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Abstract

We study the partial differential equation

wi

Wp = ~Wyexx + >
w

xx

which arose originally as a scaling limit in the study of interface fluctuations in a certain spin system.
In that application x lies in R, but here we study primarily the periodic case x € S'. We establish
existence, uniqueness, and regularity of solutions, locally in time, for positive initial data in H'(S!),
and prove the existence of several families of Lyapunov functions for the evolution. From the latter
we establish a sharp connection between existence globally in time and positivity preservation: if
[0,T*) is a maximal half open interval of existence for a positive solution of the equation, with
T* < oo, then lim,_7= w(t, -) exists in C1(S!) but vanishes at some point. We show further that
if T* > (1 + /3)/167%/3 then T* = oo and lim,...o w(t, -) exists and is constant. We discuss
also some explicit solutions and propose a generalization to higher dimensions. © 1994 John Wiley &
Sons, Inc.

1. Introduction

In this paper we discuss the evolution of a function w(t, x) under the paftial
differential equation

2
(1.1) Wr = —Wyax + (&) ,
W/

for t > 0, subject to an initial condition

(1.2) w(0,x) = g(x) .
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We take x € X, where X is either the real line R or the circle S! parameterized
by a variable x satisfying 0 = x = 1. Equation (1.1) may also be written as

(1.3) wr = —(w(logww) ,, -

We will occasionally find it convenient to introduce a new dependent variable by
setting w = y%; y = y(z, x) then satisfies the equation

(1.4) Yt = ~Youxx + yyﬂ .

Equation (1.1) arose (see [2], [3]) in the study, via a “collective variable ap-
proximation,” of a family of random variables {M, | n = 1,2,...} associated
with a certain spin system. Each M, takes integer values arid has probability mass
function W,, that is, W,(m) = Pr{M, = m}, m € Z. The funétions W, are de-
termined by a recursion relation (together with the initial condition W,(m) = Smn)
which we give for completeness in the Appendix but whose details will not con-
cern us here. If for large n we approximate W by a scaled continuous function,
W (m) = w(e*n, em), then up to a constant time rescaling the partial differential
equation (1.1) is the formal & — O limit of the recursion relation; see [2].

The recursion for the functions W, manifestly preserves-two characteristic

properties of probability mass functions: positivity (either strict positivity or non-

negativity) and normalization (3,,cz Wa(m) = 1). Clearly (1.1) also preserves
normalization: [, wdx is constant (assuming, if X = R, that suitable boundary
conditions are imposed). We have not been able to show that (1.1) is positivity
preserving, but believe on several grounds that this is probably so. First, it is the
scaling limit of a positivity preserving discrete recursion. Second, the form (1.4)
of the equation is suggestive: at a small quadratic minimum of y the nonlinear term
in (1.1) will be large and positive. Finally, we have solved (1.1) numerically, with
X = §', for several positive initial conditions, and verified positivity preservation
in each case. We observe from the numerical solutions, however, that the evolution
does not preserve order (g; > g, does not imply w,(z,x) > ws(z, x) for all t,x) and
does not yield monotonic behavior of the minimum: a quartic minimum initially
decreases, while a higher order minimum bifurcates into two smaller minima
separated by a relative maxinmm. In Figure 1 we plot some solutions illustrating
this behavior. '
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Figure 1.  Solutions of equation (1.1) for three different initial conditions. In each
case, w(t) is plotted for t = 0.0 (solid), r ='8.0 X 1075 (dashed), 1 = 3.2 x 1073
(dotted), + = 1.0 X 10™* (dash-dot), and t = 7.2 X 10™* (dash-dash). Here w(0,x) =

2 -
(81/2 + (1 + cos 27rr)/2]’") , with £ = 0.001 and m = 1, 2, and 8 in Figures 1 (a), (b),
and (c), respectively.
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Although the scaling limit discussed above leads to (1.1) with X =R; we have
established rigorous control of the behavior of solutions only for X = S!. In
this case we prove, in Section 4, existence (locally in time) and uniqueness for
solutions of (1.1) in the space H'(S'), with positive initial conditions; we establish
also the regularity of solutions and determine the asymptotic behavior as ¢ — oo
when the solution exists for all time. Two questions remain unanswered: whether
In general solutions must exist globally in time, and whether the evolution is
positivity-preserving. We show in Section 5 that these questions are related by
proving that the vanishing of the solution is the only possible impediment to global
existence: if [0, T™) is the maximal interval of existence of some posttive solution
w of the initial value problem, and T* < oo, then w(T*) = lim, 7~ w(z) exists and
is in fact continuously differentiable, but vanishes at some point of S*.

In Section 2 we discuss briefly a few explicit solutions of (1.1). Control of
lim,.7- w(t) is obtained from certain Lyapunov functions for the evolution, which
we discuss in Section 3. Finally, Section 6 describes some extensions of our
results to a higher dimensional version of (1.1).

Our problem bears some resemblance to one arising in a recent study (see [1])
of droplet breakup in a Hele-Shaw cell. There the thickiess # of a neck between
two masses of fluid is described by the fourth-order _equatioq h = —(hhyee)s,
and the questions of global existence and positivity preservation are again closely
related. '

2. Explicit Solutions -

We can readily identify some explicit solutions of (1.1)...It should be noted
that additional solutions can be derived from these through the invariance ‘of the
equation under the transformations

w— Aw , A=0;

X —X—Xq,

r—1—1g;

XxX—ax, t—a*r, a+0.
The Gaussian solution

w(t, x) = t7/* exp(—x?/41/?) XER,

is the relevant solution for the original application to the spin system: the random
variables M, in that case are approximately Gaussian, with variance growing as
n'/2. A related solution is

wit,x) = t7V4(2/11/2) exp(—x2/4:'/?) L

It was pointed out to us by M. Kruskal, [9], that general scaling solutions of the
form w(t, x) = r*¥(xt~1/*) may be found by requiring ¥(£) to satisfy the ordinary
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- differential equation

/2 11
@ (%) —5—‘11'+a\11=0.

Stationary solutions include 1, sin®x, sinh? x, cosh? x, ¢, and x2. A. Rokhlen-

. ko, [11], h4s noted that there are traveling solutions of the form w(t,x) = u{x + ),
:~where u is the square of an Airy function.

3. Lyapunov Functionals

In this section we discuss the existence of certain functionals ®(f), where f
is a function defined on X, such that when w is a solution of (1.1), ®(wf(z, -))
varies monotonically in time or is constant. We will refer to such functionals
as Lyapunov functionals and conserved quantities, respectively. It will be clear

- from our proofs that this monotonicity can be verified whenever (1.1) holds in a

sufficiently strong sense to justify various formal manipulations and, in the case
X =R, w and its derivatives vanish sufficiently rapidly at infinity to justify neglect
of boundary terms in integration by parts. To make a precise statement, however,

.- we will restrict ourselves to the case X = S!. We begin by establishing some

notation to be used here and in the next section.
. For 1 £ p = o0 and r a non-negative integer we let W™? = W"?(S') denote
the space of functions on S' with finite norm

1 r 1/p
U Zlf(f)(x)lpdx} , if p<oo,
0 -0

sup IFOx)] . if p=oo.

xeS'0=j=r

T

o WAl =

In particular, we write LP = W% and H” = W"2, and let C" denote the subspace of
W"* consisting of r-times continuously differentiable functions. Let Y” denote
either C” or W"” for some fixed p. For [ an interval of real numbers we let
C™(I;Y") denote the set of functions u : I — Y with continuous (strong) derivatives
of order m;if I is closed then C™(I;Y") is a Banach space with norm

lullergany = sup  [[u®Oly. -
tel 0=k=m
We may omit the superscript m when m = 0. We let Y, denote the set of elements
of Y7 which are (pointwise) strictly positive and CT(I; Y") the elements of C™(J; Y7,
with images contained in Y’ . Finally, if I is an open interval of real numbers.

. a classical solution of (1.1) in Y" is an element of w € CL(I;Y") N C{; Y™+

satisfying (1.1).

PRbPOSITION 3.1. - IfY" is as above and w is a (positive) classical solution o;
(1.1) in Y°, then’
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(@) [o wit,x)? dx is nondecreasing in time if 0 < B < 1, is constant fB=1,
and is nonincreasing if 1 < § < 3/2; moreover,

(b) [s1 log(wlz, x)) dx and — [ wlog(w(t, x)) dx are nondecreasing in time.
If w(z, x) is also a classical solution of 1.1} in Y", then
(©) [or [welt,x)*/w(z,x)]* dx is nonincreasing in time if | = a < 3/2.

Proof: Each functional & (w(t)) referred to in Proposition 3.1 is of the form
(w(r)) = [o ¢ (wlt,x), w,(t,x)) dx, and the strong differentiability condition, to-
gether with one integration by parts in case (c), guarantees that ®(w(r)) is differ-
entiable and satisfies

d _ [ %
(3.1) d—t@(w(t)) —/s' 6w(w’ wow, dx |

where 6¢/6w = 9¢/0w — (8¢/Ow,)x. Applying this to ¢(w) = wh, using (1.1),
and integrating twice by parts yields '
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— (B~ 2)%) dx .
If to (3.2) we add £(8 — 1) times the equation
_ _ ot
0= 5_§/ (W3wh=3) _dx = B=3 [ p-a(qwami | 6-32%) ax,
9 st 9 st w w

we arrive at

d
= B
dt/slw dx

1o o o
— (B +36- 9)W—2) dx ;
9 ) w

the integrand is a quadratic form in the variables W and w2/w which is positive
semi-definite for 0 = S = 3/2. Part (a) of Proposition 3.1 follows at once.

The monotonicity of [ logw dx follows from the remark that the time deriva-

tive of this quantity is obtained from (3.2) by omitting the factor A4 and then
setting S = 0; from this point on, the argument is a special case of the one
above. Monotonicity of [ wlogwdx is obtained easily by using the form (1.3) of
w; in (3.2). h
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To verify {c) it is most convenient to work in terms of the variable y = w!/2;

since w is strictly positive, y will be a strong solution of (1.4) in Y'. Note that
wi/w = yZ, so that from (1.4) and the analogue of (3.1),

d 2\
dt /sl(y") ax
y2
- 2&/ (.(y;)“*l}’x)x (_yxxxx + ﬁ) dx
. st Yy
L 52
—’2(_1'/5l ,:((y)zc)a—lyx)xxyxxx - (y;%)a—lyx (’;xi) :l dx

2
- 2a/ (G [(20: — 1)y — 2y 222 4 (yx.xyx> J s
st y y

— 4a(2a - (a - I)/S’ (y%)“‘zyxyixym dx .

The iﬁtégrand of the first term is, for & = 1, a positive semi-definite quadratic
form in the variables y,,, and y,.y,/y: the second term, after one more integration
by parts, becomes

. 50:(20: - 1)a— 1)2a — 3)/] (y%)“—zyﬁx dx ,
which is non-positive for 1 = o = 3/2.

Remark 3.2. The origin of the of the evolution equation (1.1), discussed in
the Introduction, and the exact conservation of f v wdx, make it natural to view w
as a probability density function. In this case two of the Lyapunov functionals of
Proposition 3.1 are familiar: — [, wlogwdx is the entropy and JxwWk/w)dx the
Fisher information of the probability distribution.

4. The Evoluticn on S!

‘We now turn to rt'he-existence theory for the initial value problem (1.1)—1.2)
posed in X = S!. As discussed in Remark 4.1 below, we will assume throughout
this section that the initial value g in (1.2) lies in H. Equations (1.1)«1.2) are
formally equivalent to the integral equation

- L _ © R [N ) ;
“.1). - w(t) =e g +/ e A IE(w(s))xe ds |

) S S 0

where A = 8% and F(f) ='f3/f, which may be written as

4.2) : w(t) = e Vg + 2 / e A (w(s)) ds
0
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By a mild solution of the initial value problem (1.1}-(1.2) on an interval [0, T we
shall mean an element of C..([0, T]; H') which satisfies (4.2); we write T* = T*(g)
when [0, T*) is the maximal half-open interval such that a mild solution exists on
every closed subinterval [0, T] C [0,T*).

Remark 4.1.  e™* is an analytic semigroup on L? and (1.1) may be written as
dw

R + Aw = F(w) ,

where F maps H3 to H. Since H? is the domain of AY 4, standard theory (see .

[5] and [10]) assures us that for initial data gEH 3 the integral equation (4.1) has
a unique solution on some interval [0, T], which is in fact a classical solution in
H®. In our discussion in Section 5 of the relation between global existence and
strict positivity of the solution, however, we will need to know the existence of
solutions for initial data with only one derivative — specifically, for data in C'.
In this section we take g € H® since this slight additional generality does not
complicate the proofs. It has been pointed out to us by T. Kato, [8], that solutions
in fact exist for g € W!, but we will not write down this generalization. Our
method is closely related to that of [5] and [10] and also to that of [6] and [4]; see
also [7]. :

The next theorem and its corollary summarize our results.

THEOREM 4.2. * Suppose that g € HY. Then the following hold.

(a) LOCAL EXISTENCE AND UNIQUENESS OF A MILD SOLUTION: . For some T > 0
there exists a unique w € C.([0, T]; H') satisfying (4.2). '

(b) REGULARITY OF MILD SOLUTIONS:  If w € C.([0, T]; H") satisfies (4.2) then

w € CU0,TY; H") for all r; moreover, w is a classical solution of (1.1) in H" for
anyr. '

COROLLARY 4.3.  LYAPUNOV FUNCTIONALS: Jfg € H. andw € C. ([0, T]; H')
is a mild solution of the initial value problem (1.1)~(1.2), then.the (monotonicity)
conclusions of Proposition 3.1 hold on the interval (0, T*(g)). .

We begin our discussion with a series of lemmas, closely related to standard
tools in the theory of analytic semigroups. In stating them we introduce the usual
fractional powers A? of the operator A. (For a general definition of A” when
A is the generator of an analytic semigroup; see, e.g., [10], here A” is given by
multiplication of the k-th Fourier coefficient by (27]k|)*.)

LeMMA 4.4.  Supposethat | S p=q = oo, that jis a non-negative integer,
and that p = 0. Then fort > 0,

(4.3) | 420%™ Flls = Crbri+/pYarA| £y
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Moreover, ifdp+ j+ 1/p—1/q < 4 and u € C([0,T]; LP), then

. ot .
(4.4) ”Apt%,c/ e—A(t_s)t'u(S) dS”Lq = CHu”C([O‘T];U,)tl—(4P+J+I/P—1/q)/4 .
. 0

Here C is a constant debending onp, j, p,andq.

- Proof:* Equation (4.4) is an immediate consequence of (4.3). To prove the
latter we first suppose that p = 0. The operator e’ has kernel G(x — y; 1) with

k
6ten =3 1w (55 )
: kez

where :
H(g = ——/ e'p4eip5dp .
27 Jr

" Thus ||6gG(§; Ny = 7 U=Y4 ]| ), and (4.3) follows from Young’s in-

equality by taking 1/r +1/p =1+ 1/q. Thecase p =g, j = 0 of (4.3) is a
consequence (see [10]) of the fact that eV is an analytic semigroup on L”, and
the general result then follows by writing APt ™4 = APe~41/25}e~A/2

In stating the next lemmas we will use the following notation. For Y any
Banach space of functions on S! and 0 < p < 1 we let C?(I;Y) denote the
elements of C(I;Y) which are Holder continuous of order p on /, and C™*#(I;Y)
the elements « of C™(I;Y) such that «™ € C°(I;Y).

LemMma 4.5.  Suppose that u € C([0, T];LP) for some p, 1 = p = o0, and
that 7(t) = &2 f(; e A 9y(s)ds. Then 7 € CP([0,T]; W), with Holder constant
depending only on p, p, q, and ||ul|co.r).L7), whenever p and q satisfy p = g = o0
and4p+1/p—-1/g < 1.

Proof: Thisis a s‘tandardb argument from analytic semigroup theory; we recall
the estimate (¢.g., (10D

@3 e D) fl = Crrlarsll

valid when 0 < p = 1 and f € LY is in the domain of A”. Now for #,7 > 0 and
t+717 =T we write

At +7)—z(t) = (747 — 1)8%/0 e A y(s) ds

I+T
+ 82 / e~ AT () ds
I

=z1+22.
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From (4.5) and (4.4),

”Zl,x(t)“u =Cr*

r -
AP93 / e A=y () dsl|
0

LY

= CreT! =Gt 1/p=Va 4yl o 710
and from (4.4),
2200 = CTI=VPHVO4 14| cho iz -

LEMMA 4.6.  Suppose that u € C*([0, T]; L?) for some p, p satisfying 0 < p <

land 1 = p = oo, and that z(t) = [y e Iy(s)ds. Then 7 € C'™**((0,T); LP),
8%z € CP((0,TL;LP), and 7' = —8% + .

Proof: This is a slight generalization of Lemma 2.14 of [4]; the proof in

this form is easily obtained from, for example, Theorems 4.2.4, 4.3.4, and
4.3.5 of [10].

In the next lemma we record some one-dimensional Sobolev estimates; con-
stants are given explicitly since they will be used in Section 5 to derive sufficient
conditions for global existence. Here, and throughout the remainder of the paper
we adopt the notation f = [; fdx for any f € L!. o

LemMMA 4.7, If f € W' then f € C° moreover, if f =0 then -

@6 flleo = 21 fulls
@) IFle = 512l
@8) Il = 5l

Proof: The first statement is well known. Suppose then that £ = 0; we may
assume that f(0) = 0, so that

)] =

3 /Oxfxdx+/lfxdx

Moreover, f = 0 and |[fy )2 < o0 imply that f' € E* where E C 12 is the
subspace generated by 1 and x, so that

sl = | [ 5 ax

1 .
= — f 1,
—2” x”L

= 1Pzl fallee
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with P the orthogonal projection onto E+ and y, the characteristic function of the
interval [0, x]. The estimate (4.7) follows from sup, g [|Px:|| = 1/2+/3. Finally,
(4.8) is obtained immediately from expansion in Fourier series. We remark that
the constants in (4.6)—~(4.8) are easily seen to be the best possible.

Finally, we give ,tWo lemmas on the behavior of the non-linearity in (1.1).

LEMMA 48. Let S = {(feW? | f=afx)zvlfllwe =M} for some
a,v,M > 0. Then

(@ Ifr =1 and p = 2 then F is a bounded, Lipschitz mapping from S to LP/?;
(b) If r = 2 then F is a bounded, Lipschitz mapping from § to W1,

, Proof: (a) For f,h € S,

fz

f

MZ

L2 14

A

49) VF) e = ’

and

VR~ Fbl e = | L telfemte) () = B

fh

L2

@10 . M M?
5<7 N—z)nfx heller

where we have used estimate (4.7).

(b) It suffices.to give bounds for ||657'F(f)lz» and |8~} (F(f) = F(h)) ||.», for
f.h € S. Now 8;7'F(f) is-a sum of terms of the form

Rf oy
4.11 ——
( | ) 7
where2=m=r+1,1=k; =, ijj = r + 1. The estimates proceed as in
(), using ||8% fllco = M and, from (4.6), ||05(f — W)l|ce = (1/2 |5 (f — )| o2,
fork <r.

LEMMA 4.9. Suppose that w € C.([0,T);H"). If w, € C?((0, T} L*) then
F(w) € C?((0,T); L?); if Opw € CP((0,T); L?) for some r = 2, then 85" 'F(w) €
CcP((0,T1L?.

Proof: This is an immediate consequence of Lemma 4.8.

We can now give the proofs of our main results.
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Proof of Theorem 4.2 (a): Local existence and uniqueness. Define W) =
e g and let u = inf, g g(x); because ™" is continuous on H' we may by (4.6)
choose T so that v(r) = p/2 for t € [0,T,]. Now for positive T = T let R be
the set of functions in C([0, T); H') satisfying u(t) = g and ||u, — Valleqore) = a,
where @ = +/3/2y; from (4.7), u € R implies that u(r) = p/4, t € [0,T]. Thus
for u € R we may define B(x) by

1
B0 = 2 [ A RGs)ds, |

‘and set K(«) = v+ B(u). Fixed points of K yield mild solutions of the initial value
problem. . :

We will show that, when T is suitably restricted, K maps R into R and is
a contraction in the metric p(u, w) = ||ux — wyl|;2 on R; thus, X has a unique
fixed point on R. Clearly K(u)(t) = v(r) = g. We estimate ||K(u), — vi||;z and
| K () — K(w)ill 2 from (4.4); applying (4.9) and (4.10) with p = 2, v = u/4, and
M = (||g«||2 + @) we see that it suffices to require that

2 1/8
(4.12) AaMCcT _
o
and
1/8
“13) 8CM(1 + M//3u)T <1

7

with C a constant from (4.4). Equations (4.12) and (4.13) will be satisfied if T is
chosen sufficiently small. o

Proof of Theorem 4.2 (b): Regularity of mild solutions. We first prove that
wx € CP((0,T]; L9) whenever 1 = g < o0 and 0 < p < 1/4g. Write

(414)  wl) = v(t) + Bow)le) = eA'g + &2 / A F(u(s))
0

as usual. Certainly v € C*((0, T}; W"9) for any k, r and g. On the other hand,
since w € C,([0,T]; H'), Lemma 4.8 (a) implies that F(w) € C([0, T];L}), and
Lemma 4.5 that B(w) € C?([0, T]; W'9). ' ‘

We next show that w € C*((0, T]; H?); again it suffices to. verify this for B(w).
By the result above and Lemma 4.9, F(w) € C?((0, T); L?) and hence, since

OZB(w)(1) = &° /0 e~ AIF(w(s) ds ,
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Lemma 4.6 implies that B(w) € C*((0, T, H%).
We-now_verify inductively that w € C#((0,T);H") for r Z 3. Fix € > 0 and
fotit> g write. <« .- .

," P . r
O lw =0+ e A=2hy(g) + 5% / e A== 1F (w(s)) ds .
The induction hypothesis and Lemma 4.9 imply that 85~ F(w) € C*((0, T}; L?), so
that again Lemma 4.6 -implies that w € C?((0, T); H").
Finally, for any r = 0 we may write

P ’
8w = FLe A w(e) + / e A= G2 F(w(s)) ds .

The last statement of Lémma 4.6 now implies that d;w is differentiable in L?
and satisfies (OFw) = 6§+4w + 0.T2F(w), so that w is a classical solution of
(1.1)in H".

Proof of Corollary 4.3: Lyapunov functionals. This is an immediate conse-
quence of Proposition 3.1 and part (b) of Theorem 4.2. We remark also that all of
the functionals referred to in Proposition 3.1, with the exception of [q (w2/w)* dx
for & > 1, are.defined 4lso on the half-closed interval [0,7*) and, by continuity,
vary 'monotbnically, there. .

5. Relation Between Positivity Preservation and Global Existence

" ' As indicated in the Introduction, equation (1.1) arose from a positivity pre-
serving discrete scheme. While we have not been able to prove either positivity
preservation or global existence in time for the partial differential equation, we
can’ give a sharp connection between the two.

‘"THEOREM 5.1.  Suppose that g € H and thatw € C.([0, T*(2); H") is a mild
solution of the initial value problem (1.1)~1.2) defined on a maximal half-open
interval. If T*(g) < oo, then im,,7- w(t) exists in C’, but the limiting function
vanishes at at least one point of S'.

Proof: Suppose that T* = T*(g) < oo. Fix e with 0 < & < T7; we
claim that w(z) is uniformly Holder continuous in C! on [e,T*). Then for any
sequence of times ¢, 7 T, {w(t,)} is Cauchy in C!; this implies the existence
of w(T*) = lim,, - w(t) in C!. If w(T*) were strictly positive then the solution
cotild be extended by Theorem 4.2 (a), so w(7*) must vanish at at least one point
iOf'Sl.' PR s .

- To verify the claim we write

&

(5.1) w(t) = e~ AU—=2)y(e) + 52 / f e A F(w(s)) ds .
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The first term is as regular as we wish. On the other hand, we know by Corollary
4.3 and Proposition 3.1 (c) that for 1 = p = 3/2, F(w(t)) € L? on [¢,T*), with
|F(w(#))||» non-increasing. Thus for e < T < T*, |FW)| ¢ is finite and
independent of 7. We take p > 1 and apply Lemma 4.5 to conclude that the
second term is uniformly Hélder continuous in W® on [e, T*). Since Theorem

4.2 (b) implies that w € C([e, T*);C"), w must also be uniformly Hélder continu-
ous in C.

The fact that positivity of solutions suffices for global existence enables us to
give several sufficient conditions for such existence.

THEOREM 5.2.  Suppose that g € H:. Then T*(g) = oo and lim,_ Iw@) -

Zllat = O if any of the following three conditions holds:

(1++/3)
16723~

2 -
() /Slifdx<16§, 1) gl <4g/V3, (iii) T"(g) >

Proof: Let w be a solution of the initial value problem (4.2) on [0,T*) as
above. We introduce the variable y(z,x) = /w(t,x) and define the quanitity () by

2y L 2
Y () = gfslyx(t)dx.

By Proposition 3.1 (c) and the remark in the proof of Corollary 4.3,
1/2
1 g
(52 40290 = 3 [ | dx] ,

for all t < T". Let ymax(f) and ymis(t) denote respectively the maximum and
minimum values of y. From the argument leading to (4.6), and the Schwarz
inequality,

1 V2 72 .
(5.3) Ymax(t) — ymin(t) = 'i”yx(t)“L‘ < Td’(t) = Tlﬁ(o) 5

since certainly ymax = §'/2, (5.3) yields ymin(t) > 2/2(1 — ¢(0)/2). Now condition
(i) of the theorem implies that this lower bound is strictly positive and hence, by
Theorem 5.1, that T7*(g) = oo. On the other hand, if condition (ii) holds, then
g>2 - llg—gllco = g/3 from (4.7) and hence [ g%/gdx = (3/3)]gx||%: < 16,
so that global existence follows from condition (i).
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We next introduce the quantity

_ 1 yax(t)
o0 =g /s o &

which by Theorem 4.2 (b) is finite for ¢ > 0. From (4.7) we have

e L Y 0]
) = 300 + 5=l = 2 [”m]’

and hence, from (4.8),

' (2= L = _.l_ 2 < __1___ (p_(t)_
54w =2 [ s o [ toas e 1 PR

Equation (5.4) implies that () = G(¢(t)), where the function G is continuous and
increasing on [0, 0o) and satisfies G(0) = 0, G(¢bo) = 2 for g = 1672/3/(1 +/3).
On the other hand, from (1.4) and an argument as in the proof of Proposition 3.1,
or directly from the proof of that proposition, we find that

: 4 — 5172
(5.9 _ 7 /S l Y dx =g/7(1) .

. . . « T
Since [ y(t)dx = ||y(0)||2 = g'/2, (5.5) implies that for any T < T*, [y $(s)ds
= 1; in particular, for some 2o € [0, T], ¢(to) = 1/T and hence

(5.6) | P(to) = G(1/T) .

Now snppose that condition (iii) holds. Then we may choose T so that ¢q ! <
T < T*, and (5:6) implies that y(z9) = 2, so that T* = oo by condit.ion '(1)
applied on the interval [fg, 00). Finally, if 7% = oo we may tak.e.T arbitrarily
large in (5.6), so that, from the monotonicity of y(z) and the condition G(0) = 0,
Jimy...00 () = O, which implies that w(¢) — g in H'.

6. Higher Dimensions

Among possible generalizations of (1.1) to higher dimensions the most inter-
esting appears to be

owd;w
(6.1) ) W[=—A2W+ata]( WJ )’
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or equivalently

(62) . w, = *‘3,‘6_,‘(W6,‘8j 10gW) .

Here x € X, with X taken to be Euclidean space R? or the d-torus (5')?, and
we have adopted the convention of summing over repeated indices and written
8; = 8/0x;, A = 8;0;. We choose (6.2) as our generalization of (1.3), rather than
the apparently more natural equation w, = — A(w A logw), for two reasons. First,
the resulting modification of the equation (1.4) for the variable y = \/w,

2
2y+ (Ay) i
y

(6.3) y=—A

has a simple form which again suggests the possible presence of a mechanism to
preserve positivity of solutions. Second, as we will see shortly, (6.2) implies that
certain of the functionals of Proposition 3.1 — specifically, the integrals of w and
y, the entropy, and the Fisher information — are again Lyapunov functionals.

In this section we discuss briefly the extent to which our one-dimensional

results generalize to the equation (6.1). As indicated above, some of the mono-

tonicity results of Proposition 3.1 remain valid; moreover, we can give a result on
existence, uniqueness, and regularity which is quite similar to Theorem 4.2. It is
of course still necessary to control the denominator of the non-linear term in (6.1)
by controlling the uniform norm of w; for d > 1, this (and other considerations
in the proof) seem to necessitate working in a more restrictive space than H!. On
the other hand, the monotonic behavior of the Fisher information gives control
only on the H'! norm of the solution. As a result, we are not able to establish
any connection between global existence and positivity. preservation which would
generalize Theorem 5.1. ' Co ‘
We take X = (§')? throughout the remainder of this section and adapt to
this case, without further elaboration, the notations for function spaces and the
definitions of mild and classical solutions introduced earlier. In particular, a mild
solution of (1.1) with initial condition w(0) = g is a solution of the integral equation

1
(6.4) w(t) = e Mg + 8,-8,-/ e'A("X)Fij(w(s)) ds ,
0

with A = A? and F;;(f) = 0:f0;f/f. We begin with the generalization of
Proposition 3.1; it is natural in view of the regularity result to be proved below to
state it for spaces of continuous functions.

PROPOSITION 6.1.  If w is a (positive) classical solution of (1.1) in C%(X), then

(a) [y wit,x)dx is constant in time and [y w(t,x)'/? dx is nondecreasing, more-
over, ' :
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(b) The entropy — [y wlog(wl(t, x)) dx is nondecreasing in time.
If w(t,x) is also a classical solution of (1.1) in C, then

(c) The Fisher information fx Oiwx(t, x)Owy(t, x)/w(t,x)dx is nonincreasing
in time. L

Proof sketch:: As in the proof of Proposition 3.1, these results follow by
simple manipulations and appropriate integrations by parts. It is convenient to
work in terms of the variable y satisfying (6.3) when studying both [y w(z,x)!/? dx
and the Fisher information.

To obtain existence, uniqueness, and regularity we may, according to the
Sobolev inequality, control the denominator of F(w(z)) = 9;wd;w/w by taking
w(t) to lie in any space WhP with p > d.

THEOREM 6.2. Suppose that g € Wl.'p for some p satisfying d < p = oo.
Then the following hold.

(a) LOCAL EXISTENCE AND UNIQUENESS OF A MILD SOLUTION:  For some T > 0
there exists a unique w € C ([0, T]; W'P) satisfying (6.4).

(b) REGULARITY OF MILD SOLUTIONS: If w € C([0, T1; W*?P) is a mild solution
of (6.1) on [0,T] for some p > d then, for any integer r satisfying | = r = p,
w € C((0, T, W™P/"). . In particular, if g € W'* then w € C((0,T];C"), and w is
a. classical solution of (1.1) in C’, for all r.

Proof sk_étgh: - The proof follows closely the lines of the proof of Theorem

,'4,‘2_; we begin by noting. the necessary changes in the auxiliary lemmas. The

estimate (4.3) is replaced by

65

- llarddef e = Crlors i £

derived in the same way, and the estimates (4.6)—(4.8) by the Sobolev inequalities

(6.6) Ifllce = Clfllwrrr ,

6.7 “f“wkvﬂ/k = C”f”wr.n/r , l=sk<r,

valid for p > d and p = r = 1. It follows from the generalization of (4.11)
to the 'higher dimensional case, nnder these same restrictions on p and r, that
F;; is a bounded, Lipschitz mapping from {f € W™? | f =z v > 0, Il =
M < o} to Wf-lvp/(r+1), and thus that if w € C5((0, T1; W"P/") then F;;(w) €
C*((0, T]; Wwr—1-P/+1)y_ Finally, Lemma 4.5 is modified only in the condition that
p must satisfy, which is now 4p + d/p —d/q < 1, and Lemma 4.6 is unchanged.

* With this machinery in place the proof of (a) is a straightforward application

of i:h'erﬁxed point theoremi on a ball in C([0, T; W'P) with center v, where again
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v(t) = e g, To verify regularity we first observe that if w is a mild solution

on [0,7] in WP then F;;(w) € C([0,T];L”’?) and hence w C?((0, T, wip) -

whenever p satisfies 4p < (1 — d/p), and then prove by induction on r that
w € CP((0,T],WP/") for all r = p. If p = oo then we conclude immediately
from the Sobolev inequalities that w € C?((0, T): C") for all r, and Lemma 4.6
then implies that w is a classical solution. '

Finally, we show that the results of Proposition 6.1 apply to the solutions we
have constructed. '

COROLLARY 6.3. LYAPUNOV FUNCTIONALS: Ifg € Wi‘p Jor some p > d
and w € C.([0, T, WhP) is a mild solution of (6.1) with-initial value: g then the
conclusions of Proposition 6.1 hold on [0,T]. '

Proof of Corollary 6.3: If p = oo then this is an immediate consequence of
Proposition 6.1 and part (b) of Theorem 6.2 (in fact, as long as p = 4 for cases
(a) and (b), and p = 5 for case (c), then enough derivatives of wexist to justify
directly the manipulations used in verifying Proposition 6.1). For general p we
may verify that the solutions are continuouns functions of the initial data and then
approximate the initial value g by elements of W*; we omit details.

Acknowledgments. We are pleased to thank H. Brezis, T. Kato, M. Kruskal,
P. Lax, and A. Rokhlenko for helpful conversations and correspondence, and M.
Shelley for providing the computer code used for numerical study of (1.1). The
first and second anthors were supported in part by National Science Foundation
Grant DMR 89-18903. J. L. L. also thanks Peter Lax for hospitality at Courant
Institute, where part of this work was done with support from the Applied Mathe-
matical Sciences Program of the United States Department of Energy. under Con-
tract DE~-FG-02-88ER25053. E. R. S. thanks Tom Spencer for hospitality at the
Institute for Advanced Study. '

Appendix

In this appendix we record the recursion relations which lead to (1.1) in a
scaling limit. Further details are given in [2].

Recall that M,, denotes a random variable taking integer values and that W, (m)
denotes the probability that M, = m. In the recursion for W it is helpful to regard
M, as the position, at time n, of a particle undergoing a random walk with a local
bias determined by a certain function H,(m) satisfying —1 = H,(m) = +1:

(A1) Wopilm) = %u + Hylm = DIW,(m — 1) + %u — Hylm + DIW,m + 1) .

- (A3) Hy(m) =
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The scheme involves also an auxiliary, non-negative, dynamically independent
function U,(m), which satisfies the recursion

_ (Wn(m) + U,(m + 1))(Wu(m) + U,(m — 1))
(a-2) .U"H(m)- : Ufm+1)+2W,(m) + U {m — 1) ’

with .the supplementary provision that U,.;(m) = 0 if the denominator in (A.2)
~ vanishes. Finally, the bias H is itself determined, non-recursively, by W and U:

Unlm+1)=U,(m —1)
Um+1)+2W, (m)+ U, (m-1)"

where again H,(m) = 0 if the denominator vanishes. Note that if we define
VE(m) = W,(m) + U,(m = 1) then (A.3) may be rewritten as H,(m) = (V;;(m) —
Vi (m))/(Vi(m) + V;(m)), so that certainly —1 = H,(m) = +1, with strict in-
equalities as long as W,(m) or the product U,(m — 1)U,(m + 1) is nonvanishing.
It is then clear that the recursive scheme is well defined, preserves the normal-
ization condition J_,,cz Wn(m) = 1, and preserves both non-negativity and strict
positivity of W.

- As indicated in the Introduction, (1.1) is obtained from this recursive scheme
’ﬁ;hén we imrddﬁcé smooth functions w(t,x), u(z,x), and A(z,x), write W,(m) =
w(gn, em), U,(m) = u(e*n, em), and H,(m) = h(s*n, em), and take a formal ¢ — 0
limit. (More precisely, the limiting equation thus obtained differs from (1.1) by

* a constant rescaling of time: w, = —(3/8)(w(logw)x),,) In the scaling 1ir;1it
u =w+ O(e?). At first glance (A.1) might suggest a diffusive scaling 1 = £2n,

x = em, leading to a second-order PDE, but in fact the bias H as defined by (A.3)
introduces additional cancellations which lead to the fourth-order equation (1.1).
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