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A rubric of methods developed in the past decade by various workers,
W. G. Hoover, D. J. Evans, G. P. Morriss and othersl}:2], have proved to be a really
ingeniols and efficient set of techniques for non-equilibrium molecular dynamics. In this
approach, the Newtonian dynamics is modified by adding "frictional terms" according to a
prescription of Gauss(3! in order to keep the total or kinetic energy a constant of the motion
when the system is subjected to a thermodynamic or mechanical driving field, A variation of
Gauss' modified dynamics was invented by S. Nosél4! , and simplified by Hoover], in
which only the long-time average of the (total or kinetic) energy is fixed but which is also
often employed in practical applications. We shall refer to these modifications of Newtonian
dynamics collectively as generalized Gaussian dynamics, and to the nonequilibrium simulation
technique based upon them as the Gaussian or generalized Gaussian MD method. Especially
for problems where it is important to minimize boundary influences, the method seems to have
significant advantages. Quite generally, it eliminates the need for any random-number
generation and only requires the numerical integration of deterministic dynamics. The method
can be expected to work since holding the total or kinetic energy fixed should naturally be
equivalent to introducing a coupling to a heat bath or "thermostatting" the system when the
number of particles is large. Therefore, it is not surprising if for such large-particle systems
the use of the Gaussian method produces a steady state measure which will correctly
reproduce the universal (i.e. independent of the reservoir-modeling technique) physical
features of the non-equilibrium steady state. The "physical” properties are generally those
which depend only on large-scale features and a macroscopic number of particles.

The phenomenon of "phase-space reduction” for this reservoir-modeling method
appears to be real. There is an accumulation of numerical evidence which indicates that the
"physical” ergodic measures for the Gaussian dynamics will have a multifractal character and
that their information ‘dimensions will be strictly less than the total dimension of the phase
space. In particularly favorable cases where the "unperturbed dynamics" is strictly hyperbolic,
e.g. the Lorentz gas with finite horizonl6:7], such statements are expected to be true for
sufficiently small perturbations on rather general theoretical grounds (Y. G. Sinai, private
communication). The numerical work indicates that the "dimensional reduction” may exceed
the number of additional thermostatting or boundary degrees of freedom added to produce the
steady state. On the other hand, we know of no systematic numerics which indicate whether
or how the reduction grows asymptotically with the size of the system.

In any case, we are not ready to concede any theoretical relevance of the phase-space
reduction for understanding non-equilibrium steady state phenomena in real systems. As we
have already indicated, if a reservoir-modeling technique is valid at all, then the physically
relevant features of the stationary measure should be independent of the technique employed.
This just expresses the fact that a “reservoir” should be identified by a few thermodynamic
parameters, e.g. temperature or chemical potential, and all other features should be irrelevant.

Now it has been rigorously proved in some cases (and is expected to be true generally) that
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with the modeling technique using stochastic boundary conditions the stationary measures ae
in fact absolutely continuous with respect to the Liouville measure (see e.g.reterences § ang

boundary conditions the "effective" support is "approximately" fractal, e.g. a slight]
"thickened" version of a fractal set which becomes more and more fractal-like as the Number
of particles increases. That would be perfectly consistent with the rigorous theorems and

surprised if the steady state measure should have a support of “vanishing volume" in the large
system limit since we know even from Boltzmann and Gibbs that for a given total energy the -
microcanonical measure has the most entropy(=phase-space volume). All other measureg
supported on the shell of the same energy should therefore be concentrated in an
(exponentially) small relative area, However, even if the "effective" Support of the measure i
approximately fractal with any modeling-technique, it is still possible to question the physical
importance of the observation. Would it be a deep new insight about the non-equilibrium

On the other hand, it is not impossible that the Gaussian method may yield interesting

new insights. One possibility we find rather intriguing is that the stationary ergodic measures
- produced by this method may be characterized by a variational principle. It is wel)- known that

ergodic measures for strongly hyperbolic flows, like Axiom A Systems, can be characterized

by Gibbs-like variational principles involving the dynamical (KS) entropy and phase-space
expansion coefficient (e.g. see reference 10.) Since the phase-space contraction, the sum of al} .
the Lyapounov exponents, turns out in the Gaussian method to represent the physical entropy-
production, there seems a suggestive similarity to a "principle of minimum entropy !

production.” However, no precise connection is apparent to us at the moment, and one should
caution that the rigorous variational principles characterize the "physical” measure only out of |
the class of all ergodic measures. This is quite different from more traditional vanational ;
principles. +3

=
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Let us remark finally that we are qQuite impressed with some of the amazing properties
exhibited by the Gaussian-type dynamics: the equality of phase-space contraction with
physical entropy-production—--even in the nonlinear regime, the resulting relation between
Lyapounov exponents and transport coefficients, the ease of applying formal linear re
methods within this framework, etc. It is a nice method whose mathematicat structure should
be explored further. e ,
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What we very strongly oppose, however, is the notion that the Gaussian dynamics
any relevance to an¥ fo_nccptual or foundational issue of “irreversibility." In a number of
published works{11:12] it has been suggested that this dynamics is necessary to resolve the
classic Loschmidt reversibility objection against the Boltzmann equation. We believe that’,
Boltzmann's response to Loschmidt was exactly correct, and, in fact, the argument"gfr
Boltzmann has been made into a rigorous theorem by Oscar Lanford. For a very lucid;
discussion of the result and its conceptual implications we recommend the paper of Lanford, |
"On a Derivation of the Boltzmann Equation,” reprinted in reference 13 . Here, let us just say’
that it has been shown that, out of the phase-space points consistent with an initiall
prescribed 1-particle distribution, the overwhelmingly larger volume in the phase-space will.

consist of those for which the subsequent evolution of the empirical 1-particle distribution :
phase-space functionl) is given by the Boltzmann equation. This result is presently technically:
limited to a fraction of a mean-free-time, but that is sufficient for the entropy to increase by &
finite amount. We want to emphasize that the only “assumption" in this derivation is that the
initial microscopic state, or phase point, is typical for the Liouville measure. This seems very 3
likely to be true since the set of "bag" points can be expected to occupy in the initial region ay
most a fraction of the volume of order ](-0% for a system of 1020 particles! Of course, ﬂ'_

Loschmidt argument shows there must really be some "bad" phase-space points for which the’
Boltzmann evolution will not hold, In particular, letting the system evolve a certain .amoumd.
time sufficient for the entropy to increase by a positive amount and then reversing all ‘h‘
velocities produces such a "bad” point for which the entropy subsequently decreases.
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this is just what Newtonian dynamics tells us should happen, and it is just what
was seen, for example, in the numerical hard-disk study of Orban and Bellemansl'4]. The
wpad" points are there! However, the argument of Boltzmann and the proof of Lanford show
that they are very extremely rare by any reasonable definition and inordinately unlikely to be

encountered in practce.

Wwe do not see how Gaussian dynamics makes any contribution to the understanding
of irreversibility. In the first place, we think that the reservoir-modeling technique, whatever it
is, introduces some built-in irreversibility. In the Gaussian method this is the phase-space
contraction one typically sees asymptotically running forward in uime. What is very special to
the Gaussian-type mgthod is that it is a reversible dynamics, In the sense that it is a flow on
the phase space which runs backwards as well as forwards. Hence, there is a kind of
" oschmidt paradox” which arises in the context of that dynamics itseif (not to be confused
with the original paradox!) The question there is why the long-time future behavior of the
system is for phase-space volume to contract (physical entropy-production (o be positive)
when, in fact, for every phase-point where there 1S contraction there is another (its time-
reverse) where there is expansion. We believe the resolution proposed by the above authors is
essentially correct: the future behavior of the system is governed by an attractive measure with
essential support of fractal dimension and thus zero-volume. The behavior in the distant past is

overned by a similar measure whose essential support is, however, also of zero-volume and,
furthermore, unstable to forward evolution. Thus, behavior typical for it will never be seen in
the distant future. However, this has nothing to do with the original paradox, and only has
relevance for the Gaussian dynamics itself.

Of course, there is ABSOLUTELY no reason to believe that particles in the real world
move according to a Gauss-type dynamics rather than according to Newton's laws! We want
to stress this fact---despite its apparent obviousness---since it is the most essential objection
against any relevance of the Gaussian motion to fundamental conceptual issues. How could

one possibly believe that simply because a group of atoms is embedded in a heat-conducting
state or a shear flow that their dynamics is altered from Newton (or Schrédinger) evolution?
We know of absolutely no evidence or theoretical argument that would support such a radical
claim, and it is easy to see that it is really impossible to cansistently maintain. (Do system
particles move along one set of trajectories if one just ignores the behavior of reservoir
particles, and along another set of trajectories if one considers the evolution of the entire
collection of system-+reservoir particles?!) To believe in the actuality of the Gaussian motion
would be to suffer a severe confusion between what is a convenient and interesting modeling

technique and what actually happens in the real world.
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ROUND-TABLE DISCUSSIONS (11): IRREVERSIBILITY AND LYAPUNOV SPECTRA

COHEN (chairman)
The organizers in Brussels had already planned a round table on Lyapunov

exponents. However, we will try and I think we will succeed in getting other topics in, also.
But first, let us do the Lyapunov exponents. Now, Denis Evans already gave a talk about one
aspect of it, namely a connection in a stationary state between the viscosity in particular and
the sum of pairs of Lyapunov exponents which refer to a stationary state subject to a shear.
About the same time, completely independently, in Brussels, Gaspard and Nicolis also found
a relation between a transport coefficient, in this case a diffusion coefficient, and a Lyapunov
exponent but a different kind of relation and one of the issues is “Is there any connection
between these two relations, the Brussels one and the one with Denis Evans?" But since
none of you has heard yet what they have done in Brussels, we thought it might be a good
idea to ask Pierre Gaspard first to give a little exposé, twenty minutes, to tell us all what the
Brussels’ result is.

The talk by Pierre Gaspard is not reproduced here: it can be found as an article in
these proceedings.

COHEN
Thank you very much. Let us ask if anybody has any comments or questions on this

presentation.

EGGERS
I have got lost in in the comparison between non-equilibrium state and equilibrium

state. Even in the equilibrium state, the local reflections go and they are chaotic, the
trajectories are unstable. So what is meant by being stable there, in the equilibrium state?

GASPARD
In the case of equilibrium, the equilibrium will occur when the system is closed for

instance. Then the escape rate is equal to zero and there will be equality between the
Kolmogorov-Sinai entropy and the sum of the Lyapunov exponents which is based on

formula Eq.(1.6)1. And because the escape rate is equal to zero, it means that the number of -

particles is constant in the system which means the stability of the system.

HOOVER
Could you just comment a little bit on the sensitivity of the dimensionality to the

density of the scatterers?

GASPARD .
By the density, do you mean the distance between the disks?

HOOVER
Yes.

GASPARD
We do not have any result on this for the moment.

1 the equation and figure numbers refer to those in the article by P. Gaspard.
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COHEN

Well they have to be sufficiently close togéther, right?

GASPARD _ _ o . o
I can give you some relationships. Here is the information dimension, Dy, which is

3-20m &Yy2

between the disks. On the other hand from the work by Machta and Zwanzig, we know tha
the diffusion coefficient £0¢es to zero when we close the opening between the disks, so tha
the disk dimension will then goto 3. :

HOOVER
That is the same dimension which goesto 1?

GASPARD
The smail dy will then be like | - DI\ x (geometric factor) and without the 2. But it wil
be the same effect, So the small dy, information dimension, will gotol,

NICOLIS
One comment! All those microscopic simulations deal with Hamiltonian dynamics jr

many cases but of course what Pierre has been discussing is, strictly speaking, valid fo1
billiards. So these are essentially very strongly unstable dynamical systems. The connectior,
between a real Hamiltonjan system with smooth interactions remains still to be established.
Maybe there is such a connection, but I think you will agree with me that all that has been
done so far is valid only for billiards,

HOOVER

We did study a little bit the very steep Hooke's law potentials, Just purely repulsive.
and the hard disks results are Tecovered as limiting cases. You could look at the smooth
Hamiltonian if you would like to. That would converge to these results.

GASPARD
Thank you for the suggestion,

GASPARD

Yes I agree there can be Lyapunov exponents which can be very small in a large
system but the dynamical chaos, being given by the Kolmogorov-Sinai entropy is a sum of
all the Lyapunov €xponents, the positive Lyapunov exponents, In that sense, it is the order of
magnitude of the maximum Lyapunoyv €xponent which characterizes the instability in the
system. I agree that there are interesting effects from the nearly zero Lyapunov exponents,

Z see Eq. (5.1) r
3 see Eq. (1.7) .
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GASPARD . o _ _
As it should to compensate this and give the diffusion coefficient when you take this

(cf. Eq. (1.7)).

EVANS .
It is just a comment that if you are trying to actually get numbers like Joel was talking

about before, trying to get the microscopic numbers in the thermodynamic limit, that would
appear from a practical, not from a theoretical point of view, extremely difficult.

GASPARD _ ' .
I agree on this, I made some comments about the different time scales which, at the

origin of this phenomenon, that these numbers are generally very large while the transport
appears in the difference between them. If we have to measure numerically all these numbers,
it could be difficult to see the slight difference between them.

LEVERMORE _ _ . . .
First, just a short question! In the calculations, did you only do simulations with finite

horizon for the balls? If not, did they have a well defined diffusion coefficient? How close to
the streaming limit did you go? I did not see marked on the graphs, maybe it was there.

GASPARD - o o
The limit where the billiards changed from finite horizon to infinite horizon is

inciicated by an arrow on figure 6 (W=W_) and the last point is quite close to it. It would be
interesting to see what happens at the transition.

FRISCH
When you say “large”, do you mean there is a control parameter that allows you to

become arbitrary large or just accidentally, let us say, one order of magnitude larger?

GASPARD
Excuse me, I did not understand the question,

FRISCH
You said that the transport coefficient is the difference of two large quantities. So the

word “large” should not be used too loosely. Is there a control parameter that allows these
things to become arbitrarily large? Is it just like having a situation where something which is
1.15 is a difference between two things that are about 15 or so? Is there some mathematics
behind it or is it just accidental? \

GASPARD

When I say “large” or “small” in this discussion, it i$ a comparison between, let us
say, the Lyapunov exponent in its own unit, and the escape rate corresponding to the
diffusion process so I mean the diffusion coefficient times the geometrical factor of the
scatterers. And these quantities are given in units of the inverse of time.

COHEN
But the question is: when you say “large”, those two numbers, how large are they to

give a very small number over there, if I understood the question correctly.

GASPARD

In the example that I show, the Lyapunov exponent is around 1.14 and the diffusion
coefficient itself- but I do not make the comparison with the diffusion coefficient- varies in
the range 0.1 - 0.01... but the comparison is not made on the diffusion, it is done with the
escape rate which is much smaller than the diffusion coefficient.

COHEN

It was not clear to me how you determine the difficult quantity in my opinion, the
Kolmogorov-Sinai entropy, because the usual way to do it is using Pesin theorem but of
course you cannot do it here by definition. So how did you determine the Kolmogorov-Sinai

entropy?
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GASPARD . ) -
This Eq. (1.6) is a generalization of the Pesin formula. It is recovered for finite and

bounded systems because in that case the escape rate goes to zero and there is equality
between them. So the Kolmogorov-Sinai entropy has its definition in terms of partition of
phase space and measures how the probability of some cells goes to zero.

COHEN )
Is that how you determine it?

GASPARD _ . ' _
No. We did not calculate numerically this quantity because it is very difficult to obtain

and what we use is a comparison at the level of the fractal properties. So comparing the
information dimension with the dimension of Hausdorff,

COHEN
And how did you get it then?

GASPARD ‘
Because the Hausdorff dimension can be calculated independently and there are three

quantities which are calculated independently and compared then. So here, there is a
measurement of the escape rate and the Lyapunov exponent and there is the Kolmogorov-
Sinai entropy which is not measured because it is the most difficult quantity but it is replaced
by a measurement of the Hausdorff dimension.

COHEN
And how did you measure that?

GASPARD
By the algorithm of the Maryland Group and it is totally independent from the
previous quantities.

COHEN

So T see. ,

Now Harald Posch would like to make some comments, I think, also on the work
of Bill Hoover and him. I would like before he does that to thank you very much, Pierre.

As you may have gathered from the talk of Denis, the relationship which we are
particularly interested in, namely this conjugated pairing, was anyway a later development of
a more elementary connection which had been discussed before by Bill and by Harald,
namely that there was a connection between the contraction of phase space and the transport
coefficients and also, on the other hand, with the sum of all the Lyapunov exponents. So that
preceded in a way our work and I think therefore it would be useful if Harald might want to
comment a little bit more on that.

POSCH

Since our present chairman has threatened to cut me off after 5 minutes, I would like
to comment shortly on some properties of the equilibrium Lyapunov spectra which might be
of interest for the study of many-body systems or of the behavior of complex molecules.
Secondly I would like to make a comment about the calculation of these properties. We have
seen already in the talks by Bill and Denis how these algorithms work.

You look, in phase space, at trajectories originating from a (differential) h here
centered on the reference trajectory. In the figure 1, I have drawn a three-dimensional phase-

space. Let us watch how this hypersphere evolves in time, It develops into an ellipse, and one.

determines the eigenvectors and the eigenvalues. The lengths of these vectors increase or
decrease exponentially as a function of time.Now, Denis Evans has shown us that there is
another way of calculating these exponents by adding a constraint force to keep these vectors
orthogenal and of unit length. This algorithm was invented four years ago and the constraint
force determined by Gauss' principle, is a measure of the Lyapunov exponent after averaging
over the whole trajectory. I would like to show you that instead of invoking Gauss' principle,
one can do the same thing with Nosé’s ideas. Here are the equations of motion written down
for the unit vectors evolving in tangent space. r
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Follow the Liouviile description for phase-space hypervolume deformation:
- mL®; e f(qp) m {(t=Dlexp(GD), giving a loss of dimensionality:

The Kaplan-Yorke Conjecturs implies: .
For Dilute Gas: (AD/N) m{(AVu/c) or (AVT/T)2; X is the mean free path.
Liquid: (AD/N) = (aVu/cR or (6VT/T)*; @ is the effective collision diameter.

P
%\.Aﬂ dlnf/(ﬂl ::?I%/dl =0}
LCeZAs0;

q

§
FIGURE 1. Definition of Lyapunov exponents.

The dynamical matrix which Denis was referring to comes from a linearized version
of the original equations of motion.The calculation of the Lyapunov exponents proceeds such
that a constraining force is added with a Lagrange multiplier determined from Gauss'
prificiple of least constraint. But one can apply Nosé's idea to determine lambda from a
differential equation which looks very similar to what you have seen from the ‘Nosé
thermostat. The length of the vector delta is contrained to unity and the vectors are kept
orthogonal, not at every instant of time but on the average. One only has to make sure that the
response time of the thermostat is small enough so that orthonormality does not deteriorate.
This might be a different and even more efficient way of calculating Lyapunov exponents
particularly in stiff cases where one is forced to use very tiny time steps for applying Gauss'
principle of least constraint. So this is only an idea how to calculate the Lyapunov exponents

invoking these principles.

Now let me turn to another important point. How do these Lyapunov spectra for
many-body systems look like? In equilibrium, there is no external force. We have learned that
the spectra are symmetrical, In the figure 3, Lyapunov spectra for a 32 particles system in
three dimensions are shown. Only the positive branches are given.

As you may see, there isa quantitative change in shape if the density is changed from liquid
to solid. I have got a number of these data here. Each of these curves, of course, consists of
discrete points with the abcissa indicating the degree of freedom.They are only connected to
guide the eye. The labels indicate the density of the system at constant temperature. This is an
jsothermal approach from the liquid to the solid. Here is the most dense solid, and if we
reduce the density, the most positive Lyapunov exponent increases, goes through a maximum
and becomes smaller again. This is interesting because you can study phase transitions by
looking at the Lyapunov exponents . If you approach the phase transition, the Lyapunov
exponent goes through a maximum.
! L \'s

In 1984 Shuishi Nosé discovered a new route 1o Gibbs'statistical

mechanics. When the corresponding Nosé-Hoover equations of motion are
:_gcncralizcd, applying then away from equilibrium, the dynamics of a single
["mixing"] system generates a NONEQUILIBRIUM ENSEMBLE in just the
same way that a single equilibrium system generates Gibbs' equilibrium
MICROCANONICAL ENSEMBLE,
The same idea can be applied to Lyapunov Spectra. Using 3 to represent the
offset between a reference trajectory and a satellite trajectory, feedback
equations such as; . :

=D.5-A & A=[(8/80)2-11/72,

determine the Lyapunov exponents, For instance: A=<A>
FIGURE 2. H. Posch's second viewgraph.
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FIGURE 3. Third viewgraph: positive branch of Lyapunov spectra at various densities.

This tells us that, at the phase transition, the dynamics becomes most violent and chaotic,
This would be also a way, for example, to study the dissipation of energy in a molecule, If
you have a complex molecule and you would like to know how many modes of the molecule
participate in the dissipation, you can calculate the Lyapunov spectrum and look how many
positive Lyapunov exponents there are, We have done this, for example, for a polymeric
chain and we have seen that violent chaotic dynamics takes place essentially in one or two
degrees of freedom. All the other degrees of freedom are characterized by very small
Lyapunov exponents. This would be another way of looking at phase transitions.

By looking at these orthonormal vectors, introduced above in connection with the
computation of Lyapunov exponents, there is another property of interest. They do not only

am convinced that there are deep connections between these graphs and the dynamical
properties of the solid, their frequency spectra. These were the only comments I wanted to
make with respect to systems in equilibrium and I think that Bill is going to continue about
what happens if the system is subjected to an external perturbation. Thank you.

e S MG PN B R
] 20 40 60 80 100
n

FIGURE 4. Fourth viewgraph: rotation spectra
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FEIGENBAUM . _ _
Could you say a little bit better what this rotation numbers business is? I am just

wondering if it is invariant under coordinate transformation.

POSCH
There is a well-known theorem for the Lyapunov exponents which guarantees their

uniqueness and invariance A similar result is known to hold for rotation numbers introduced
by Ruelle some time ago. These numbers are related -but not identical- to the rotation
numbers evaluated by us. Whether there is a uniqueness theorem for our numbers, we do not
know yet. The spectra shown in the figure are the only results we have for a larger system.

GASPARD
You showed the maximum Lyapunov exponent through the transition. What about the

sum of the positive Lyapunov exponents ?

POSCH
The Kolmogorov entropy also goes through a maximum.

HOOVER »
I just would like to continue along the lines that Harald was talking, to tell you a bit
about what happens to the spectrum of the Lyapunov exponents as the system is driven away

from equilibrium.

There are some reasonably interesting things which happen with respect to the
dimensionality of the attractor in a non—:%uilibn'um case. For the Galton board, the
dimensionality is smaller than the dimensionality in the equilibrium case. Now I would like to
show you the direct relationship between the dimensionality and the Lyapunov exponents. S0
I have shown that here for a particular special case. The reason for choosing this particular
special case, which is planar Couette flow, is that we have done a considerable amount of work
onit. So I would like to go through this one viewgraph relatively slowly, make sure that the
notation is reasonably clear and also that the message is clear.

I am considering planar Couette flow with pericdic boundary conditions. I have a

cube, the side length of which is L, which contains all together N particles. It turns out to be

STATIONARY NONEQUILIBRIUMSTATE

>
\" sV mcA _mv
E=T n =13 or—;— KINETIC
L N THEORY
e nt ner
- L POWER =n¢éL%L [——gwﬁfm ]
LIOUVILLE ---> %%—f a-%@- =-ZAM={p
)
similar to macroscopic
v » Thermostated Boundary
pairs,
— AD _<tp> _Power
D~ gNv 6NVKT
-V
AD A\282 o2
KAPLAN-YORKE D=2 or=3"

FIGURE 5. Bill Hoover's first viewgraph
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unpractical to study at the present time more than about 100 particles in computing entirely the
Lyapunov spectrum but we can do that with a fast computer. So if you pick the force low and
the temperature of interest and the number of particles, the only remaining parameter is the
strain rate. How fast is the top of the periodic cube moving with respect to the bottom? If you
do that, you will observe a shift of the spectrum rather like that which Denis described in the
diffusive case, that is, just a simple shift of the spectrum downwards from values which sum
to zero to values which sum to the rate at which entropy has been dissipated divided by
Boltzmann's constant.

I would like to consider here the possibility of something that would perhaps make
Joel and Eddie a little more happy, namely a system which has been driven from the
boundary. So let us consider the top of the system to be a rough plate, like sand paper,
moving along, and to have inside a set of Newtonian particles. So it is basically Newton
mechanics plus a single boundary degree of freedom which is attached to a Nosé oscillator in
order to maintain the desired temperature. If you do that, then the rest of it, to an order of
magnitude, is a back-of-the-envelope calculation which can be corroborated by machine
calculations. What I have done here is to calculate the viscosity from kinetic theory, both the
low density gas version written in terms of the mean free path, indicated by a green lambda,
so it is not confused with the red lambda, that is the Lyapunov exponent, and also the high
density version based on a solid-like theory which gives the viscosity coefficient in terms of
the vibration frequency and the interparticle diameter. If you have the viscosity coefficient,
then you can calculate the frictional force on the upper plate, just the shear stress, 1., times
the area of the plate multiplied by the velocity, €L, at which that plate is moving (neL2eL)
gives the power dissipation .That can be measured in watts for instance. And that power
dissipation, thanks to the Nosé equations of motion, can be expressed exactly in terms of the
single friction coefficient which applies to the boundary degree of freedom and also to the
sum of all Lyapunov exponents. The reason for that is the conservation relation in the phase
space, namely that the volume in the phase space multiplied by the probability density must
be a constant of the motion. It is just conservation and probability. So when the probability
density is increasing, then the volume must be decreasing in a corresponding way. And by
using a chain rule, essentially the Liouville theorem, it is quite easy to calculate the rate at
which the probability density changes in the phase space. In this particular system, with only
a single friction coefficient, it is exactly the friction coefficient characteristic of the boundary
particle. So it gives the relationship between Nosé friction coefficient (©) and the Lyapunov 3
spectrum which we just have been discussing, because of course the sum of the total N
Ly&punov spectrum gives the rate at which the volume element in the phase space is changing - $
with time.

Now, in the steady state, it should be obvious that the volume, if it is changing, can 3
only get smaller. The possibility that it gets larger is contrary to the existence of a steady
state. It cannot get larger forever. And so of course, it turns out in our simulations, that the
sum of the Lyapunov exponents is a negative number and gives the rate at which the phase
space volume is contracting in the strange attractor corresponding to a transport process. So
typically the friction coefficient for the boundary degree of freedom is positive and the sum of
the Lyapunov exponents is negative. [ have indicated a shift here for the situation that Denis
was talking about in which all of the pairs undergo equal negative shifts. The situation is -
maybe a little bit more complicated in a flow that is driven by the boundary. I can show you
some spectra here, just a bunch of discrete dots for a system which is ranging up to 25 ;
particles in 2 dimensions. 25 particles have basically a 100 dimensional phase space and itis Y
already a rather discouraging job to keep track of the motion of the 100 basis vectors rotating 3 g
in that space. If you look very carefully at the zero line, you will notice that it is above the i3
mean value of all of the spectra, they have been shifted downwards.If you add the spectra up,
you get a negative number which describes the rate at which the phase space volume i3 3
contracting and if you ask yourself the question: "how many of the Lyapunov exponents %
would have to be left out of this negative sum in order to get zero instead?”, where zero
would correspond to an object in the phase space that has a constant volume rather than a8 “* 3
shrinking volume, the answer to that gives you the information dimension of the strange
attractor characterizing the non-equilibrium motion. If you calculate that, simply using the
collision frequency as an estimate of the largest Lyapunov exponent, which is qualitatively
correct, and divide the shrinkage in the phase space dimensionality by the total
dimensionality, that would be 6 N in the case of a N particle problem in 3 dimensions. Then
the result is rather simple, namely the relative loss of dimensionality in the phase space:
it was the result at the bottom, I think, of Harald's first viewgraph, that is the square of the
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gradient, the square of the strain rate in this case. It would be the square of the temperature
gradient in the case of heat transfer for instance, multiplied by the particle diameter squared
and divided by the square of the speed of sound in a high density case, the mean free path
replacing the particle diameter in a low density case. Now in the cases which we have
investigated numerically, the phase space shrinkage has typically been no more than a few. I
think the maximum may be 5 or 6 for these boundary driven problems in 2 dimensions.
However, not having thought out the problem too carefully in advance, we have done almost
all of our shear boundary driven calculations at relatively high density. And it is clear from
this analysis, I think, that the phase space shrinkage would be much more dramatic in the
case of a lower density system. So I think Harald and I, as soon as we are forced to leave this
beautiful place, are going to hot foot it to our computers and see if we can verify that indeed
the phase space shrinkage is gravely accelerated by using a low density rather than a high
density simulation. So that is all I wanted to say.

GASPARD '
I would like to make a comment on the way the boundary conditions are imposed on
the system. You use a dissipative assumption about the dynamics at the boundary but there is
another way which would be a stochastic model of sticking to the boundary and then

‘reemission of the particles. In this kind of stochastic models, the concept of Lyapunov

exponents should be replaced by another type of concept which is closer to the Kolmogorov-
Sinai entropy or the epsilon entropy because if we make a stochastic assumption at the
boundaries then we know that the complete Kolmogorov-Sinai entropy of the system will be
infinite like in ideal gases. So if we use an epsilon entropy, then we can separate different
contributions, the epsilon entropy will go to the Kolmogorov-Sinai infinite entropy as epsilon
go¢s to zero, but then there are different terms, some of which are divergent, some are not,
and these terms which are not divergent could be then related to the sum of the Lyapunov
cxponents. So I think that there are some possibilities to relate stochastic models to the
assumption that you are doing, which is more deterministic. ‘

. HOOVER

I just wanted to say that I agree completely with what you had to say. It is true that if

Ou use the stochastic boundary then the Lyapunov exponent for that degres of freedom will

come infinite, So to us, it seems that it would be a simpler thing to use a boundary
condition for which there are no singularities in the Lyapunov spectrum.

COHEN

So we have talked quite a while about the Lyapunov exponents. I would like to make
one final remark unless there is objection or comment from the audience. I want to come back
to what qurre has been saying and what Denis has been saying, In the case of Denis, one is
Interested in the stationary state and even in the non linear regime where the viscosity is
dependent on the field, in this case the shear rate. The work of Pierre refers of course to the
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linear regime. So if you look at the overlapping regime, then there are two different
€xpressions if you repiace for a moment our viscosity by his diffusion coefficient, and what
seems irteresting to me, Denis, is that while Pierre would have the Kolmogorov'-Smal
enropy as part of his formula, which is also an entropy rate or entropy production, in our
case, it would be what you could call the Gibbs-Boitzmann entropy production of the
"chemical physicist". And therefore, in that overlapping regime, there should be a
relationship between the two. I think that maybe true byt | have no idea of what that would
mean and what that would imply. Now if nobody has any comment on that which...

LEVERMORE

I just wanted to make one comment pertaining to the connection of this to the
discussion I made aboyt going to incompressible fluid dynamics, at least for the Boltzmann
case. The entropy dissipation rate which, if you linearize aboyt one of these equilibrium,
more or less, involves the symmetric part of the linearized flow, which is related to the
Lyapunov exponents of the Boltzmann flow. The entropy dissipation rate goes exactly to the
viscosity times the Square of the gradient of the velocity, which is formally consistent with S0
many of these observations, [ did not consider driven Systems, but I think the discussion here
makes it interesting to g0 back and look at these rigorous limits and maybe confirm some of
these things. In any event, those dissipation terms you get from the fluid equations are
exactly the limit of the dissipation terms in the entropy relations,

HOOVER

You mentioned the Gibbs entropy, I Jjust wanted to say that one of the characteristics
of the attractors is that the Gibbs entropy always diverges in the non-equilibrium case, always
minus infinity,

GASPARD
It is a comment on what you have said....

COHEN P
So Joel, if it is so personal, I cannot refuse,

GASPARD

Tl_zc entropy production is a different quantity than the Kolmogorov-Sinaj entropy. An
example is that the Koimogorov-Sinaj entropy is positive at equilibrium while the entropy
product}on 80€s to zero. So if there is a connection between them, it is not a direct
connection,

COHEN a2
Yes, I agree. 1 meant it in another way. I did not want tg imply they were equal or _

proportional but only that there is a connection between the two, That is all I ever said. It may
not be simple, I agree completely. Now it is irresistible to give Joel the microphone.

D

LEBOWITZ

Thank you, Eddie,
. Thave never in my life, 5o far, studied really the Lyapunov exponents. ButIfind it very
Interesting. It reminded me that there js someé relationship perhaps with one system we had
studlc_d in particular, a S$ystem in which you have heat conduction, So you take some 3
material, gas in a tube, liquid in a tube or a crystal and put it between two different

In fact you could make this with boiling water or if you want boiling oil. Basically we
believe, and I think that everybody agrees, that if you take a bulk system, and if you drive 2
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current through it, in this case a heat current, the boundary conditions will only be effective at
the boundary.

There will be basically a state in the bulk where all the properties will be. Now we have
studied a particular context together with S. Goldstein and E. Presutti and then there was’
another work on this by S. Goldstein, N. Ianero and C. Kepnes (Joel, check the names
spelling, please), particular boundary conditions, just the kind of things Pierre Gaspard just
mentioned, so called diffuse reflection. Namely you imagine that you have here in fact a wall
and whenever a molecule comes and hits the wall, it comes out with a Maxwellian
distribution of velocities at the temperature of the wall. So you make that reservoir, that was a
particular model that we studied but we also studied some other models. But this one is
particular, I can remember, I do not have my papers here but I confirm that at least by three
minutes telephone conversations with Enrico Presutti, before the telephone went dead, that I
remember it correctly. If the temperature is the same, you know that the Gibbs probability
distribution is exp(-p H), at the reciprocal temperature §, let H be the Hamiltonian of the
system...So I am talking about the finite system not like what I was talking this morning, I
am not going to go to any infinite volume limits, I have a system of N particles and d
dimensions, Iet say d bigger than or equal to 2, I do not worry about one dimension
pathologies, so the phase space has exactly 2 N d and N can be, as far as the result I want to
state, anywhere from 1 to 1017, Starting from some initial state or some initial distribution,
will the system be driven by the boundaries to a final steady state? That steady state would
have to be the equilibrium state if the temperature is the same and clearly would not be the
equilibrium state if the temperature is not the same. Now in order....

COHEN
Joel, for my sake, tell me, what are you after ?

%. LEBOWITZ
i . There is a surprise at the bottom of the transparency. At least it is irrelevant in this
W particular discussion. As I said this transparency dates back, I believe, to 1984, at least part
=i ofit up to the top, but the bottom part is new. So I am saying: We consider potentials which
@+ are smooth and soft and in fact, do not have any cut-off. But you could take them like
&.  Lennard-Jones but smooth on the top over there. Well, you do not want to make some
o infinite, I believe, in the whole work at any point. But something which could represent
R Ehys.}cal systems. Is it clear what the model is? You have a model where you have a
amiltonian H(x), particles interacting with Newtonian dynamics and you have boundary
conditions just of the kind that Pierre Gaspard was saying, when a particle hits the boundary,
1t comes out with a Maxwellian distribution of velocities appropriate to the temperature at the
bOllndau'y.. So neither champagne, nor oil, just plain idealized boundary. conditions
Iepresenting the temperature of the reservoirs. The question is what is the stationary
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probability distribution of this system. Is it clear, the dynamics, the model and the question?
OK. The theorem says that in fact whether the temperatures are the same or not, under these
conditions on the Hamiltonian I said, you do get a stationary distribution and it is non fractal.
It lives on the whole phase space and has a smooth density, it has a perfectly well defined
Gibbs entropy p. That is a theorem for these particular types of systems. [ mean I never
thought of the connection with fractal but the point is we had to prove that the boundary can
penetrate the system. The reason we need soft potentials is that we are worried always that
maybe some particles never get to the boundary and never see effects of the boundary in
which case we would not have a unique stationary distribution. That is the whole point if you
have particles with soft potentials, then if a particle gets a large velocity at the boundary,
which is always possible in a Maxwellian, it can kick that region or the particle which is
standing still in the way and makes it move. That is the reason why we need the soft
potential, technically. And of course, we do not want to have a situation where you have hard
spheres jammed together, that is nothing that can happen. [ believe that anything which is
reasonable, that there is free motion, that the particles hit the boundary, can influence the
system,.. we will have exactly the same result, at least I believe. I mean the theorem is
proven for the case of soft potentials, but quite general soft potentials, no cut-off also in those
potentials. So I do not know whether these conflict with anything,... surely it does not
conflict with anything that Pierre Gaspard said and I do not know if it conflicts with anything
that Bill Hoover said, however, I do believe that the same result should apply if you have a
quiet flow in a box and you put the same kind of boundary conditions on it, so the heat gets
dissipated at the boundary, a stationary state is established, I believe but you will have to
.make of course,.. when a particle hits the boundary, it comes out with a Maxwellian
distribution, with a mean velocity corresponding to the boundary, that you would also get for
a finite system, linear and non linear stationary state which would have a density which
would not be fractal at all. But I say the theorem is established for temperature boundary
conditions for soft potentials, I can pause here or I can talk about other things. Let me pause
here for some questions. .

COHEN
Let me abuse my chairmanship and ask immediately a question: “To what extent does
this result depend on the stochasticity of the boundary conditions?” _

LEBOWITZ '

Completely! This transition rate involves both the Hamiltonian dynamics and the
boundary. You do not have a unique stationary state for a finite isolated system. This
depends on the boundaries because for a finite isolated system, any function of the energy is
clearly a constant of the motion and would be a stationary state, that could not be any
possibility of having unique stationary state wherever you start, In fact, wherever you start |
guess for these systems, it is quite right because you can try to start them all sitting still but in
fact all potentials, I say, are smooth and repulsive and go therefore..., even if you try to start
all the particles sitting still, they will push the particles to a.... and they do not have any cut-
off, Otherwise, you could just start all the particles sitting in the middle and they never feel
the boundaries. So to make the statement completely precise, we need to have that condition. -

NICOLIS : S

T also belicve that if we evoke stochastic boundary conditions, we are indeed going to _
have non fractal measures filling the whole phase space. What about, of course, deterministic
boundary conditions? and can we formulate properly without logical gaps, deterministic ™4
boundary conditions? I believe personally that we can along the lines perhaps Pierre has been
talking about for instance, one can have dynamical systems which are described by the laws ™
of hard disks or whatever, but different densities, let us say, on the two sides of a c.e{m?lﬁ'f
system which is interacting with them and therefore, which is subjected to deterministic ™
boundary conditions, One can also simulate a non-equilibrium state through an Initial
condition, like Pierre has been insisting on, May I make one comment concerning entropy ?

LEBOWITZ . | ,

. May Lanswer your question first ? If you believe that you are going to get a different
physics for the system, you can do all kinds of different things. But at least, the conventional
wisdom, I believe, if you look at the system conducting heat or what, in fact you do not want{ (
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to worry about the boundary conditions, You should get the same physics independently. It

just happens to be an accident that I was talking to Bill Hoover at lunch, that I remember this
work we had done in the late seventies, which happens to have an implication, we did not
Jook at it in the question of fractals but the way we could prove that you get a stationary statc,
was in fact to prove you have a density, to prove that the stochasticity of the walls gets put in.
Now, if you want to have a different system, is it going to be a different physics? For this
physics, I believe, that is what the answer is.

NICOLIS . ‘
I think, one should distinguish between a Gibbs entropy which, as Joel said, should

remain perfectly well defined, and perhaps information entrapy. I wonder whether Dactor
Hoover does not have in mind information entropy when he thinks about something getting
infinite. In other words, if I divide my phase space into boxes and I compute p log p, I get
something finite. Now, if the resolution goes to zero, for a stupid reason, I get something
infinite, and simply when we compute a Gibbs entropy, we do not think about this infinite
which is nothing but log epsilon, as epsilon goes to zero. This deficiency, this peculiarity of
information entropy is well known and people have learned to live with it, Now are you
thinking of this kind of infinity when you say that entropy should go to infinity ?

HOOVER .
I'would say that I do not think so.

COHEN ‘
After this revealing answer, who has another question?

EVANS
I just have a comment for Joel. I do not think that there is any contradiction between

this and the conjugate pairing rule. The conjugate pairing rule that Eddie and I proved is for
dynamical systems, not for stochastic systems and in fact it is a comment I made when
Matthieu Ernst was giving us an excellent review on cellular automatons. I made the
comment, | believe, that I was surprized that there was not more distinction made between the
stochastic models and the completely deterministic models. We deal with Liouville equations.
It is not clear, as Bill mentioned in his comment, how you actually characterize the Lyapunov
exponents for stochastic systems, I guess they are infinite. '

LEBOWITZ

For Lyapunov exponents, it is certainly not clear how to define, This evolution is
stochastic at the boundaries, However, the phase space density is well defined in both cases.
And my statement has nothing to do with the Lyapunov exponents, it has to do with the
phase space density. And I am claiming that at least for this model system, these phase space
densities live on the whole phase space, they do not live on anything fractal. That is all I am
claiming. I do not say anything about the Lyapunov exponents.

S HOLIAN

. The phase space that you have here, is 6N dimensional, It is only the sample in the
middle. In the case that we have been doing with the deterministic boundaries, you have at
least one extra degree of freedom, 6N+1 degrees of freedom, it seems a bit miraculous that
the fractal dimensionality can in fact be so strongly governed by one out of the 6N+1
dimensions, but I think it is true that if you make the boundary intimate with the distribution

' % function, that is in fact what leads to a fractal, that is just the way the things are.

LEBOWITZ

. Ikeep on saying again. I mean, the question is “'Are the different boundary conditions
going to affect the system?" and if they are going to affect it, then you have 1o justify and do
different boundary conditions. I believe to study a system conducting heat, these are perfectly
reasonable boundary conditions. And for these, just accidently it happens to be a theorem., If
we had not done the work in the late seventies, I would not have had anything to comment on
that and 1 am personally, well I do not know about deterministic, I do not know what it
would mean in this context. But given my system conducting heat, does the density live on a
fractal dimension or not..I am willing to bet a quarter or a little bit more that it does not.
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Maybe there is a possibility that both ideas are compatible. Suppose you have, as
Brad has mentioned, in the dynamical case a phase space with, let us say, 6N+5‘ dimensions,
depending on the number of dimensions you are driving the system with (5 in this case). And
let us assume that you could separate the system into the Newtonian part (between these two
plates) and the boundary. Then you could project down a fractal with, say, 6N+].5
dimensions onto a 6N dimensional Newtonian subspace and obtain a continuous distribution,
So conceptually, it is always possible that a 6N+5 dimensional driven system projected down
to a 6N dimensional phase space corresponding to the Newtonian particles is totally
homogeneous and is not fractal, But I do not see at the moment theoretically how this
projection can be done. We have only one picce of evidence which, maybe, is not in
correspondence with that. We have done a driven system whcrg the reduction in dimension
Just about exceeds the dimension of the driving particles. So this would not be in agreement
with what I have said just now. We have certainly to check this particular separation but [
think there is at least a possibility that these points of view are quite compatible.

' LEVERMORE

I want to make two comments, One is about stochastic boundary conditions, If Pierre
would have had stochastic boundary conditions, even a little bit on his scatterers, it is quite
clear that things would be ergodic ‘and the structure that he discusses would not be there,
Clearly, there is a big difference between stochastic and deterministic boundary conditions,

I'also want to make the distinction between the stochastic and the deterministic cellylar
automaton. I was thinking about some of these issues very early on in the business, and I
wanted to play a little game. What I did was consider a 2 by 2 periodic FHP lattice and begin
computing orbits for this lattice. I did this for two cases. First, I did it for the deterministic
case, and of course to no one's surprise, the orbits were periodic and sometimes with a

.

surprisingly long period. It is quite clear that the discrete phase space had an enormous

systems. Systems which are stochastic, where we add any kind of dissipation as a way to
smooth things are much easier to analyze,

The answer to the question about the role of micro-structure in macroscopic dynamics
will, in some sense, depend upon the interpretation as to the proper way to set up the
system. I think the holy Grail is the route Pierre is examining and other people should be
thinking about: to find a simple deterministic dynamical system through which we can truly
understand microscopic behavior, Stochasticity or fuzziness is a good way to practice, but it
is not the answer, :

COHEN '

After these remarks, I must ask you all to come to my Monday lecture. It will be
completely devoted to the difference between probabilistic and deterministic cellular antomata.
I must say I cannot resist mentioning this,

LEBOWITZ
Before going back, let me just say again that the stochasticity here is only at the
boundary and it is only a method of how to drive the system, I do not accept as physically

-

' meaning for them, If you can create the same system, but with. other boundary conditions,

and you get something fractal, that it has anything relevant to the physics of the problem, At

t

Ieast that is my opinion at the present time. I am ready and will be happy to be proven wrong. 1

GASPARD

LEBOWITZ r
... . Ithink your system was really a mechanical system. You were talking about the
diffusion of a single particle, a kind of pseudo-diffusion, not pseudo I mean, but it is not a
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thermal diffusion, not with many particles, just one particle in a fixed array of scatterers.
Were you not? It is a purely mechanical thing and I have absolutely no reason to doubt
anything about what you have said, it is perfectly correct and quite interesting but it is a real
mechanical system you were dealing with. Here I am talking about a thermal, aiso
mechanical. I am talking about different types of behaviors. I do not think there is any
contradiction and I do not want, in any way, to discourage, it is quite the opposite. I found it
very interesting, I had not seen it before,

LEVERMORE ‘
I want to make a picture to clarify my remark just a little bit. I did not want to sound

so negative about stochasticity. I think the problem, perhaps first posed by Gibbs in the
equilibrium setting, is the following one.

The big box represents a large deterministic system (no stochasticity). The small
shaded box represents a subsystem. While the whole system is deterministic, when we model
the subsystem we think of it as being Somehow driven by stochasticity that represents the
influence of the remainder of the large system. What we want to understand is whether this is
a good model or in what sense it is a good model. This being a deterministic system, if it is
classical, we will have pattern structures, If it is quantum mechanical, the structures become
fuzzy, but then we get into the whole theology of quantum chaos which I think we should
avoid at this level. The question [ think we want to understand is how stochasticity can be
used to describe the dynamics of the subsystem when it is driven by avery large deterministic
ts'ystemii'l'hlz:it bl: to justify the Gibbs picture in a non-equilibrium setting, That is what the
ocus shou .

COHEN '

Now, we have 10 more minutes. I wonder if anybody wants to make a statement, a
remark, maybe even a confession. Does anybody want to comment on the role of the
Lyapunov exponents in fluid instabilities or things like that in different contexts? And I am
lookix}(g cither at Uriel or at you. It does not have to be a theorem just a thought provoking
remark,

FRISCH

I wish to comment on the relation between microscopic and macroscopic Lyapunov
exponents. In order 10 get hydrodynamics, you need a separation of scales in space and time
controlled by the Knudsen number. One the one hand, if you work in microscopic units, say
with the mean free path, the collision times, etc, then of course the Lyapunov exponents
characteristic of molecular motion will be of order one in those microscopic units. On the

- other hand, as you go to the hydrodynamic limit, you have very long time scales, order

epsilon to the -2, and the Lyapunov exponents characteristic of the behavior of the Navier-
Stokes equations will be of the order o epsilon squared, that is much much smaller than the
Lyapunov exponent characteristic of the microscopic motion. Thus there is no simple
relation. Actually considering the case of lattice gases, we can sce that there cannot be much
of a relation because for lattice gases, the hydrodynamic limit still emerges just the same way
as In molecular dynamics but microscopically we do not have really a concept of Lyapunov
°xponent because things can change only in a discrete way. Of course if we consider a very
large lattice, and we change one bit, then in some sense the perturbation will grow. But the
cxact concept of microscopic Lyapunov exponents certainly has no parallel in lattice gases,
¢ven purely deterministic ones.

341

,__,___.




LEBOWITZ y

I do not know if anybody wants to listen as these are the last five minutes but the
question has been raised about irreversibility of macroscopic phenomena and the reversibility
of the microscopic equation. The models I discussed today were stochastic and even for the
thearems I quoted about, you had to have some stochasticity and you do not really get
dissipative things from the deterministic system. However, there is at least one model system
which we have studied with Herbert Spohn some years ago, which at least illustrates the
things. Namely, it is a system which consists of 2 kinds of particles but they only differ
from each other by their color. The dynamics is exactly the same, mechanically. So we
simply think of hard spheres but we just color some of them differently.

L G NRIAUES W LA TS a S, M Y st

LOR DIFFUSION
Mechanical Equilibrium H. Spohn, J.L.

p1(x,0)+po(x,t)=p constant
one particle (average) density
P1(x,0)=pgq(ex) x€ Rd
Po(x,0)=p(1-gp(ex)]
0< go(ex) <1 No color correlation
If tagged fluid particle —> B. M. then
limg_,, €3 [ 172 [py(x,ve2)-po(x,/e2)]dx = p [8(q',t) dq' average color density

Ae Ae
where g(q',t) satisfies the equation
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—5 =DV2saw with D=Dge], and g(q',0)=g(q")

Further, if two or more test particles go to independent Brownian Motion then let
 n&(AYe)=(signed)#of particles in A, ie. ex;() € A
€3 n8(A,Ve2) =—> p [8(q.)dq  almost surely -
A
This corresponds to local equilibrium with respect to color ue(e‘zt)—>uq(q.t)
FIGURE 8. Joel Lebowitz' second viewgraph
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Physically you can actually realize such a thing if you take Helium 3, spin polarized up
and spin polarized down, that is very little effect on the dynamics. But conceptually we just 1
think classical systems. Thatsystem, you can drive on the basis of one assumption which “(ant .
to state : A diffusion equation, exactly the same way I discussed today, a diffusion equation
for the bulk density of non mechanical systems. Here I am going to talk about the diffusion
of the color density, so I start with red on the left and black on the right. I think in fact that
was the system first studied in Los Alamos by Bill Wood and Jerry Erpenbeck, I think I got
the idea of considering that system from talking to them, There is the following theorem in %
that system : Let us forget, now, about the color. Just consider the system in equilibrium,
and look at the trajectory of one marked particle, so called test particle, which again is only
colored. This is a mechanical system in equilibrium and we look at one particle which 1s
marked down, everything is mechanical except that we are taking it in equilibrium. So we
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ook at the trajectory of that particle, purely mechanical thing, which of course will depend on
the positions and velocities of all the particles in the system. Having a probability distribution
on positions and velocities of these other particles, its own posttion and velocity translates to
a probability distribution on trajectories. Let us assume that in fact this trajectory properly
scaled, I have to have infinite systems, I look at times of order 1/e2, and multiply by €,
converges to Brownian motion. One can prove this, at present time, only in one system
which is not very interesting, a mechanical system of hard scatterers has that property.
Assume that that is true, assume first that if you start several particles nearby they are able
eventually on this very long time scale, to converge [0 independent brownian motion. It
certainly does not violate any mechanical law. Under those conditions, one can prove that
srarting with a non uniform color density, you get, under hydrodynamical scaling, you get to
the diffusion equation for the color density, which is certainly an irreversible equation.
Simply this was an illustration that there is absolutely no contradiction between reversible
microscopic laws and going to a macroscopic, non reversible, for almost all initial

configurations of the system.

COHEN
One minute left.

EVANS
. Just a comment about this. I do not want really to go into the entropy, it might be not
the time. But even in a deterministic system, I do not think there is necessarily a great
problem with the divergence of the entropy. It goes back to Harald's and also David’s
comments that in these deterministic non equilibrium steady states, the dimensional reduction
in the full phase space is not very large. Obviously in the real world, there are external
perturbations which, no matter how smail, must wash out the fractal structare at some length
scale, and they are not going to change the macroscopic properties of the system. You can
view your stochastic boundaries as just another version of that. This must mean that if you
calculate the Gibbs entropy, f log f, by integrating in some suitable fashion, over a sub-space
of the full phase space, that has dimension less than the fractal dimension of the space, you

will get a finite answer for that Gibbs entropy.
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% COHEN

§1 After this confession, 1 would like to thank all the speakers, the superb technician®
2 who made it all possible, and to have a drink before dinner.

1%

Lt\" . LEBOWITZ

Thanks for the chairman !

4 Dr. Brigitte Herpigny
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