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Micrdscopic origin of hydrodynamic
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Abstracl.  We study the relation between the microscopic dynamics of sysiems of
particles and the hydrodynamic laws they obey on a macroscopic scale. Our focus is
the steady state of particle systems in contact with reservoirs at different values of
temperature, chemical potential. etc. The validity of the stationary transport Jaw in
this case presumably requires some features of “stochasticity"” or “chaos™ in the mi-
croscopic dynamics. Here, we incorporate such features by hand by considering actual
Stochastic dynamics, in arder to concentrate on the essential aspects of the transition
from microscopic to macroscopic. As further simplifications, we study discrete sys-
tems on a lattice. Modeling the reservairs by appropriate stochastic boundary dynam-
ics, we show there are unique stationary distributions. These stationary ensembles are
further shown to have a certain canonical form, especially promoted by Zubarev, from
which the proper macroscopic transpart law may be inferred. We next define and
- study the microscopic entropy production for our models. In particular, we show there
is also. a unique state of minimum entropy production and we study its relation to the
unique steady state, well known as the principle of minimum entropy production.
Finally, we review the rale of entropy production in recent progress on the proof of
hydrodynamics for stochastic madels and in the characterization of the steady state by
a variational principle. .

1. Introduction

The subject of this article has a history which predates by some time the
“standard™ subject of this conference, the origin of chaotic behavior in
systems with few degrees of freedom whose dynamics is governed by
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308 Microscopic origin of hydrodynamic behavior

simple, deterministic equations. We want to discuss instead the origin of
collective, orderly behavior of macroscopic matter described by simple
deterministic equations, from the chaotic, essentially random motions of
the atoms or molecules which are their microscopic constituents. To put
it in another way, we investigate the connection between the motions of
atoms whose mean free paths are typically measured in angstroms and
hydrodynamic behavior usually observed on the scale of millimeter or
larger: a ratio of macro to micro scales of at least 10°, We shall generally
call the spatial ratio e~ .

Now it is a remarkable fact that there is a hierarchical structure in
nature which makes it possible, even necessary, to study differént Tevels
independently. This explains how the hydrodynamic equations of fluids
could be established before the atomistic structure of matter was ‘fully
understood and survived intact the transformation from classical to
quantum mechanics. The macroscopic level of description is a “con-
tracted” one, involving a small number of local variables that very often
correspond to the microscopically conserved quantities of the underlying
dynamics.* Nevertheless, the problem of explaining how such a “con-
tracted™ description can be a closed and causal one, dubbed by G. E.
Uhlenbeck the “macroscopic causality problem,”! is not fully elucidated
even today.

Important progress on this problem has been made in the past several
years in the case where the microscopic dynamics consists of particles
randomly moving on a discrete lattice with some stochastic interactions.
We refer the reader to several recent review articles on the derivation of
time-dependent macroscopic equations from microscopic model systems
(Refs. 4-6). Here, as indicated by the subtitle of this article, we focus on
another aspect of the problem: the connection between the microscopic
and macroscopic descriptions of nonequilibrium stationary states, In
such systems, steady currents are maintained by contact with infinite
particle and heat reservoirs (*‘heat baths™). There is also in such systems
a continuous, time-independent production of entropy. In fact, the en-
tropy production has been found to play a crucial role in the analysis of
these states. It has been known for a long time, cf. Prigogine (Ref. 7),
that stationary nonequilibrium states—at least in the linear regime, close
to global equilibrium—are characterized at the macrascopic level by a
minimum of entropy production, compatible with the external contraints

"There are model systems, such as the voter model, for which there is a hydrodynamic
description even without a conserved quantity?; in realistic systems, hydradynamic
Goldstone modes do not correspond to a microscopic conservation law.
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imposed on the system. More recently, entropy production has appeared
as the key technical tool in the method of Guo, Papanicolau, and Varad-
han for deriving hydrodynamic limits of particle systems with stochastic
dynamics.! This method has subsequently been adapted to study the
hydrodynamics (more properly, “hydrostatics”) of the steady states of
such systems interacting with model reservoirs.’ Here we shall discuss all
of these connections, not anly because of the permanent value of what has
been already discovered, but also because of the promise these ideas and
methods have for future work.

In Sec. 2, we introduce the stochastic, interacting particle models
.which are our object of study. With reservoirs modeled by appropriate
stochastic boundary dynamics, these systems are shown to have unique
stationary states. These stationary ensembles are further shown to have a
certain “‘canonical” form, analogous to the Gibbs formulas for the equi-

librium ensembles. In Sec. 3, we define the microscopic entropy produc-

tion for our models and establish its chief properties. It is shown that
there is a unique state of minimum entropy production, and the gonnec-
tion of that state with the steady state is studied both at the macroscopic
and microscopic levels. In Sec. 4, we disciiss in an expository, nontech-
nical way the recent progress in applying entropy production arguments
to the proof of hydrodynamical limits. We also describe briefly how the
principle of minimal entropy production should play an important role in
removing a major technical restriction of the present proofs. Finally, we

briefly review the current status of proposed variational principles for
nonequilibrium steady states.

2. Steady states of particle models with stochastic dynamics

The mathematical models we consider are of a type which have been the
subject of intense scrutiny for the past several years (for a review see

Refs. 4 and 5 and, for the latest complete exposition, the monograph of
H. Spohn®). These are discrete lattice systems with stochastic dynamics,
which arguably play the same role for nonequilibrium statistical mechan-
ics which Ising-type models have played for equilibrium. To be more
precise, the models we consider in our context are continuous-time Mar-
kov processes on the finite state space 0 = {0,1}*, where
A= ([—MM].NZ)? is a cubic lattice of (2M + 1) sites, Here, the
ratio of scales parameter € = M~ !, The components 7(x), x€A, of the
state vector neQ denote the occupation numbers of the sites x
(1 = occupied, 0 = unoccupied). To specify the dynamics we prescribe
rates c(x,y;m), xpeA, c(x7), xedA={x: x;=+M)}, where c(x,y;m)




70 Microscopic origfn ofhydmdynamic behavior

gives the probability per unit (microscopic) time for a partic‘le—hole £x-
change between sites x and y and c(x,7) gives the corresponding rate for
particle creation/annihilation at a boundary site x, Then, the evolu?lo_n of
any random variable for the systems is given by the Markov semigroup
(e"™f)(n) = E"[ f(,)), with '

(LMf)(n)=% S clxyn) I (n?) - f(m)]

xJeA
+ T cum ) —f£(m) @an
XedA

defining the generator of the process. In Eq. (2.1) 7™ denotes 7 with the

occupancies at x,p interchanged and 77* denotes 17 with the occupancy at

the single site x switched (0« 1). ) .
For simplicity, we shall choose here the exchange dynamics to allow

only nearest-neighbor jumps: i.e., ¢(x,p;n) =0 unless |x — y|=1.-More

- essential restrictions on the exchange rates c(x,y;n) are the following:

(a) Finite range: c(x,y;7) depends on 17 only through

() 12— x| <R.|z— y| <R},

(b) Translation-invariance: Let 1, be the shift by aeZ? on

7 T(x) = n(x — a).

Then, for all x,peA, 7€), acZ’

c(xym) =c(x + ay + ar,n) (22)
for |(x + a), =+ M| > R, |(y + a), £ M| > R. We adopt periodic
boundary conditions except in the 1-direction. : .

(c) Detailed balance: We associate to each configuration 7€ an en-
ergy H(m) 50 that

c(xym) =c(eym?)e = Befm (2.3)

with (A, H)(n) = H(n™) — H(n). We assume here further tl‘\at
H(m) is defined in terms of a finite-range, translation-invariant potential.
(d) Nondegeneracy: :

claym) >0 for  n(x)£n(). (2.4)

The exchange rates «¢(x,ym) in the boundary regions .

[x;=M|<R, |y;=M|<R may be chosen arbitrarily subject to condi-
tions (a), (c), (d) [i.e., (b) is not required].

The bulk dynamics we have defined clearly conserves the total particle
number:

xeA
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The boundary rates c(x,ﬁ). on the other hand, correspond to particle
creation and annihilation at the sites x: x;==%M. They represent in an
idealized way the interaction of the system with infinite particle reservoirs
in equilibrium at chemical potentials A+ and are thus required to satisfy
the detailed balance conditions'"

c(x,n) =c(§t;;r)‘)e ~(AcH () + A () —21;.1' x= ( =|=M, xl) (2.6)

with (A, H) (n)éﬂ(-rf)_ — H(7) and /1(*”_,1, = A.. We also assume
for these rates the finite range condition analogous to (a) above, and
nondegeneracy: ¢(x,1) >0 for all xedA, nef). However, we make no
further assumptions or special choice for the boundary rates.

With our assumptions on the rates, particularly the nondegeneracy
conditions, the state space -forms a single ergodic class and standard
theorems on stationary Markov processes with finite state space (see, for
example, Ref. 11) imply that there is a unique stationary probability
measure u,, on {2, which, in fact, is approached at an exponential rate
starting from any initial configuration nesd. '

We would now like to discuss the expected macroscopic behavior of
this model. That is, we wish to understand the large-scale structure of the
stationary measure in the hydrodynamical scaling limit as e=1/M <0
(see Refs. 4-6). A particular object of interest is the expected value of the
particle number current:

Jry(M=cxym) [9(x) — n(p)) (2.7)
in the stationary measure. Note j,,(7) gives the systematic part of the

particle transport from site fx to p per unit time in the configuration 7.
According to Fick’s law of diffusion, the steady-state current at the mac-

roscopic point ge[ — 1,1] should be related to the local density gradient as

S dp(q)
.!p(q)— —D;A\'[P(q)] ?» (2.8)
where D, is the bulk diffusion (matrix), which depends only on the local

density. To prove Eq. (2.8) for our microscopic model, we should estab-
lish the hydrodynamic limit:

i - i € apss
lim € l</l?‘ Iohie ~ Yal + ¢, )ss= — D11 [p(g) ] 59_. (9).

€-0

(2.9)

We have denoted expectation in the stationary measure u<, for system
size M = €~ ' by ()%, The macroscopic density profile p,,(¢) on [-1,1]
appearing in Eq. (2.9) is the stationary solution of the nonlinear diffusion
equation:
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d d a :
E;P(qrt)r‘w Dpv[P(q)] E\'-P(q) (2,10)

[obtained by substituting Eq. (2.8) into the continvity equation
dp(q,1)/dt = - 3j,(g)/0g,), subject to the boundary conditions:

Here, p(A) gives the usual thermodynamic equilibrium connection be-
tween chemical potential and density for the statistical mechanical sys-
tem with Hamiltonian H(%) as above. That is, restating the above, sub-
Jject to Eq. (2.11),

] d '
3 |Pwlpul®] 35 palg) | =O. (2.12)

Notice that Eq. (2.9) contains, in particular, the statement that
(irlle~'g))E ~const X e, which is often called the property of normal
transport.

To make a connection of these macroscopic considerations with the
microscopic model it is useful to introduce certain explicit formulas for
the stationary measures pug,. The expressions of the sort we shall discuss
were discovered nearly simultaneously 30 years ago by several
authors,'*"!* and have since been plausibly argued to represent the analog
for the nonequilibrium steady state of the Gibbs formulas for the thermal
equilibrium state,'>'® For the derivation of these formulas, we consider
any smooth chemical potential profile A(g) on [—1,1] with
A(x1) = A, [the stationary profile 1,(g) would be most natural, but
any other will do as well]. Then, for system size M, we write 1, =2 (ex)
for each lattice site xeA. If L}, is the adjoint of L,, with respect to
counting measure on £, then the convergence theorem cited above and
the fundamental theorem of the calculus give

He(m)= lim (eip,.) () =p,.(n) + fw dr(e™™ L) ().,
I+ 0 ) (213)

where 11).(7) is the local equilibrium distribution:
1 . .
——— o~ H(Y + X A A y(x)
tidm =z e (2.14)

formed from A,. Of course, Eq. (2.13) is true with any initial prbbability
measure u, replacing u,,. However, for yuy = p,, an explicit calculation in
our model gives

(Line) (M) =g (n) (VA-T) A (), (215)
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- with
(V}.'I)A(Tl)= xg\. (’1.\'4-:'—)'1)’:..\';1'(77)
| x4 e€A (2]6)
and
(A, & =AMy - Ty o)
'1(,.,+,|,(_7;)=c(x,x+e,;‘q)(e : i
' Ax+e| _/1: ) (2.]7)

Note that 7 ) =
1 o ;x’;;‘;;}i(? , Jx.x+r, (“'}) + 0(V4), so that we refer to
(hx +e,) ed current. Notice, if (-),, denotes expectation with

respect to u,,, then by exvploiting detailed balance / xx + ¢, has the prop-

-erty:
iy ep)1e=0. (2.18)
N . . - ‘ |
_Thl’ls, we arrive ﬁnally_. at the expression:.
Bau(m) =1,,(n) + f " dtletiy, (VA1)
] o 1 I\] (77)‘ (219)

| :\'le xzzfer' to sucfh formulas for the stationary measures Ky as the Zubarey
istri utn.ons, since t.hat author, in particular, has advertised them and
systematically exploited them over the years.
_To Investigate the normal transport
stitute into ()., given by E
- & q. (2.
Jar/|A| with .

properties of our system, we sub-
19), the bulk-averaged current

' ‘,AI(TI)-': Z jx.x+e,(77)-
- ‘ XEA,

X 4 e €A

(2.20)

Just because K, is a local équilibrium distribution, we find that

i {-’A.l)‘- 1

im{——) = [

c.ollA]], T2 f , e dacor (2.21)
In fact, Eq. (2.21) vanishes, since { j, ,
therefore interested in the next-order
ing the explicit expression for Hie
ties, we can prove further that

= 9 by dctailed balance: we are
er correction to this limit, By exploit-
and its good spatial Clustering proper-
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Jaglt 111 ' ,
i Ly D=1 R .
PT} ¢ (‘A ' )1.—2 -1 44(8:4) () xgd x1 (o, i@

1 '
=—s f dg(3,A) () (c(0,e5m)) acqr (2.22)
-1 ] .

where the second equality again follows from detailed balance. Tbe‘sec-
ond term in Eq. (2.19) is considered similarly. Ignoring for the moment
the time integral, we note that

] R
lim €= 1((DA-T) pelW, )¢ = f dg(dA) (@)

€—~0

X gd (Jj(xx + e)eMj(0,e,)) 1)

)
Here we have introduced the generator L for the infinite-volume, bulk
dynamics, defined for strictly local functions f by :

! " -
LN=3 T, cxrmlfa =] .,

To prove Eq. (2.23) we exploited again the good spatial decay.propertics
of p1,,, the quasilocal character of (e*'f)(7) for local functions f and
finite times, and the good convergence of the finite-volume dynamics to
the infinite-volume dynamics at finite times, as expressed by an inequality
of the form:

sup | (e"f) (ny) — (€f) (n) | <const|||Al] |exp[ Ct + M log(Ct)
]

— M log M}

(2.25)

(see Ref. 17). Here, 7,, is the restriction of the infinite-volume configu-
ration 7 to the finite-volume A and |||*|j| is a suitable norm. Let us
assume that the expression €~ '((VA-I) ,ek¥'J, )¢, is integrable in ¢ uni-
formly in the system size M. Then, we may apply dominated convergence
to infer that
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JAI

.o € |
ﬁme"(m) - f .ldq(a.zt)(q)[; (021 11y

(€0

- J' dt T Gl +e0ei(0e0) i
) xef!

1
- f ~,493p) ()P, [p(9)]

(2.26)

The last equality involves a change of variables from the chemical po-
tential A(q) to the density p(g), and the diffusion constant D, (p) is
given by

1
D“(p)EEATP). (C(-0,8| ) )P .

. R . Li; .
) _X(P) -f; dl "g..d (J(X'X+e|)e .’(O’el))pv (2.27)

where x(p) = [A'(p)]~ ' is the equilibri\.xm susceptibility. Hence, we ar-

-Tive at a bulk-averaged form of Fick's law [Eq. (2.2)] with an explicit
‘Green-Kubo formula [Eq. (2.27)] for the bulk diffusion coeflicient
Dy (p). We remark, as an aside, that this bulk-averaged form is indepen-

dent of the particular smooth profile p(q) chosen to interpolate between
p_ and p. . However, if we choose P=pw then j (q) =
— 01p4(q) D\ lp.s(q)] is, in fact, independent of g by particle number
conservation and, likewise, (J5 /|A])S = (i ([e~ 'g1))¢, so that Eq.
(2.26) is equivalent to a Jocal statement:

lim (2¢) - l(jl(if" Iﬂ)):x= ~ Dy lp(9)18,p.:(q). (2.28)

€=0) .
The bulk diffusion coefficient D,,(p) as given by Eq. (2.27) can be shown
without difficulty to be non-negative (see Refs. 4 and 6). The above
argument thus establishes a normal transport property for these systems
and, further, Fick's law as an asymptotic statement. :

We emphasize that our derivation of Egs. (2.26)-(2.28) is based on
the assumption of the integrability of the finite-volume Green-Kubo in-
tegrand in Eq. (2.23) uniformly in the system size M. It is an eminently
reasonable assumption: for each fixed M, the integrand in fact decays
exponentially in f and, further, the non-negativity of D implies automat-
ically [cf. Eq. (2.27)] the integrability of the infinte-volume integrand
= reze j(x,x + e,)eij(O,e,))P. Therefore, one expects that the time de-
cay behavior of the infinite-volume integrand will dominate uniformly the
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finite-volume integrands. However, this must be proved. We want to
assert, on the other hand, that we are not concerned here with a mere fine
point of rigor, but a real issue of physics. Indeed, the “derivation” of the
transport law we gave above may be repeated in a nearly identical fashion
for actual Hamiltonian mechanical systems,'*'® much of it even in a
rigorous fashion.'® However, that “‘derivation” applies even to a system
such as the harmonic crystal which is known nor to have a normal
transport property.'® Therefore, our assumption is certainly false in that
case. What goes wrong there is that even the infinite-volume Green-
Kubo integrand is not integrable in time: in fact, it tends asymptotically
to a nonzero constant as t— + co. The problem of establishing decay laws
of the infinite-volume Green—Kubo integrands is a notoriously difficult
one and at this stage it is not understood at all for real systems what
dynamical properties could guarantee the validity of our assumption.
What one can do with the Zubarev distribution is to give a natural
condition which is apparently sufficient (for stochastic particle models,

actually sufficient) for the normal transport property: the integrability of.

the Green—Kubo autocorrelation function uniformly in the system size.

In Sec. 4 we shall review what is presently known rigorously about the
transport properties of our models. Under an additional technical restric-
tion, we shall state a theorem which establishes much stronger results
than the average transport law expressed in Eq. (2.9).

3. The principle of minimal entropy production '
There have been many attempts to theoretically define analogs of equi-
librium free energies for nonequilibrium steady states and to formulate
associated variational principles. Perhaps the earliest effort was the 1848
work of Kirchoff,?® in which the electric potential in a bounded region
was shown to distribute itself so as to dissipate the least possible heat for
given voltages applied on the boundary. This was an example of what is
today termed the principle of minimum entropy production. Other such
examples in disparate contexts were discovered by Helmholtz, Rayleigh,
and Lorentz, but it seems to have been Prigogine, in his treatise on
irreversible thermodynamics,” who first formulated the principle in a

general way. (For a historical review of the principle, se¢ the paper of E.

T. Jaynes.?') We shall study here the principle in the context of stochas-
tic lattice gases.

To analyze the entropy production of our model, it is important to
remember that our system is in contact with a thermal reservoir (at

uniform inverse temperature B=1) and also with particle reservoirs at
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the boundary with chemical potentials A ... One cannot, therefore, expect
f}f‘“ the entropy production of the system alone will necessarily be l:.os-
itive. After all, it iﬁs‘guite possible that, depending on initial conditigns
’the system .willv on the average transfer entropy to the reservoirs (e i;'
Athe:system 1s stafted at a high temperature). It is only the rotal cntf(:
which can be expected to increase. The entropy change in the thermpa];
feservoir equals the amount of energy transferred to it, divided through
by its absolute temperature. Likewise, the entropy change in the particle

‘reservoir equals the number of particles transferred to it, multipl; i
“chemical potential” A, = Bu, . Thus, moliplied by it
o=Zu_ s _pi
- dt - _ﬁ +A+J+ +A-J—l (3_])

where J,, are the particle fluxes into the

reservoirs. Microscopi
have, therefore, opically, we

d . | d
olul=~— % u,(n)logu,(n)lmo—z % B (MH(M) |10

+A, X (g)+4_ J
e 2ut, %’.u(n) —(m). (32)

Here, u,(7) is the solﬁt:ioh of the “master equation:

d
art(m=Ly) ()

1 )
5 N%‘ (O™ (™) — e(xpimip,(m) ]
le—pl=t

+ Ea‘A leCem ™) — clxmp,(m)], (3.3)

with pg =, and the boundary currents J, are defined by

Ji(n)= ;-; g:*M ce(x,1) (29, —1).

(3.4)
An explicit calculation yields-
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l X X,
olul =g ,jEA %[dx,ymy)ﬂ(n’)
&~ yl=1

c(xy;n?)pu(n™)

— c(xy;n)p(n))log c(xynu(n)

lc(xvnx)y (Tr‘)

+% 2 2 (elxn™)n(n") — clxnu(n))log cCxmu(n)

xedA 7 '

=% 2 X clxym et AUy —p(n)]
I P

edsH My ()
m(n)
+_l_ Z 2 c(x.n)[eA,H(v)+A,(2n,—ll“(nx)_H(n)]
2 xedA 1 .
eA,H(q)+A,(2q:—I)F_(nx)I

u(n)

The entropy production functional given in Eq. (3.5) has st;me tl'm-
portant properties, which we point out. We note that the/l Fun;: 1}:;:
F(z)=F(x,y)=(x —y)log(x/y), satisfies F(z.)>0.'F(Az)= (z o
A>0, and F(2) is convex. The functional o{u] inherits these properties:

Xlog[

(,3.3)

X log

(1) (positivity) ofu)>0 ED

(2) (homogeneity) o[du]=Aolu], A>0 (3.7)

(3) (convexity) ofAp; + (1 —A)pu,l<dofu)) + (1 — Dolu,), 38)
for 0<ALL. (3.

is defined on 2, the set of non-negative measures on {O,l}".
Il\.t)tte.a;hall)tec:lllseﬁ::lcsed convex subset of probability ,Ineaslxres on '{0,1}".
Then, 2 = {ue? |u(n) =0 for some 7e{0,1}"}. Since o is }u;-
negative and convex, it achieves a minimum on every closed subset of 4:
in particular, on 2. Furtherm(;re. we:.9 ou7l‘)serve |

i .ojug)= 4 o for pyed?. .

::ggzs;t;;':):se t[ﬂt u(n) =0 for some 7. On the other hand, there
must be some configuration, £, with u(¢£) >9, and furthermore a se-
quence of allowed transitions [i.e., exchanges with ¢(x,p) > 0 or creation/
annihilations with ¢(x) > 0] such that

N=Np—~M—T— " =M1~ M=6. (3.9)
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There must exist some .i such that u(7,) = 0 but Bmn:.0) > 0.

“ Suppose, e.g., the transition M= 4 1 is via an exchange of occupancies at

X,y (the argument is the same for a creation-annihilation transition).

Then,

e Wy, 1)
H(m)

cOapsm) [y (g, 1) = u(n) llog[ .
L (3.10)

Since all the terms:"ovf ofu] are non-negative it follows that

ofu]l= + .|

. - There are certainly u for which ofu] < + o, so Proposition 1 has the

implication that the minimum ‘entropy production is achieved on the

. dnterior Int 2 of 2. Furthermare, we have

Propositien 2. o is strictly convex on Int 2 .

_ Proof: Note Flizy + (1 —A)z)=AFz) + (1 — A)F(z,) for
D<A<cliffzy=0,2,=0 or z) = az, for a > 0. Hence, for u,,u,¢ Int 22,

ofApy + (1 = A)uy) #Ad[ﬂ.] + (1 -~ A)ofu,) withO <l <1 implies

T [ (T20s (M) Y=gy (1) [t () pay () | (3.11)
for all n,x,y such that c(x.y;ﬁ) >0 and
O (M ) =) [y (77) s () ] (3.12)

for all ,xedA such that ¢(x,m) > 0. Since, for any .1, there exists a
sequence of allowed transitions 71—+ —{ and since for each transition
T=Mien, MM Ma(m00) = py(n)/uy(n), it follows that
#1(1)/5(7) = const independent of 7. In fact, 4, = u, by the normal-
ization condition.l A '

By Proposition 2, there is a unique p..€Int 2 at which the minimum
of o is achieved. Since there is also a unique stationary measure
Hs€Int 2, it is tempting to conjecture that u,,;, = My unfortunately, this
is almost never true. Nevertheless, there is a relation between the station-
ary state and the state of minimal entropy production, well known in
linear nonequilibrium thermodynamics as the principle of minimum en-
tropy production.’? Remarkably, this principle holds not only at the level
of macroscopic thermodynamics (as a direct consequence of the Onsager
reciprocity relations), but also for microscopic probability measures. (To
use 8 common terminology, it is a level-3 principle, not merely level-1.)
We now discuss this.connection, first, at the macroscopic, hydrodynam-
ical level and then at the microscopic, statistical leve] of description for
our model. ’ ‘
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The steady-state density profile of the purely diffusive systems we dis-
:uss is given at the macroscopic level by the solution of the nonlinear

ransport equation (2.12):

.9 0 '
Ea' [D[p,,(q)] Eapu(q)]=0' (3.13)

with boundary conditions p ( = 1) = p .. Here, it is convenient to work
with the equivalent equation for the chemical potential profile:

F) ) '
5| D At a—q«l..(q)]=o, (3.14)

with boundary condition A,( = 1) = A, (y is the equilibrium suscep-
tibility, y=dp/dA). On the other hand nonequilibrium thermodynamics
gives for the entropy production of this system (in terms of the chemical
potential): o

1 d 2
o[A]= f_ . dq(xD)[Mq)l[qu) . (3.15)’

Note that this functional of the potential profile is given as an integral
over a local entropy production without reference to the particle reser-
voirs. The macroscopic profile which minimizes the entropy production
is given by the solution of the equation: : RS

%0 Al =(xDY(A 2 @]
SZ'('q_)'[ min]—(X )[ min(q)][aq min(q ]

d 3 ‘
—ZEE. (XD)[Amin(q)]EaAmin(q) =0, (3.16)

.Clearly, Eqs. (3.14) and (3.16) are distinct, unless the Onsager coeffi-
cient yD is independent of the chemical potential A, a sitvuation which
rarely (if ever) occurs in practice.

On the other hand, even if yD depends upon A4, we may always con-
sider the situation where the deviation from global equilibrium is small,
ie.,

As=A%§, (3.17)

and expand both profiles in the small parameter §: ' :
A=A 4264208+ ..., (3.18)
AR =2+ -6 4+22 .82 4 . (3.19)

We have anticipated that to zeroth order in 8, both A and A, are, of
course, given by the constant profile A(g)=A. However, also_to first

order in 5, we find that \

. which incorporates the normalization constra

-inequality:
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(1 __2(1)
A=A (3.20)

bo@h being given by‘bthe‘ solution of the Laplace equation:

(A" (g)=0 (3.21)
in [—1,1] with boundary conditions AV(£1) = 2 '
profile A"’(q)’=q.-- We observe that to second ord; the
.no. lqnger agree. However, the precise content of the
principle of minimum entropy production, which h
that ;he two agree to first order, i.e., Eq.'(3.20).

-~ Now let us consider the microscopic situation. Since the unique min-

‘imum of ofu) occurs at the interi i
. orof 2, it \
of the variational equation: may be found as the solution

, i.e., the linear
two profiles will
thermodynamic
olds quite generally, is

67 (

. Bpa(z) Hminmin] =0, _
where we have defined (3:22)
o {pmAl=olu) + [ - 1]

a %:#(77) , (3.23)

Pate int by the L i
plier a. Clearly. Eqs.»( 3.22) and (3.23) are cquiv:lent toagrange muld

bo TR
| W [ym;n]-=a",i" = const (independent of 7J. (3.24)
The value of the Lagran .

\ ge multiplier is eas ;
geneity of the entropy P Y 1o evaluate, since the homo-

production (3.7) implies the Euler relation:

o
olul= 2’: K(n) By (1]

_: (3.25)
_ Iogethcr, Egs. (3.24) and (3.25) yield
‘ . bo
a[ﬂmin] = A:.: Bmin(7) m [,umin] =a Z Hmin(7) = a. (3
oW " .26)
Hence, the variatjonal equation for Kmin becomes
' 6o
m [#min] =0[/~"min]- 3 27)

- Acrelationship between Hmin and ., can be inferred from the following

. b0 (L*4) (7)
;59‘:’,’;"[”»'2 wmy (3.28)
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which fc;l]ows from the explicit computation for our model:

u(n?)
LAV c(x,y'n)d’[ 1 — ebmHm——
Spu(m) [”]_2 x,él\ u(mn)
' s + A PO
+ 2 C(x,n)d’[l — e ol 629
xedA
with
¢(u)E:‘_0-g2L_l-:_—u—).>u‘ (3‘30)
In the case where o{gtm;s] = 0, Eqs. (3.27) and (3.28) imply that .
‘ (L*Hin) (1) 30. (3:31)
However, this implies, in fact, that
(L*imin) () =0, (3.32)
since conservation of normalization gives
2 (L*min) () = 0. (3.33)
N -
. 1=0, '
Thus, for oftmin) o o

iti = tially only in the case
, the condition ofuy;,] = 0 holds essen nl; ‘
of :i::;;:\eous equilibriuom. (')“l;scrve that from the definition (3.2):

H
olpu]= — 5'.:.(1—‘%)(11)[10&#.,(1;) + 1} - %(L‘un)(n) (n)

j (M7 - (1)
+A, %us,(n)n(n)wl_ Eﬂlu. n)j |
=(Ay =20 M) (3.35)
where, form = -M,... M — 1],

j(m) = - ‘x (17)'
fmm= X o (3.36)
xy=m

- o0 of
We have employed the consequence of stationarity and conscrvation o
particle number:

U= = ()= U™ (337)

explicitly indicated. Then,

and sb,forth.
variational equation (3.27) to 0(6) reads
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We see, in particular, that ol ] =0 implies either A, = _ or

( jm)),, =0, i.e., the equilibrium situation. This may be compared with

the macroscopic thermod:

ynamic situation. If ofu_,]> 0, no conclusion
may be drawn from the inequality (3.28).

Instead, we may proceed as before and expand in the parameter §,
-which- measures the deviation from global equilibrium. For this purpose
it is convenient to introduce the density fof the measure H relative to the

(grand canonical) Gibbs measure v, at chemical potential A: p= fv,. In
terms of the density f,

e 1 oy x f__(ﬂ‘“)
:fq[fl:Z ”{A (c(xw;n).[f(fl '")r—f(")]"’g ae)) )A

: _,
+3 I | Omeon-nsip _ gy

) Xlogrﬁ;(zm - !)f(.”x)“ (3.38)
and f(7) A s
bc

s U ’% Z, cCrm{SOr) ~ £
+ /() [log f(7™) — log £ (7)1}, (n)
+§l E%:A' B em) e @~V r(ny _ £(m)
+/ () [log f() — log f(n) + &,(27, — D1 valn),
N - (3.39)

ependence of the boundary rates has been

We may expand all quantities in powers of §
sight is analytic in 6):

where 6, =4, .y and the §-d
(for fixed M, everything in
’ =148 S 4 87D 4 ... (3.40)
e em) =c (x,n) + 8 c¢Mxy) -+, (3.41)

Now, it is easy to check that o £12] = 0(8%). Thus, the

(with €, = sgn x,):

1 1

r 2,\ ceam U mnl1™) = £ ()] +3 2 <Pm U
-".y‘ R XE

= foal1) + €(2n, ~ )] =o0. (3.42)
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We separate out the term:

2 e 2~ D=3 [/ Mxm) V(= M),
. X

xedA

(3.43)
To evaluate the difference in boundary currents, we use the conservation
law: e

L=~ B Joen (M) = Bepaed 1 (xim) = 8y, _ej - (xi7), (3.28)
yeA

to derive

L
Z UM xim) — (= Maxgm) )= Jpi(m) - Lo 2 ),
*1

(3.45)
with J, ; the bulk current in the 1-direction:
= - e+ 6 (M) -
Jaa(m) x%\ Jas+ ' (3.46)
X+ ej€A
This allows us to rewrite Eq. (3.42) as
1
Lo fmn)M=pz| =Taatm + Lo T xmels (347)

which has the unique solution:
1
.,.'33.(1])=% g‘ xi(nc—p) +% [C—Lo) = 'T5,1(m). (3.48)
We wish to compare this expression with the similarly defined quantity
SD for the stationary state. For this purpose, we regurn,to tl3e .Zubarsv
distribution (2.19) for any interpolating profile 1(& analytic in 6;‘m
particular, 11 = 1 + §-x,/M is convenient. If we expand the density

Jss in 8, we find from Eq. (2.19) that

1 l o Ly o
w(M=y gx xi(n,—p) +Mfo de(e'0J, ) (n). (349)

We observe immediately the identity of Eqs. (3.48) and ( 3.49), i.e,
1) _ D) » (350)

min 5

This is the microscopic version of the principle of minimum entropy
production, which extends the macroscopic version [Eq. (3.20)). Not

only the density, but a// the variables, will have expectations which agree
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“to first order in & for the two ensembles. Such a microscopic version has

been established earlier in the context of quantum systems weakly cou-

- pled to thermal reservoirs, 2 The present proof emends some errors in the

proof for a similar stochastic mode] in Ref. 24,

4. Entropy production and the hydrodynamic limi¢

Guo, P'apanibolad'u, and Varadhan® have shown that the entropy produc-
tion.[Eq. (3.5)] is a central quantity to consider for analyzing the hy--

niques to the static’méry hydrodynamics (hydrostatics) of the types of
“ models considered above.? We shall first state the, unfortunately restric-

tive, technical conditions under which the results in Ref, 9 are proved.

Then, we shall state the precise results obtained there. Finally, we shall
‘briefly sketch some of the ideas in the proof, '

- ... The chief technical restriction under which a hydrodynamic limit has

been proved is the so-called gradient condition 46 This states that there is

a bounded, local function 4 (of range R) so that the particle current is
given by

[here, () = 7:ho(7), etc.). This condition states that the microscopic
current is a gradient of a local function. This is already close to the
™macroscopic transport law: all that js needed is to replace the steady-state
expectation of 4,(7) by an appropriate function of the local density. We
may note that nontrivia] examples of rates which satisfy all of the im-
posed conditions, particularly the gradient condition and detailed bal-
ance, are known in one dimension only. Therefore, we restrict ourselves
to one-dimensional models. On the other hand, there is no restriction
there on_the interacti'ons. i.e, on H(n). For each H(7), it is always
possible to find rates satisfying Eq. (4.1), although the pradient models
are not generic. '

Now, with these,'admittedly heavy, restrictions, the following results
are established in Ref. 9:

Theorem 1. Let X‘ (¢) be the empirical density field defined by

M
X (¢)=ex=§M¢(ex)n(x) (42)
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for eC3[ — 1, 1] and P* be the law of that field induced by the station-
ary measure u;,. Further, let P be the law (delta distribution) of the
deterministic density field:

i
X(9)= f _ 998(@Dpu(e) $CTI-L1L g

where p.;(q) is the solution of the stationary transport equation (2.l2.).
Then, P is the weak limit of P* as 0. In particular, X*(¢) converges in
probability with respect to P¢ to the deterministic density field X(¢)
given by the stationary transport equation. ,
This result explains why, with overwhelming probability, the empirical
density in the steady state will be given by the solution p,, of the macro-
scopic equation (2.12). The proof in fact establishes a stronger reggl_tr:

Theorem 2. Let go(7) be any bounded, local function at the -origin,
X¢(g;¢) the empirical extensive field defined by

M
X(g:p)=¢ ZM d(ex)g,,

o (4.4)
and
1
Xg= [ g 6@ &My GECTI—L1L  (45)

a corresponding deterministic field. Denote by P the law of A"‘(g;cﬁ) and
by P, the delta distribution associated to X(g;4). Then, P, is the weak
limit of P, as €—~0.

As a corollary of this result one has also:

Corollary (Fick’s law and normal transport). Consider the bounded,

- local function ji(7) = ¢(0,1;9)(ny — m,), which is the (systematic)

current. Then the law of €~ 'X¢(j;:¢) converges weakly to the law of
X(id)=— f_,dgé(q)Dlp.(9)19p.(q); in particular, the current
field converges in probability with respect to uf, to the deterministic limit
given by Fick’s law. Furthermore, for every ge[ — 1,1],

lim €=y~ 'aD)e= — Dloa()10pule):  (46)

€-0

Finally, the strongest consequence of the entropy production argument is
contained in

Theorem 3 (L—local equilibrium property). For any bounded local
function gy(7),
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VT
lim . dq | (ge-1q) — (gO)p.,(q)|z=0' (4.7)

€-0 -
This result states that at most spatial points, the steady-state expectation
-of a local observable converges as €0 to the expectation in an appro-
priate local equilibrium distribution.
The proof exploits entropy production in the following way: it is first
shown that the total entropy production in the steady state js “small,”

:',i-C,. - .
; olu,1=0(e). (4.8)
This is a consequence of Eq. (3.35). Consider the current:
' : o MR
I =TG Ry %,y ser(M) 49)

averaged over the interior block [— (M — R), M — R]. By stationarity

_and conservation of particle number, as in Eq. (3.37), it follows that

O M= G (), (4.10)

On the other hand, by the gradient condition (4.1):

p - RO =By gy ()
Jaa(m)=— 2(M—R) : (a.11)

Because 4,(7) is a bounded function vniformly in x,

1
J'm.(n)=0(;{—) (4.12)

for every m and, thus, in particular, ( j (5))¢, = 0( 1/M) via Eq. (4.10).
This and Eq. (3.35) yield the required bound Eq. (4.8).

The point of this estimate is that, by subadditivity of the entropy
production, the marginal entropy production in any finite microscopic
block of sites is, at most, 0(€) [in fact, it is presumably 0(e?)] and thus
vanishes in the limit as €~0. Hence, by the properties of the entropy
production discussed in Sec. 3, the marginal distribution in that finite
microscopic block must converge as €~0 to a convex combination of
canonical Gibbs measures. By the law of large numbers and equivalence
of ensembles, this allows one to replace any sum function in a large
microscopic block by a suitable function of the (empirical) density. A
separate “two-block estimate” shows that the empirical densities in large
microscopic blocks which are macroscopically close are nearly equal, and
allow a similar replacement to be made in small macroscopic blocks. This
allows one to derive from the identities:




388 Microscopic origin of hydrodynamic behavior

Ly(x)=(Ah) () (4.13)
and .
' Lin(x)n()] = [Ln(x) 1) — 5(x) [Ln(p)]

=8y — Bey1ydelxx + ;) + (6,,— 6, _ we(x,x — Ly)
(4.14)

that, for any weak subsequential limit P* of F, )
SE*{ % [p(9)1}=0 (4.15)
and .

BB (R [p())p(p)} + FEp(@) h [p(p)]}=0  (4.16)
hold in a weak sense. We have introduced here the function of density

~

h (p)E(ho('q)),,, where the expectation is with respect to an infinite
Gibbs measure at density p. If one linearizes the latter equation around

the stationary profile p,,(¢) as o

p(a)=p,(q) + 8p(q), (4.17)

then one obtains, using also Eq. (4.15): T
TADpu (D) 1E* [0p()op(p) 1} -

+ 8,{Dlp.(p) )E* [5p(q)8p(p) ] } =0, (4.18)
which has the unique solution subject to Dirichlet boundary conditions
E*{6p(q)8p(p)]=0. (4.19)

In Ref. 9, a nonlinear version of the above argument is given which leads
to a similar consequence. Note that Eq. (4.19) implies that the density
profile p(g) in the measure P* is deterministic and given by p,.(g). That,
finally, gives Theorem 1. The other results of the paper can be deduced
from the above considerations with a little extra work. .

S. Concluding remarks

To conclude this paper, we would like to make a series of remarks on the
themes we have discussed, particularly to explain their importance for
future work. - ,
First, we point out that the principle of minimum entropy production
has relevance for the proof of hydrodynamic limits, in order to remove
the restriction to gradient models. It turns out that for nongradient mod-

. ‘the measure, byt

- bution arid minimum entropy product
" the local structure of the steady state

. in fact, to have the ne ion i
](__,c?l ot . | Xt-order correction in € to the
The form of that correction may be guessed from the Zubarey distri-

‘bution formula in Sec. 2. Choosing a smooth profile 4,,(q) and setting

- e = Ay(ex), we see that (V,1) = 0(e). Thus, we conjecture that, for a

bounded local observable &(n),

 lim €@~ otm),
S ey "

- {,',(q) E, X‘i-( [, ¥p,s(95]2()(n))pt‘,q,

S _/1,:‘(11) ‘]; dt Z ((eLlJ,,,§4. |)-(1})go(7]))p"(q)]=0, (5_])

' XEx

preprmtof S. R. S. Varadhapn,?®

, A second remark is that, in the book of Zubarev," 5 quite different

d;r(lg:oqal principle was proposed 1o characterize the nonequilibrium
fibutions, namely, a maximum entropy Principle modeled after the

one of Gibbs for the equilibrium distributions, It would, of course be

Here, we have insle@ad &aracterized the Zubarey distrib
order correction to local equilibrium, by a principle of minimum entro
p;oducnqn. We must ca.ution also here that we do not expect suchp:
:{ aal;::;:t::;:::‘n(;); to b.e V.a]ll.j for steady states of models with deterministic,
. GyNamics in interaction with stochastic r i st
;l;eze)n:;pvy lssf.leﬁned in .term's of the usual Gibbsian eis;::s(;li;sr; :; I:::asl:f.c;f
i(-s' 2 e. Since Hamiltonjan .dynamics conserves the Gibbs entropy
production in such models. will not have any bulk dynamijca] contri:

fon would not usefully characterize




390 Microscopic origin of hydrodynamic behavior

applies to systems globally near equilibrium. However, there is another
closely related principle which may, in fact, be an exact result even in far
from equilibrium situations. This is the principle of least dissipation, in-
troduced by Onsager in 1931, In contrast to Prigogine’s principle of
minimum entropy production, which attempts to characterize the steady
state by a static variational principle, the principle of Onsager is explicitly
a dynamical one. Although rigorous mathematical studies remain to be
done, the Onsager principle appears to be a viable candidate for the long

- sought generalization of the equilibrium variational principles to the non-
~ equilibrium steady state.”’
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