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Abstract—We present a novel heuristic “universal” formula for the scaled structure function following
a quench into the miscibility gap which gives very good fits to a variety of experimental observations. The
single adjustable parameter y needed to fit data for alloys, binary fluids, polymer mixtures and computer
simulation curves depends essentially only on the fraction of the volume of the minority phase. Minimizing
the ratio of “surface area to volume” of the minority phase predicts a rough morphology of the system—its
local character changes from spherical isolated droplets to interconnected plate-like objects as the minority
fraction increases. By relating y to this microstructure we obtain the value of y correctly to within 10%.

Résumé—Les auteurs présentent une nouvelle formule heuristique “universelle” pour la fonction réduite
de structure résultant d’une trempe dans la zone de non-miscibilité; cette formule donne un trés bon accord
avec un grand nombre d’observations expérimentales. Le parfamétre unique ajustable y nécessaire pour
réaliser un accord avec les données expérimentales pour les alliages, les fluides binaires, les mélanges de
polyméres et les courbes de simulation calculées ne dépend essentiellement que de la fraction volumique
de la phase minoritaire. En minimisant le rapport de “la surface au volume” de la phase minoritaire, on
prévoit une morphologie grossiére du systéme—son caractére local passe de gouttes sphériques isolées a
des objets en plaquettes interconnectés lorsque la fraction minoritaire croit. En reliant y & cette
microstructure, nous obtenons une valeur de y correcte a 10% prés.

Zusammenfassung—Wir legen eine neue heuristische “universal-”’ Formel fiir die skalierte Strukturfunk-
tion vor, die aus Abschrecken in die Mischungsliicke entsteht; sie beschreibt eine Reihe von experimentel-
len Beobachtungen sehr gut. Der einzige anzupassende Parameter y, der fiir die Beschreibung der Daten
fir Legierungen, binidre Fliissigkeiten, Polymermischungen und Computersimulationen notwendig ist,
hiingt im wesentlichen vom Volumanteil der Minoritdtsphase ab. Die Minimalisierung des Verhéltnisses
von “oberfliche zu Volumen” der Minoritdtsphase sagt eine grobe Morphologie des Systems voraus-sein
lokaler Charakter wechselt von isolierten kugelf§rmigen Trépfchen zu miteinander verbundenen platten-
férmigen Objekten, wenn der Volumanteil der Minoritétsphase zunimmt, Indem y auf diese Mikrostruktur
bezogen wird, erhalten wir den Wert fiir 9 auf 10% genau.

P

1. INTRODUCTION hold whenever long range elastic interactions between
. ) different domains (clusters) are unimportant [1].
The process of phase segregation which follows the There is no satisfactory theory for the actual form

quench of an alloy, liquid or polymer from a uniform ¢ (x) at the present time although there are various
state into the miscibility gap is a problem of both  {peqries leading to non-linear equations for S(k, )
theoretical and practical interest [1]. The quantity whose numerical solutions agree (more or less well)
most amenable to measurement (by means of small-  iip experiments [4-7]: we consider simulations also
angle scattering of X-rays, light or neutrons) is the as experiments. Furukawa [8] has argued that F(x)
evolution of the structure function, S(k, 1), as it ghould become broader for off-critical quenches. He
changes with the time following the quench. It was 40 proposed [8] an expression for F (which however
observed in computer simulations of this process 2]  4id not contain the volume fraction explicitely) whose
that, after some initial transients, S(k,?) has the agreement with experiment is reasonable for small
scaling form [3] volume fractions, close to ¢ = 0.1. Other expressions
S(k, 1)y = Ak 33 (t) Flk [k, (1)] (1) proposed for F(x), mainly obtained from distribu-

tions of hard spheres, fit the experimental data only

where k,,(¢) is the position of the maximum of S at very approximately [9-11]. The only feature of F(x)
time 7 and A4 is a constant (independent of 7) chosen  for" which there is a heuristic theory in excellent
here to make F(1) = 1. (1) has been checked in great agreement with experiment is the large x behavior.
variety of experiments and simulations and found to This is given by Porod’s law [12], F(x) ~ Cx . The
derivation of Porod’s law is based on a model in

tPermanent address: Institut fiir Festkérperphysik der Uni- ~ Which there are sharp interfaces between different
versitdt Wien, Strudlhofgasse 4, A-1090 Wien, Austria. domains and the constant C is a measure of such
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surface area per unit volume [12]. Taking this model
as our clue we present here a heuristic argument for
a simple approximate function L(x) which turns out
to represent F(x) well in all systems studied.

2. MODEL FOR THE SCALING FUNCTION

We assume that at the “late stages” of phase
segregation the composition at each point, p(r), is
either that of the A-phase or that of the B-phase with
p(@) =1 or 0 respectively. The spherically averaged
structure function Sk, t) is then proportional to the
Fourier transform of S(r) (at time ¢)

N 1
S(r) = <?7 L[p(u)—qﬂ [p(ut+r)— ¢]du>,
for Voo (2)

where the brackets denote the spherical average,
r =|r| and ¢ is the fraction of the volume ¥V occupied
by the minority phase A. Note that $(0) = ¢ (1 — ¢)
which is independent of time. If the surface separat-
ing the different phases were “randomly” distributed
then, following Debye et al. [14], we should have

80)= oL - plexp(—ar), A =0a/dp(1—¢) (3)

where o is the interface surface per unit volume; see
equations (32)-(34) in [14). However a random distri-
bution of interfaces will not describe the morphology
in the case of phase separation. The conservation of
material induces a modulation with some (time
dependent) wavelength D, related to the fastest
growing mode [1]. Within a volume of the typical
diameter D, the average concentration will remain
constant. To take this into account we set
sinar

8= ¢ (1 = Blexp(—ir) —=; az%Dz

Q)

The corresponding approximate scaling function
normalized so that the maximum is at 1 will be given
by the formula

b, D= 4y? .
b+ (x*—1)7 71—y

L;(x) has the correct large x behavior in agreement
with Porod’s law. Its width is determined by b, which
depends on ¢ in accord with experiment. Its behavior
at small x is however not in agreement with experiment
where it is vsvally found that F(x)~ 0 as x—0. In
fact, Yeung [13] noted that the experimental data is
consistent with an x* dependence when x —0 and this
was confirmed recently by Furukawa [8]. We accept
this and multiply L, by a factor x*/(x* 4 constant).
After renormalizing so that the maximum is located
at 1 our final approximate form for F(x) is

Lix)=

A
Y =&~ (%)

ax? b
L(x) =
) xtteb+(xP—14+d) ©
with
2
b= (- ay;

(I —92)?
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p— d .
Tb—d(l—dy

a=(1+c)<1+a;>.

N.B. F(x)=0 for small x is not related to F(0) =0,
for a fixed ¥V, which follows from the definition (2).
Sk, t) =0 for k =~ 0 is a statement about the magni-
tude of composition fluctuations on a length scale
several times 2n/k,, as compared to the dominant
ones. 27 k., is however much smaller than V17

c

in real
experiments; in computer simulations k is discrete
and S(k =0, ) =0 says nothing about neighboring
k-values.

3, COMPARISON TO EXPERIMENT DATA

We used L(x) with two free parameters y and d to
fit data in polymers, liquids, solids and simulations:
see Fig. 1. These parameters can of course be related
to various features of the L{x) curve, e.g. to the
curvature at the maximum, to the coefficients of x*
near x =0 or of x ™ for x> 1. Since we do not have
a good a priori theory we decided to let experiment
be our guide. We found to our surprise that d is
nearly universal with d =~ 0.06 in all cases. We do not
have any good explanation for this, but we know that
the fits are not very sensitive to the exact value of d.
In the following we consider d as constant equal to
0.06, so that y remains as the only fitting parameter.
Comparing the three scaling curves in Fig. 1, it is
apparent that y is essentially a measure for the width
of the scaling curve which increases when y increases.
The values for y obtained by fitting equation (6) to
experimental scaling functions are listed in Table 1.
We observe that for all critical quenches where
¢ = 0.5 the value for y is around 0.3 independent of
temperature, even very close to 7,. There is however
a strong dependence of y on ¢ (see also Fig. 1).

4. DISCUSSION

To get a physical interpretation of y we note that
by (3)5), y =aD /8 (1 — ¢), so that for a fixed
volume fraction ¢ and a fixed characteristic length D
(determined at each ¢ by the kinetics) y is propor-
tional to the interphase surface per unit volume o
which in turn depends on the morphology. According
to our model there are periodic modulations of A-rich
and B-rich domains with an average wavelength of D.
This means that at time ¢ after the quench the average
composition within cubes of length (several times) D
is still the same as at time ¢ = 0. The size D of these
regions is time dependent and increases during the
decomposition process. To calculate the amount of
interphase surface within the region of size D we now
consider three possible morphologies for the minority
phase. First, clusters may be isolated within the
majority phase, so that they will be essentially spher-
ical. Secondly, we assume the possibility of rod- or
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Fig. 1. Comparison of the model scaling function L(x) with (a) the numerical solution of the

Ginzburg-Landau equation [7], with (b) experimental data for Cu-33at%Mn [23] and (c) for

Al-3.7at%(Zn,Mg) [21]. Circles represent data points and the solid lines correspond to equation (6) with
(a) y =0.30, (b) y =0.45, (c) y = 0.60.

(thirdly) plate-like objects reaching with their axis the
border of the region of size D, where they will touch
clusters from adjacent regions. As the plates (or the
rods) in adjacent regions are randomly oriented, their
touching describes a highly interconnected morphol-

Table 1. The value of y for experimental aud simulation data fitted
with equation (6) is given as Yexp @nd the corresponding value
calculated from equation (7) as y,,09-

System™ 1 T/T, ¢ Yesp Fmod
Acid + water” 3-10-¢ 0.50 0.28 0.32
acid + water'’ 2:1073 0.50 0.28 0.32
Lutidine + water'® 2-10-¢ 0.50 0.28 0.32
Lutidine 4 water'’ 6-107¢ 0.50 0.28 0.32
Polybutadiene' 4-10-2 0.50 0.28 0.32
PS-PMPS(polymer)!'’ 2:107¢ a 0.45
PS-PMPS(polymer)”” . 6-10-3 b 0.75
PS-PVME(polymer)'®* —3-1073 a 0.35
PS-PVME(polymer)!®*  —4.10-3 a 0.40
PS-PVME(polymer)®  —7-1073 a 0.40
PS-PVME(polymer)®®*  —2-10-2 a 0.50
PS-PYME(polymen)®  —3.10-2 a 0.60
Borate glass" 0.22 0.50 0.45 0.32
Borate glass' 0.19 0.10 0.35 0.45
Al-22at%Zn(Mg)’ 0.50 0.27 0.35 0.37
Al-5.3at%Zn"0 0.51 0.03 0.55 0.64
Al-6.8at%Zn'0 0.51 0.05 0.50 0.55
Al-6.8at%Zn'® 0.40 0.04 0.50 0.59
Al-6.8a1%Zn'® 0.36 0.03 0.55 0.64
Al-6.8al%Zn(Mg)? 0.41 0.04 0.55 0.59
Al-10at%Zn(Mg)* 0.51 0.10 0.50 0.46
Al-3.7a1%(Zn,Mg)? 0.36 0.02 0.60  0.68
Au-60at%Pt? 0.46 0.50 0.35 0.32
Cu-33%at%Mn? 0.17 0.50 045 0.32
Cu-46at%Ni-dat%Fe* 0.10 0.30 0.50° 0.37
Fe-34at%Cr(early t)* 0.08 0.24 0.50°
Fe-34at%Cr(later t)* 0.08 0.24 0.35 0.38
p =0.075; 3-d Ising’ 041 0.06 0.50 0.52
p =0.10; 3-d Ising? 041 0.09 0.40 0.47
£ =0.20; 3-d Ising’ 0.41 0.19 035 040
p =0.50; 3-d Ising’ 0.41 0.50 0.35 0.32
p =0.50; 3-d Ising? 0.21 0.50 0.40 0.32
p =0.50; 3-d Ising’ 0.11 0.50 0.50° 0.32
3-d Ginzburg-Landau’ 1.00 0.50 0.30 0.32

*Critical mixture but asymmetric phase diagram: ¢ = 0.50.
*Off-critical mixture with a very asymmetric phase diagram.
Probably, the asymptotic regime has not been reached.
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ogy. Of course the size and the separation D of the
clusters will show some dispersion throughout the
sample, but their average values will be proportional
for a given volume fraction ¢ (e.g. for plates the
average thickness equals D¢ ) and this will determine
o and vy

[drp (1 —¢)! plates
y=1q @B (1—¢)" rods N
2(4n /3y ¢'7 (1 — ¢)]=" spheres.

We assume now that, within each region of size D, the
system will choose the microstructure which mini-
mizes the interphase surface per unit volume ¢ for a
given volume fraction ¢. For fixed ¢ and D, o is
directly proportional to y, which is given by equation
(7). The minimization of ¢ (or equivalently y) predicts
isolated clusters (i.e. spheres) for small values of ¢.
For ¢ >0.15 there will be an interconnected

1.0
F Isoloted Interconnected
clusters morphology with mainly
0.8 —
rods plotes
OB o
03\

28 o_...

o} 0.1 0.2 03 0.4 0.5
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Fig. 2. The theoretical value for y (full line) as compared to

experimental data (solid circles) taken from Table 1. y has

been calculated in function of ¢ using the minimnm of the

three expressions in equation (7): spheres for ¢ <0.15,

plates for ¢ > 0.32 and rods in between. The confinnations

of each expression to higher and lower ¢ are indicated by
dotted lines.
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morphology composed mainly by rods (¢ <0.32)
and by plates (¢ = 0.32). The so obtained value for
y is shown in Fig. 2 in fuction of ¢. The fact that there
are isolated clusters at small volume fractions and an
interconnected morphology close to the critical com-
position corresponds well to observations in experi-
ments and computer simulations [l,6,26]. The
boundary between the two types of morphology
(¢ ~ 0.15) is also quite reasonable. Computer simula-
tion data on the Ising model for instance [2] showed
isolated clusters for ¢ = 0.09 and an interconnected
morphology for ¢ =0.19. The distinction between
mainly rod-like or plate-like elemenls in the inlercon-
nected palterns as proposed in our model is however
difficult 1o ascertain by comparison with experimen-
tal data and we do not discuss il further.

Both in Table 1 and in Fig. 2 the theoretical value
of y is compared to the fitled y from experimental
data. A remarkable agreement is obiained in most
cases. Some experimental data where only the full
widths at half maximum of the scaling curve were
indicated [27] are not included in the table; but ihere
is a reasonable agreement with our theoretical model.
Finally it should be noled that, when elastic interac-
tion dominates the surface energy, our model breaks
down and differenl leatures should be expected for
the microstructure [28].
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