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We analyze the limiting behavior of the densities p, (1) and py(¢) for the diffusion controlled
chemical reaction A + B— inert. We prove that for equal initial densities p, (0) = p,(0) there

is a change in behavior from d=<4, where p,(1)=p,(1)~Cl'" to d=4, where
pal) = pu()~ C/t as 1—=. For uncqual initial densities p,(0) < py(0), p () ~e¢ " in
d=1,p()~c "™ ind=2,and p,(1)~e " in d =3. The term C depends on the initial

densitics and changes with d,

1. Introduction

Consider a system of particles of two types on Z, A and B, which execute
simple random walks in continuous time. That is, the motion of different
particles is independent and a particle at site x will jump to a given one of its
2d nearest neighbors at rate 1/2d. Particles are assumed not to interact with
their own type — multiple A particles or multiple B particles can occupy a given
site. However, when a particle meets a particle of the opposite type, both
disappear. (When a particle simultaneously meets more than one particle of
the opposite type, it will only cause one of these particlcs to disappear.)

To study the time evolution of this system one needs to specify an initial
measure for the process. Various possibilities suggest themselves. We consider
for concreteness the case in which one independently throws down A and B
particles according to the homogeneous Poisson random measures with den-
sities r, and rg; if there are initially both A and B particles at x, they
immediately cancel each other out as much as possible. Our results (analyzing
the system as t— =) hold equally well for any other initial measures which are
“sufficiently ergodic”. We denote by ¢ the random state of the system at time ¢
and by £(x) € Z the type and number of particles at x € Z%; B’s are counted as
positive charges and A’s as negative ones.
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This process can serve as a model for the irreversible chemical reaction
A + B—inert, were both particle types A and B are mobile. A and B can also
represent matter and antimatter. (One can generhlize the model to where the
mobilities or jump rates are different for the two species, as long as they are
both strictly positive.) There has been much interest in this model over the last
several years following papers by Ovchinikov and Zeldovich [1], and Toussaint
and Wilczek [2]; see Bramson and Lebowitz [3, 4], and refs. [5-8] for a more
complete set of references. The main concern has been with the behavior of
the densities in a spatially homogeneous system, i.e., with the expected
number of A and B particles per site., p,(¢) and py (1), as r— ., (The density of
course does not depend on the site x.) The two basic cases are when (a)
0<p(0) = py(0) (equal densities) and (b) 0< p,(0) < p,(0) (unequal den-
sities). Note that (a) corresponds to 0<r, =r, and (b) to 0<r, <r,. Since
p(1) = p,(1) must clearly remain constant for all 7, one has p, (1) = p,(¢) in (a),
and lim,__, py(1) = py(0) = p,(0)>0 in (b).

In the work in ref. [4] summarized here, we provide for the first time a
complete answer to the question: at what rate does p, (1)— 0? This includes the
correct dependence of the time asymptotics on the initial density for different
dimensions. We start with some heuristics.

2. Equal densities

For p,(0) = pg(0), one can reason that p,(t) should decrease like 1/ for
d=4 and like 1/f for d =4. The standard logic is that if one “‘neglects” the
diffusive fluctuations in the number of the two types of particles present in a
local region, as can be achieved physically by vigorous stirring, one can treat
the positions of particles for the two types as being independent. The rate at
which A particles meet B particles is then proportional to the density of each
type present. This gives the “law of mass action” or mean field behavior

d
“pd%([) = —kp,(t)pg(1) (1)

for appropriate k> 0. Since p,(f) = pg(t), we have for the solution of (1)
pa(t)=1/kt, for large ¢. (2)

We use the following convention regarding “=~ and *“~”: by a(t) = b(t) we

mean that a(t)/b(t)—1 as t—w, whereas by a(t) ~ b(t) we only mean that

these functions are “close” — a(t)/b(r) is of magnitude 1, or when appropriate,
log a(r) /tog b(t) is of magnitude 1.
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One can, on the other hand, also reason as follows. Let D, denote the cube
of side R which is centered at the origin. Also, let

9D, (1) = (#B particles) — (#A particles) at time t in Dy, . (3)
We denote by 7, the stochastic process which behaves the same as &, except

that particles merely execute random walks without interacting (annihilating)
when meeting other particles. It seems reasonable to guess that

o

E[|D(t; €)= D(0: )]~ E[|Dp(t:1) = D (0: )] (4)
for large R. It is not difficult to show for r, = r that

E[|D(t:m) = Du(O:m)]] < € VTR (5)
for appropriate C, ,. Hence if one believes (4), then

El|(t; €) = 2,05 )] < C TR (6)
But for r, = ry.

E[|2,(0; §)|] = Cz.,/\/KR‘“: (7)

for appropriate constants C, ,. That is, there is a local fluctuation in the
numbers of the A and B particles. By (6) and (7), ‘

E(|2(t; E)]]2 C, VTR = C, v PRV (8)

Now choose R at time ¢ to be R, = aVt. For a large enough, (8) is at least
bv/FR"? for some b>0. By symmetry,

pA(t) = %Rl_dE[

%y (85 )]
Plugging in the bound for @, (¢; £) and substituting for R,, we obtain
pa(t)= vt (9)
with ¢ = b/2a""
One needs to reconcile (9) with (2). The standard heuristics are that the

term (9) measuring local fluctuations dominates in d <4, whereas the mean
field limit in (2) is accurate for d =4. The densities p,(¢) and py(r) should
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therefore decay asymptotically like ¢~“'* for d <4 and t™' for d =4. Our first
result verifies this behavior.

Theorem 1. Assume that the initial measure is Poisson with r, = r; > 0. There
exist positive constants ¢, and C, such that

CaV 7',\/[[1/4 < pa(t) = py(0) < Cpvry/ e d<4,
VTRV D)1=, (0= py(0)= v v Die,  d=4, (10)
Ctl/rsp/\([):ph([)sCtl/[’ d>4’

for large enough t. ((a v B) denotes the least upper bound of a and B.)

Presumably, (“*p, (1) in d=<4 and tpo(t) in d=4 have limits as (— o,
although our techniques do not show this.

The asymptotic densities given here share certain similarities in common
with those for two related simpler models. As done here, one can define a
process consisting of particles on Z* which execute independent simple random
walks except when two particles attempt to occupy the same site. We now
assume, however, that there is only one type of particle (say A), and that when
two particles attempt to occupy the same site either (a) they coalesce into one
particle and afterward behave as just one particle, or (b) they annihilate one
another. The first model can be interpreted as the chemical reaction A +
A— A, and is called coalescing random walk, while the second model corre-
sponds to A + A—»inért, and is called annihilating random walk. For each of
these models at most one particle is permitted per site. It is most natural to
consider the state where all sites are occupied as the initial state although the
same limiting behavior holds for a much larger class of states.

The coalescing random walk is attractive. This says, basically, that adding
more particles to the system initially will not diminish the number of particles
later on. It is also the dual of the voter model. (Liggett [9] is the most complete
general reference on interacting particle systems. Griffeath [10] and Durrett
[11] are also useful references and emphasize the role of duality.) For these
reasons, it is possible to analyze the density p(¢) and show that p(t)=

[Y(Igll([)] - Where

Il

Vt, d
g,()y=1tllogt, d
t, d

(11)

i
W N =

W

and v, are appropriate constants. In particular, y, = V@, v, =w. The case d =1
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is easy and is an application of the above duality and the local central limit
theorem. For d =2, see Bramson and Griffeath [12]. The annihilating random
walk can, it turns out (Arratia [13]), be compared directly to the coalescing
random walk. Let p(t) denote its density. Since p(t)/p(t)— 1/2 as t— , one
has 5(f) =~ § p(t). Note that for coalescing and annihilating random walk, d =2
is where the crossover in asymptotic behavior of p(r), p(¢) occurs, rather than
at d=4 for A+ B—inert. This is connected in the first case with the
recurrence of random walk in d <2 and its transience in d > 2.

3. Uneqnal densities

For p,(0) < py(0), the asymptotic behavior of p, () should be quite differ-
ent. Since lim,_,.. py(f) = py(0) — po(0)=ry, —r,=b>0, there is always at
least density b of type B particles in the population. The density p,(¢) must
therefore decrease much more rapidly than if p,(0) = p,(0). From (1), one
would obtain

PO o+ 0] 0. (12)

Consequently, one might expect that
pA([):pf\(o)evk[bﬂhmml ‘ (13)

On the other hand, as in the case p,(0) = py(0), local fluctuations could
conceivable alter the relative proportions of type A and type B particles
locally, and cause a different rate of decay. Presumably, as before, this change
would be associated with lower dimensions. There are various different
conclusions in the physics literature. In ref. [4], we show the following:

Theorem 2. Assume that 0<r, <rg with the initial measures given before.
There exist positive constants A, and A, such that

exp[— Ay, g.()] < pa(r) < exp[—A,9, 8.(1)] (14)

for large enough ¢, where g, is defined in (11) and

| (rg —rA)Z/rB , d=1,
¢“_{r3—rA, d=2. (15)

The mean field limit is thus valid for d =3, but not in d=1,2. The
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dependence on initial densities is different in d =1 from that in d > 1, which
corresponds to (13). The reason is the presence of greater fluctuations ind = 1.

The methodology employed for theorems | and 2 involves in both cases
different estimates for upper and lower bounds. Lower bounds for r, = ry in
d <4 are obtained via the reasoning outlined in (4)—(9) and is quite simple.
The mean-field lower bounds in (10) turn out (unexpectedly) to be much
trickier: they ought to be fairly obvious on an intuitive level because of mean
field reasoning or any of a number of other comparisons (for instance, by
anticipated negative correlations between unlike particles at neighboring sites
or by comparison with the model A + A— inert). We have been able to show
this bound, but only by less direct reasoning. The reader is invited to come up
with his or her own simple (but rigorous) argument!

The upper bounds for r, = r can be derived together. A substantial amount
of work is required here. One creates a mechanism that enables one to show
that no matter what the configuration of particle types is at a given time, there
is enough mixing occurring so that at future times the particles have been
redistributed and their densities have decreased correspondingly. This reason-
ing involves ordinary differential equation like comparisons; it has already
been applied in a simpler format in ref. [12]. The derivation of the lower
bound for r, <ry is relatively easy if one neglects the dependence on r,, rg,
but requires more work as formulated in (14) and (15). The derivation of the
upper bound is more difficult and requires different techniques for d > 1 and
for d=1.

The case r, <ry can be contrasted with the case where the B particles are
fixed. In that case a result from Donsker—Varadhan [15] shows that the density
of A particles, denoted by p, (), satisfies

d/¢1+2) i

pat) ~exp(—A,t

for all d (~ here means that upon replacing A, by A, * €, one obtains upper and
lower bounds). '

We conclude by noting that there are all sorts of related models and
variations of A + B-»inert about which one can ask questions. For instance,
what is the asymptotic behavior of p,(f) for A + B—inert with r, = ry as in
theorem 1 but with B particles stationary? One can introduce the model with n
types A, ..., A, which satisfy A, + A= inert for i # j; the model reduces to
our case for n=2. Avraham and Redner [5] have derived an interesting
formula for p, (¢) under p, (0) =+ = p, (0). One can also ask more detailed
questions concerning the local structure of processes. One can show that for
A + B—inert, there is more clustering in low dimensions than a high dimen-
sions with A particles or with B particles dominating local areas [16]. This type
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of question becomes particularly interesting when particles are introduced into
the system (e.g., at a steady rate) to compensate for the depletion which is
continually occurring, say, in the model A + B— inert. It seems that d =2 is a
critical dimension in the sense that for ¢ <2 (including the Sierpinski gasket in
d = 2) local clustering becomes more and more pronounced at t— o, whereas
for d >2 it does not. (See for example Lindenberg, West and Kopelman [5].)
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