, i.e. with the local Maxwellian M, = M(p,T,U,) with parameters p(y,t), T(y, 1),
Ue = (u(y,t), ew(y,t)) evolving according to the previous considerations, we assume

the following form for f¢:
f=M+) fa (2.4)
n=1

Expanding M, in a Taylor series in ¢, My = M¢|c=0 = M(p(y,1),T(v,1), (u(y,1),0)) we
have

M,=My+ ) ¢n (2.5)

n=1
We also set gn = fn + ¢n. Since Q(M,M) = 0 for any Maxwellian M, substituting
(2.4) and (2.5) in the Boltzmann equation (2.2) and equating terms of the same order

in € we obtain the following set of equations

¢ : vy 8y My = 2Q(Mo, f1) : (2.6)
& :0Mo +v,8,91 = 2Q(Mo, f2) + Q(2¢1 + f1, f1) (2.7)
and for k > 1
¢ :Bigx + vyOygi+1 = 2Q(Mo, fe42) + Z Q(gn, fm)
n+mz;cn+221,n¢m
+ Y Q(fn + 260, Fn)b2n k42 (2.8)
n>2

We need some notation: let H be the Hilbert space of measurable functions of the

velocity endowed with the scalar product
(£9) = [(Mo(0)7 Fw(0)do
Let f = {fa}a:O,...,S = {Mo('v),ﬁzMo(v),vyMo(v),(1'32 ot 2T)Mo(‘v)} Wlth = (‘l;z,‘l)y)

= (v, — u,vy) be the set of collision invariants and P the projection operator Ph =
E:;:O(Ea,h) €o. The operator @) has the following property:

(éa,Q(h,9)) =0; PQ(h,g)=0 (2.9)

8




for any h and g.
Hence (2.6) implies:

P(v,0, M) = 0 (2.10)
(1 = P)(vy 8y My) = 2Q(Mo, f1) (2.11)

(2.10) implies
8y(pT) =0 (2.12)

Therefore the compatibility condition at the order ¢~! leads to the constancy of the
pressure to the lowest order.

The first correction to the Maxwellian, f; is determined by (2.11) as follows. Put
Lf =2Q(Moy, f); the restriction of £ to (1 — P)H (that we still denote by £) has a well
defined inverse, so that f, is determined up to terms in the orthogonal to (1 — P)H

and can be written

3
fr=L7H1 = P)(5,8,M0) + ¥ f{¥%a (2.13)

a=0

By the propertles of L (see '?)), there are two positive functions 4 and w depending

—_—

only on T and %? such that the following expression holds for f;:

" —4T

fi = — () Movy 50,4 — w(¥ )'vy 2T2 —M,5,T

-2T

4o W5, 4 wW5, 4+ 70 g, (2.14)

The functions (f{*) = (P, u @) 7MY are still undetermined. We assume that
w(!) = 0 because it can always be absorbed in the Maxwellian M, changing the defini-

tion of w.
Next step is to substitute f; from (2.14) and ¢; from (2.5) in (2.7) to determine f,.
The compatibility condition

P(atMo + vyaygl) =0 (2.15)
gives rise to the following equations:

Oip+ 0y(p w) =0 (2.16)
O:(p u) + 9y(p v w) — 8y (vdyu) =0 (2.17)

8.(p(5 w* +T) + 8y p w(2T + —;-'u, )—vu dyu] — (K 8,T) =0 (2.18)




where the transport coefficients v = [ dvy(9%)Movy¥; and K = fdvvyw(z')z)Mgf’-;%z

are functions of the temperature only. Moreover
8,(Tp™M 4+ pTWy =0 (2.19)

that ensures the constancy of the pressure up to the first order. The condition (2.19)
is known as the Boussinesq relation.
Notice that u(!) and one of the quantities T}) and p(!) are still free and can be used
to satisfy the compatibility condition to the next order. Once eqs. (2.16)-(2.19) are
satisfied, f; can be determined as f, before, up to terms in the orthogonal to (1 — P)H
by means of (2.7). The procedure can be iterated to determine all the terms fi,
for k > 1 using (2.8), because at each step there are 4 new undetermined functions
available to satisfy the compatibility conditions. These are linear conditions that give
rise to linear partial differential equations whose solvability is easy to prove. Hence the
only requirement necessary for the construction of the expansion is the solvability of
the system (2.16)—(2.18) under the condition (2.12).

Since the expansion is probably not convergent in general, we try to truncate the
series and to control the remainder. The strategy is the same as in Refs®)") : we

consider a special truncation of the series for f¢:
8
fo=M+) fi+ e fr (2.20)
k=1

M, and the functions fi for £ = 1,...,8 are determined by the equations (2.6), (2.7)
and (2.8) for k = 1,...,6. fr, which is defined by (2.20), then has to satisfy the

following equation in order that f, be a solution of the Boltzmann equation:
Ot fr + e_l'vyayfR =

.
e722Q(fr, Mo) + €712Q(f1, fr) + €Q(fr, fR) +2Q(D_ fr, fr) + €'A o)
k=2 2.21

where A depends on the fi,k = 2,...,8 and is given by

A =— 0i(g7 + egs)vy 0y (fs + Z ¢")+‘
=9

Qa3 80+ 3¢ Y Qata)  (222)

k>9 n,m>1
n+m=k+2

Notice that the factor €® in front of A in (2.21) is crucial to the control of fg and this is
the reason for writing (2.20) with the factor ¢* in front of fg instead of ¢®. Of course the
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exponents we have chosen are somewhat arbitrary, and this is just a convenient choice.
Nevertheless, we are not yet able to prove that fgr is finite in some norm, because we
have not enough control on the hydrodynamical part of fr. The difficulty is present
also at the hydrodynamical level (assuming compressible Navier-Stokes equation as a
starting point, see below), and it seems that in this case one should be able to control
sound waves propagating with larger and larger velocity when ¢ goes to 0, but with a
net effect on the system that should be negligible in the limit.

3. PROPERTIES OF THE MACROSCOPIC EQUATIONS.

Equations (2.12), (2.16)—(2.18) describe the behavior of the Boltzmann fluid in the
channel on the hydrodynamical scale in the limit ¢ — 0. They are scale invariant under

the transformation

y =ely, t=e%, w'(y,t) = ew(y,t),
ul(ylatl) = u(yat)a pl(ylatl) = P('y,t), Tl(yl)tl) = T(yat) (31)

Note that the component u of the velocity in the z direction stays finite so that we
have a true compressible flow in the limit ¢ — 0. The system (2.12), (2.16)—(2.18) can
also be obtained by starting with the full compressible Navier-stokes equation for the

flow in the channel:

ip + 0y (pw) = 0

p(Osu + wiyu) — 0y (vdyu) =0

p(Ow + woyw) + 8y P — 8,(vdyw) = 0

p(8:T + wd, T + TOyw) — v](8yw)? + (8yu)’] — 8,(K8,T) =0 (3.2)

and rescaling the variables according to (3.1). The formal limit as ¢ goes to zero of
(3.2) is just the system we are discussing. In fact, an equivalent form of the scaling
(3.1) is to keep the variable y fixed, scale v in ev and look at times e¢~!¢. Therefore
it can also be interpreted as the long time behavior in the vanishing viscosity limit of
a compressible Navier-Stokes fluid in a channel. The proof of convergence is at the
moment absent also for this problem, and we believe that the bad control of the high
speed sound waves is the main difficulty also in this case.

In this respect it is worth mentioning that Klainerman and Majda '*) considered the
incompressible limit of the Navier-Stokes equation. The fast sound modes and their
interference with temperature variations prevented in that case a proof of a result that

is available for the Boltzmann equation. In fact, they assumed that the temperature
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variations are small and proved the analogous of the results in Refs!?)!!) only in that
case. Hence the problem of the convergence of the equations (3.2) to the equations
(2.12), (2.16)—(2.18) is perhaps more difficult than the convergence of the Boltzmann

equation to it.

Hydrodynamic Equations

Let us go back to the properties of the equations (2.12), (2.16)-(2.18). It is convenient

to rewrite them as follows:

8up + By (pw) = 0 (3.3,)
p(Osu + wdyu) — 3y( v0y u) =0 (3.3s)
p(O.T + w0, T + TOyw) — v(0yu)? — 8y(K 8, T) =0 (3.3:)
0y(pT) =0 (3.34)

The system (3.3) is a system of four equations in the unknowns p,u,w,T. It is not in
the form of an initial value problem, because it does not contain the time derivative of
w. In fact the initial value of w cannot be prescribed arbitrarily, because it turns out
to depend on the initial value of Jyu. -

For sake of simplicity, we assume the v and K are constant and that T'(y,0) = 1,
p(y,0) = 1. We also assume that u(y,0) = uo(y) is in the Sobolev space H; on the
unit circle. If ug is constant the system (3.3) has the trivial solution u(y,t) = ug,
T(y,t) =1, p(y,t) =1 and w(y,t) = 0 for any ¢ > 0. In general we can prove '*) the

following theorem

Theorem 3.1.

1 ) For any given uo € H1[0,1] there is a t¢ > 0 s.t. for t < tq there is a classical
solution to (3.3) with the given initial data, and it is unique.

2 ) There exists § > 0 s.t., if ug € H; and |uqg|; < & then there exists an unique
classical solution of the system (3.3) globally in time.

Notice that this means that w is determined also at time ¢ = 0.

We just sketch the proof. It consists of two steps. First we transform the problem
into an initial value problem using Lagrangian coordinates, that allows us to eliminate
the variable w in the system (3.3). Then we prove existence and uniqueness theorem
for the new system. We denote by Y the lagrangian variable corresponding to y, via
the transformation

y=2v,t) (3.4)
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defined by the ordinary differential equation

%@ —w(8,t); B(Y,0)=Y

With the notation

uw(Y,t) = uw(®(Y,1),t); T(Y,t)= T(2(Y,t),t); P=pT

the system (3.3) becomes

du = vPOy (T~ 0yu) (3.5)
oT = £Pay(ayT) + ZT-lp(ayu) + %P (3.6)
—P = VP/ dY'(T(Y") Y8y u)? (3.7)

with initial conditions u(Y,0) = ue(Y’), T(Y,0) =1, P(Y,0) = 1.
Note that P depends only on time because of (3.3)q.

It is convenient to introduce the variable S defined by

§=-L
- .

which is rela,ted to the entropy s by the relation s = 2log §. In terms of it, the equations
(3.5)—(3.7) become :

. B = vody (S Byu) (3.8)
8.5 = Z2oy((570vS) + 5 (Bru)’ (3.9)
where o = [/ d¥'S(Y). The initial conditions become
u(Y,0) =uo(Y); S(Y¥,0) = VTo(Y) =1
After solving the system (3.8), (3.9) one can find p and w from the relations
pOy® =py=1; 8p+p*Oyw =0

The non-linear system (3.8), (3.9) is of the parabolic type. Its solution can be con-
structed by getting a differential inequality for the function

1
H(®) = (O + ()
where n = S — 1. We prove the following Lemma
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Lemma 3.2. Let B(t) = |u(.,t)|3 + [7(.,t)|3 Then there are b and ¢ such that

T
H(T) +b /0 " drd(r) < H(0)expe /0 drA(r) (3.10)

The inequality (3.10) implies that if H(0) is small then H(T) and fOT drA(r) are
finite for any T. The proof of the part 2) of the theorem is then achieved by an
iterative procedure based on the a priori estimate (3.10). The local result is obtained

by a similar, but simpler procedure.

4. A STATIONARY CASE.

Stationary flow in a channel provides a simple interesting example of the relevance
of the Navier-Stokes correction, related to the presence of boundaries. The solution of
the Euler equations in this situation is trivial while the NS has a rich structure. The
physical system is a fluid in a channel subjected to an external specific force g constant
(in space and time) and directed along the z direction (channel direction). A stationary
state will be reached when the heat produced by the friction due to the relative motion
of the particles in the z direction under the action of the force is balanced By the energy
lost through the thermal walls. The hydrodynamical equations for this system, in the

compressibie case, with the state equation P = pT, are

By (v(T)Byu) + pg = 0 (4.1)
9y(K(T)0,T) + v(T)(8yu)* =0 (4.2)
By(pT) =0 (4.3)

The third equation follows from the assumption that the y component of the velocity

field is zero i.e. that the flow is laminar. The boundary conditions are
uw(0)=u(l)=0; T0)=TQ1)=Tp (4.4)

The solution of this system does exist for » and K independent on T' and is stable for
small g. It is given, to the first order in g, by a parabolic profile for u(y) and a quartic
profile for T'(y) (see Fig.1).
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Molecular Dynamics simulations !*) on a Hamiltonian system of particles interacting
via Lennard-Jones potential in a channel with boundary conditions given below show
a macroscopic behavior similar to the one in Fig. 1.

We want to get such a behavior from the Boltzmann equation. The system is
bounded by thermal walls (in the y direction), i.e. the particle behavier at the walls
is the following: when a particle hits the edges of the.channel (y =0 or y = 1) it is
reflected diffusely with a velocity distributed according to a maxwellian with zero mean
velocity and prescribed temperature T. In the language of classical kinetic theory this
means that the accomodation coefficient equalsone. This.corresponds to the Boltzmann
equation with the external force ¢ and thermal conditions on the incoming flow at the

boundary:
f(0,vy > 0) = M(po, To)x(vy > 0); f(1,v; <0)= M(p1,To)x(vs <0) (4.5)

X(vy S 0) being the indicator function of the set {v, < 0}. The macroscopic behavior
is recovered in the limit Kn = ¢ going to zero. The size of the channel is ¢~!, hence
we scale y — ey. On the other hand we scale the force by a factor €2, because in this
way it will produce finite changes in the velocity in the z direction on the relevant

2

hydrodynamical scale of times, that is, as before, ¢ = ¢~ “r. We look for stationary

solutions, hence we have to solve the equation:
af¢ ofc _

5y T 950 = < AU (46)

Vy

In 19 we prove that the stationary state of (4.6) with zero mean velocity in the

y direction, w = 0, behaves in the limit ¢ — 0 as a Maxwellian with parameters

12



obtained from the solution of the system (4.1)-(4.3). The method follows the lines of

the Hilbert-like expansion explained in section 2. The assumed form of the solution of
(4.6) is

fo= (u o)+z (fa + F5) + &R (4.6)

The mean velocity in the y direction vamshes to zero order in € because we take the
Maxwellian M to depend on the velocity field (u,0). The terms fg},) are boundary
layer contributions due to the fact that in general f, does not satisfy the boundary
conditions. The solvability condition at the first order in € gives the hydrodynamical
equations (4.1)-(4.2) while (4.3) is determined by the solvability conditions at zero
order. The functions f, are determined as in the time dependent case, suitably modified
to take into account the boundary layer terms. On the other hand, the boundary layer

terms are functions of {( = ¢!y determined by the the equation
v, 8 fo + €90, fop = LIS} (4.7)
with suitable boundary conditions. Equation (4.7) is a perturbation of the one treated

in Ref.!”) and can be controlled in a similar way. The equation for the remainder R

(dropping the ¢ dependence) is
6

v, 8y R + g8, R = ¢ 2Q(M, R) 4+ 2Q(>_ " (fu + f51 ) B) + € Q(R, R) + € 4 (4.8)
n=1

with A a bounded quantity depending on f,, n = 1,...,6. We also prescribe the

vanishing of the incoming part of R at the boundary. In order to control the remainder

we introduce the space By, of the measurable functions on (0,1] x R? with the norm

|1Rlle,s = Sélml?z(l + %) R(.,v)la (4.9)

The study of the remainder equation is performed along the lines in Refs®»7), and a
suitable use of the symmetryb properties of the problem. Let us remark that in this
case we do not have to deal with the problem of infinitely fast sound waves, because of
the stationarity of the problem.

The result is stated in the following theorem:

Theorem 4.1. Given a smooth solution p,T,u of (4.1)-(4.3) in H,([0,1]), s > 1
- with the boundary conditions (4.4), for g small enough, there exists a constant C
and a solution f¢(z,v,t) of the rescaled Boltzmann equation (4.6) with the boundary
conditions (4.5) such that we have

15 = M(p,u,T)lls,x < Ce

for € small enough.
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