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Pseudo-Free Energies and Large Deviations
for Non Gibbsian FKG Measures *

J.L. Lebowitz** and R.H. Schonmann***
Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA

Summary. A large deviation theorem for the invariant measures of translation
invariant attractive interacting particle systems on {0, 1}4* is proven. In this
way a pseudo-free energy and pressure is defined. For ergodic systems the
large deviations property holds with the usual scaling. The case of non ergod-
ic systems is also discussed. A similar result holds for occupation times.
The perturbation by an external field is treated.

1. Introduction

Gibbs measures are known to describe the properties of macroscopic physical
systems in equilibrium. For a system in a box 4 < R? with microscopic interac-
tion Uy, in equilibrium at temperature ™', the appropriate statistical state
is according to Gibbs and Einstein s, ,~exp(—fU,) [Rul], [Ru2], [Sin]. The
structure of the infinite volume limit 4 — R necessary for making sharp state-
ments about macroscopic phenomena, such as phase transitions, has been much
studied and a lot is known about them. This is particularly so when the physical
object to be represented can be modeled (and this happens surprisingly often)
-as a “spin” system on a lattice with “sufficiently rapidly” decaying interactions
U. Uy is just U restricted to 4 plus boundary terms. In this case the y, :Alinzldu A8

are quasi-Markovian measures on the compact configuration space E,=W?",
d=1,2,..., W=Wy, ..., w,), w; <...<W,, Le. their conditional probabilities in
a finite region 4 < Z specified by the DLR (Dobrushin-Lanford-Ruelle) equa-
tions [Rul], [Ru2], [Sin], depend only weakly (or not at all) on what the
configuration is far away from 4. They are in fact just the finite volume states
M4,p With suitable boundary conditions. This “locality” captures the essence
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of the equilibrium state of macroscopic physical systems — if we divide the
system into two or more parts and isolate them from each other then the separate
regions of the system continue to be in the same equilibrium state as before.

The situation is very different when we consider the behavior of systems
maintained in a nonequilibrium state by contacts with outside sources. For
such systems the appropriate representations, i.e. measures which can be used
to obtain the properties of stationary non-equilibrium states, cannot be expected
to behave in a quasi-Markovian way — isolating a part will generally change
its behavior drastically. This makes the study of such measures more difficult
and only very little is known at the present time about them or even how
to characterize them in a generally useful way [G.K.I1], [G.L.P.], [K.L.S.],
[Leb2]. In fact there may not be any general formalism comparable to the
Gibbsian equilibrium one which will encompass the great variety of nonequili-
brium behavior observed in nature, even when restricted to steady state situa-
tions. Nevertheless the subject is clearly of great interest and in this paper we
study some aspects of simple models of such measures.

Before going on to describe our new work let us review very briefly some
of the features of Gibbs measures which may, or may not, be generalizable
to non-equilibrium systems. We refer the reader to articles by Gray [Gra],
Kiinsch [Kiin] and references there for discussions and some results on this
question. It follows from the quasi-Markovian nature of the DLR equations
that all Gibbs measures are obtained as infinite volume limits of finite volume
measures i, ;~exp(— pU,) with suitable boundary conditions. (These b.c. may
have to be statistical — but in all known cases can be taken pure, ie. there
is a specified configuration on sites outside 4). The states form a Choquet simplex
whose extremal points generally have rapidly decaying correlations, exponential
if the interactions are finite range, except at places where there are good reasons
why they shouldn’t, i.e. at “critical” points or lines.

The translational invariant states are characterized by a variational principle
— their extremal points are the pure phases and correspond to tangent planes
of a convex functional, the pressure p on an appropriate Banach space of poten-
tials U [Rul], [Ru2], [Sin]. First order phase transitions occur at values
of BU for which the tangent plane is not unique — so that there is more than
one extremal translation invariant state corresponding to a coexistence of pure
phases. For a given physical systems the potential U determining the Gibbs
measure usually contains one or more parameters which can be varied experi-
mentally or at least can be imagined so. The phase diagram of the system
is a picture of how the number of pure phases changes when these parameters
are changed.

The most important of these parameters is the magnetic field h in spin lan-
guage (chemical potential in particle language) which controls the magnetization
(or density). Considered as a function of h, p(h) is convex and its derivative
(which exists for almost all h) gives the average magnetization. Its second deriva-
tive is intimately related to the variance of the fluctuations in the magnetization.
It also contains information about large deviations from the average (those
proportional to the volume). In this way it describes (for some ferromagnetic
systems it gives complete information) the coexistence of pure phases [Rul],
[Ru2], [Sin].
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The present paper may be thought of as an attempt, with some measure
of success, to generalize this aspect of Gibbs states to some nonequilibrium
states. The states we have particularly in mind are stationary measures for
stochastic time evolutions of infinite particle systems on a lattice. These type
of evolutions have been investigated in recent years from various points of
view [Lig]. Only little is known however about the global structure of the
stationary states even in the simplest examples which are not explicitely con-
structed to be Gibbs. There are however many cases where these states are
known to satisfy the FKG (Fortuin, Kasteleyn, Ginibre) inequalities [FK.G.],
ie. for any increasing and continuous f, g: E,—R. E,(f(n) g
2 E,(f(n) E,(g(n) where E, is the expectation when y is random with law
v. In the terminology of [Lig] this measures are said to have positive correlations.
In this note we show that these states share at least some features of Gibbs
states. In particular it is possible to define a pressure like function I7(h) which
is related to the large fluctuations in the invariant state v in a manner similar
to that of p(h) in equilibrium systems. It reduces to it (up to location of the
origin of h) for Gibbs measures.

Statement of Results

Before stating the precise results we must introduce some notation. For 7€k,
let n(i) represent the state at site ie Z%. Given a set S, |S| will be its cardinality.
For A=Z* and neE, define

Xam=141"" X n().

icA

For simplicity we will write v{»(0)=1} instead of v{n: #(0)=1} and v{X,>x}
instead of v{n: X 4(n)=x}, etc.
In Sect. 2 we will prove

Theorem 1. Consider a probability measure v on E, which is translation invariant,
FKG and such that p;=v{n(0)=w;}>0, i=1,r. Let (4,)=(A) be a sequence of
cubes in Z* such that A, — Z*. Then,

- a) for any xe[wy, w,], | 4]~ logv{X 42 x} [resp.|4|™* logv{X 4<x}] con-
verges as A — Z* to a non positive real valued function 1., (x) [resp. A_ (x)] which
is concave and decreasing [resp. increasing], A, (w;)=0and A, (w,)=logp,> — o0
[resp. 4_(wy)=logp; > — oo and A_ (w,)=0].

b) Define A(x)=min(A_(x), A (x)), then A: [w,, w,] = (— o0, 0] is concave and
Jor any w, Za<b=Zw, such that

(1.1) min(4(a), 2(b)) <0
(1.2) lim | 4|7 logv{X eJ}= sup A(x)

asx=sh

Jor J=[a, b], [a, b), (a, b], (a, b).
(1.3) ¢) lim [A]7! log E, exp(h|A| X 1)=II(h)
A-zd
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where IT: R — R is defined by
(L.4) HoMh)= sup (AX)+hx).

WX Swe

In particular II is convex.

Remark. If the condition p;>0, i=1, r is not true, one can modify the definition
of Win order to make it hold.

Note that the restriction (1.1) is empty unless the set # ={xe[wy, w,]: A(x)
=0} has a positive width.

In Sect. 3 we investigate the invariant measures of some interacting particle
systems. We consider in particular the class of translation invariant attractive
spin systems [Lig], hereafter denoted by TIA. These are Markov and Feller
processes with state space {0, I}Zd whose evolution are given by the flip rates
c(i, n) (the rate at which (i) flips to 1 —#(i) when the system is in the configura-
tion #). Translation invariant means that c(i, y)=c(i+j, 7;n), where (t;n)(k)
=n(k+j). Attractiveness means informally that zeros attract zeros and ones
attract ones (“ferromagnetic” types). More precisely, if the configuration # is
dominated by the configuration {, i.e. n(j)=1=>{(j)=1, je Z*, then

ci, e, ) if n()=L(H=0
ci, mze@ O if n@=L{@=1

In order that the infinitesimal rates c(i, #) define a unique process one must
assume that they do not depend very strongly on the configurations at sites
far away from i; a sufficient condition can be found in Chap. III of [Lig].

As in [Lig], we will denote by S(t) the corresponding semigroup and write
1 S(t) for its action on a measure.

Some of the fundamental facts about the TIA are summarized next (for
proofs see [Lig]).

(1.5) 8, S(t) [resp. 8; S(t)] converges weakly to a measure v_ [resp. v, ] which
is invariant for S(f) (, is the point mass on the configuration y(i)=k for all

i).
(1.6) The process is ergodic iffv_=v..

(1.7) v_ and v, are translation invariant and ergodic with respect to transla-
tions. They are also FKG.

(1.8) 1f p is translation invariant and FKG and uS(¢f)—v weakly, then v is
invariant for S(¢) and is also translation invariant and FKG. Theorem 1 therefore
applies to these measures and the next theorem gives information about the
corresponding A(x).

Define p4 =v. {n(0)=1}.

Theorem 2. Suppose that v is an invariant measure for a TIA. Then there are
constants C, y >0, which depend on x, such that

(1.9) if x<p_, v{X,Sx}<Ce "Ml
(1.10) if x>p,, v{X,=x}=Ce 71l



Pseudo-Free Energies and Large Deviations for Non Gibbsian FKG Measures 53

It follows that

Corollary 1. Suppose that v above is also translation invariant and FKG and
is neither o, nor §;. Let A(x) be defined as in Theorem 1, then A(x)<0 for x<p_
orx>p,.

Remark. The hypothesis that v¢{d,, d,} is equivalent to the condition v{#(0)
=0} +0, v{7(0)=1} +0, necessary to apply Theorem 1.

In particular if the system is ergodic the unique invariant measure is transla-
tion invariant and FKG by (1.5), (1.6) and (1.7). Therefore

Corollary 2. Let v be the unique invariant measure of an ergodic TIA and suppose
v¢{0y 01}. Then there exists a concave function A: [0, 1]—(—o0, 0] such that
{x€[0,1]: A(x)=0}={p}={v{n(0)=1}} and (1.2) holds for any 0<a<b<1.

In Sect. 3 we also present some extensions of these results for more general
increasing functions of the configuration and for occupation times. We consider
some examples of TIA: the contact and voter models and finally discuss the
relation between the large deviations and central limit theorems.

In Sect. 4 we consider the perturbation of a measure v on E; by an external
field h in the following sense. Let v, be the measure induced by v on W+
and define another measure v, , on W4 by (here we use 4 to represent configura-
tions on W)

(1.11) Van(=(Z (4, 1)~ v, (n) exp(h[A| X )

where

(1.12) Z(A, b= ), va(n) exp(h|A| X )=E,(exp(h|A| X ).
newy4

Theorem 3. If v satisfies (1.2) for some concave A(x) and any w;<a<b=w,,
then

(1.13) lim (A"  logv, ,{X s€la, b]} = sup A(x)
A—Z4 asxsh
where
(1.14) ()= A(x)+x h— I (h)= inf (T (h+ B} =TI (h)— I’ x).
eR

It follows that if A(x)=0 at a single point x, the family of measures v, ,
does not show a “phase transition” (in the sense of a discontinuity of x_ , =inf %,
or x, ,=sup %, where % = {xe[wy, w,]: A(x)=0}) for small h.

In Sect. 5 we compare briefly our approach to the large deviations problem
with other approaches.

2. Consequences of the FKG Relations

Proof of Theorem 1. 1t follows from FKG that if I'=1I; U I, then
2.1 v Xrzx}zv{Xp2x} v{X,=x}.
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Define
A(ny, ..., ng)=logv{Xr=x}
where I is a rectangle of sides ny, ..., n;. Then from (2.1) and translation invar-
iance
(2.2) AWy, oy Bt Ry o, )2 ANy, oy My oy 1Y)

FAMG s M s 1),

It now follows by a standard argument that |A4|™!logv{X ,=x} converges.
(See for instance the proof of step 1 of Theorem 2.6 of Chap. V of [Lig] for
the case d =1, the general case is analogous.)

The facts that 4 is decreasing and 1, (0)=0 are obvious. Using translation
invariance and FKG again

v{X zwl=v{ni)=w,, ied}
z[Tvi{n@=w}=()"!

ied
which implies that 4, (w,)=log p,.
Finally we will prove that A, is concave, ie. for any x, ye[w,, w,] and
any a<[0, 1],

(2.3) Arax+(I—a)p)zad(x)+(1—a) 1 ()

First we consider the case a=1/2. Take 2 cubes of side n, I3, I}, ..., [34 in
Z“ such that their union is a cube I' of side 2n. By FKG

24)  v{Xr=x/2+y/2}
2v{Xpzxfori=1,..,2 'and X 2 yforj=2"""+1,...,2%

2d-1 2d
z [[viXrzx} ] "{XF,EY}
i=1 j=2d-1+41

= {Xp,2x})* (v { X Zyp"

where we used translation invariance in the last equality. (2.3) with a=1/2 follows
easily from (2.4). As is well known, by induction (2.1) follows then for any
diadic rational «, i.e. «=p277 where p and ¢ are integers. Finally we use the
fact that A, is decreasing to conclude. Suppose that x <y, take a sequence
o, of diadic rationals which increases and converges to «. Then for any n

Ar(ax+(1—0)p)Z Ay (e, x+(1—0)y)

g(xn}'%—(x)_l—(l_an)l-{»(y)'
Make n— oo to conclude.

b) A(+) is concave since it is the minimum of two concave functions. In
particular it follows that it is continuous on (wy, w,). The proof of (1.2) is divided
in many cases; we leave to the reader the cases a=w,; or b=w, and consider
only w; <a<b<w,. In this case the statements arec equivalent for the four types
of intervals that J may represent; to see this fact just use relations like
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V(X ela, b—el} Sv{X ela b)) Sv{X e[a, b]} Sv{X e[a, b+el}

for ¢>0. Suppose now that (a)=0, A(b)<0. Then A(b)=A,(b)<0and 1, (a)=0,
so v{X,=b}/v{X,=a} >0as A Z* Therefore

[4]7 " logv{X se[a, b)}=|4|"'logv{X ,=a}
+[A4| " log(1—v{X ,Zb}/v{X 2 a})—> A (a)=0= sup A(x).

asxsbh

The case A(a)<0, A(b)=0 is analogous. Suppose A{a)<0 and A(b)<O0; there
are then in principle four possibilities: A(a)=4,(a)<0, A(b)=4,(b)<O0, o, y=+.
The case o= +, y= — is ruled out by the fact that for any xe[w,, w,],

(2.5) max(4-(x), 44+ (x))=0,

since otherwise v{X s <x}+v{X,=x} — 0, which is absurd.

The cases o=y are analogous, let us consider «=y= +; since 1, is concave
and A,(w;)=0, it follows that 1,(a)>A.(b) and therefore v{X =b}/v{X,
2a} —0. So by the same argument used before

(A" logv{X se[a,b)} > A (@)= sup A, (x).

asx=<bh

Since 4, (x)<0 for x=aq, it follows using (2.5) that A(x)=4,(x) on [a, w,] and
hence
sup A, (x)= sup A(x).

asx=sbh asx=<b

In case o= —, y=+ then by the continuity of A_ and A, on (a, b) and (2.5)
it follows that there exist ce[a, b] such that A(c)=0. Then using previous results

(A7  logv{X se[a, b]} 2| 4| logv{X 4e[c, b]}
—0= sup A(x).

asx=<b

¢) Define x_ =inf{xe[wy, w,]: 2(x)=0}, x =sup {xe[wy, w,]: A(x)=0}. We
consider the case w;<x_<x,<w, and leave the others to the reader.
Consider partitions of [w;,w,] into intervals A,=[a,, a;)=[w;,a,),
Ax=lay, az), ..., Ay~ 1=y -2, a4y 1)s Ay=[aym— 1, al=[ap—1,w,], such
that for some i ;<x_<a;,,; and for some j a;<x, <a;, ;. We suppose now
that h>0, then

max (v{X €A} exp(h|4|a,_,)
15k=M

SE,exp(h]|4]X,)
SM- max (v{X €A} exp(h|4|a).

1SksM

Hence

(2.6) liminf 4]~ ! log E, exp(h| 4] X )
A—Zd

Z max (ha,_+liminf(|4]" " logv{X e 4,})
1Sk=M Ao zd




56 J.L. Lebowitz and R.H. Schonmann

and
2.7 limsup | 4] tlogE, exp(h|A| X )
A—Z4
< max (hak+11m1nf(|A| Yogv{X seAL}).
15k=M

The point now is that in spite of part (b) not giving us information for the
terms k=i+2,i+3, ...,j, this is not important since the maxima in (2. 6) and
(2.7) must be achleved at some ke{j+1, ..., M}. In fact the terms k=1, ...,j
are not larger than the term k=j+1:

i) Forigk=<j

ha,_+liminf | 4|7 logv{X ;€ A,}
A—zd

<ha,+limsup 4|7  logv{X €A, } <ha;.
A—=Z4d

ii) ha;+ lim |A]” " logv{X 4€A4;, }=ha;.
A—Zd
Applying part b for k=j+1, ..., M it follows that
liminf|A4|™ ! logE, exp{h|A4]| X 4}
A~Zd

= max (hag_+A(a- 1))
jH1SksM

limsup |A| ' logE, exp {h| 4] X 4}
A—2Zd

< max (ha,+A(ag— 1))
jt1SksM

Take a sequence of partitions such that max (a,—a;_,)— 0 to conclude the
proof. IsksM
If h <0 the proof is analogous and if h=0 it is trivial.

Remark 1. The convergence of | 4| * log E, exp(h] 4| X 4), to a convex function
7(h) may be proven in an easier way from the FKG relations. But this approach
does not give the relation between n(h) and A(x) unless n(h) is differentiable.

[Si], [PL], [P.S.], [EIL].

Remark 2. That the condition (1.1) may be essential can be seen with the follow-
ing example: W={0, 1} and v=(1/2) d,+(1/2) é;; in this case A(x)=0 for any
xe[0,1], butif0<a<b<1, |4 logv(X  e[a, b])= — 0.

3. Invariant Measures of Attractive Spin Systems

Proof of Theorem 2. Since the proofs of (1.9) and (1.10) are analogous we only
present the first one. Divide Z¢ into cubes of side N; to be precise suppose
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that one of these cubes is I'={1, ..., N}*. For i, je Z? write i~} if i and j belong
to the same cube in this partition. Now define a new attractive spin system
with the rates

3.1) en(i, my=c(i, ')
where #' is the configuration defined by
i JnG) i i~
(52 10~ |
I otherwise

i.e., we consider the time evolution in I’ with + boundary conditions. Denoting
by Sy(t) the corresponding semigroup, &, Sy(t) converges weakly to a measure
Ly which has the following two nice properties:

(3.3) uy is stochastically larger than v,

(3.4) w.r.t. uy the spins in' different cubes (of side N) are independent and
moreover the distribution is the same inside each cube (uy is periodic).

Property (3.4) is clearly true and (3.3) follows from Corollary 1.7 of Chap. III
of [Lig] by the attractiveness of c(i, »).

If A is a cube of side kN, k=1,2,..., there is a translation of it which
is the union of k? of the cubes of side N. Therefore, using (3.3), (3.4) and the
large deviation theorem for independent identically distributed random variables
it follows that

X Zx}Sv (X Z2x) Sy {XAZx}écenﬂAl,

provided that
X gpN =E;4N(XI‘)’

where C and y depend on N and x.
To complete the proof we must show that

(3.5) lim pN=p+.

N-w

For cach N, let iy be a site in ['=I"\[]/N, N—]/N1* such that E,, (ix) 2 E,, (j)
for any jel: Then using (3.3)

P+ Spy=E,,(ix)+ey,

where ey —0 as N — co. For each N translate iy to the origin and apply the
same translation to I' obtaining Iy. Then Iy —Z¢ and by Theorem 2.7 of
Chap. T of [Lig] lim E, (iy)=p..

N—- o

This completes the proof (the extension to 4 whose sides are not a multiple
of N is straightforward).
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Generalizations

We point out now two extensions of the previous results. Instead of the mean
value of the spin — X, — one can consider the mean value of an increasing
local (cylindrical) function f

Yy =141"" Y f (w:in)

ied

where (t;1)(j)=#(j +i). The proof of Theorem 3 must be slightly modified by
the inclusion of corridors between the cubes of side N. The width of these
corridors can be taken as twice the range of f and w.r.t. the dynamics Sy(f)
the spins inside the corridors are frozen in the value + 1.

Another extension of our methods is for occupation times. Let (¢}, t=0)
be a TIA starting from an invariant measure v, which is FKG and non degener-
ate, and consider for instance the mean occupation time of the origin

Z=t"1 ff;(O)ds.
0

Define
i

()= | £ ds.

i—1

(¢, i=1,2,...)is FKG by Corollary 2.21 of Chap. II of [Lig], and for ¢ integer

Z,=t_1ié’(i).

i=1

Theorem 1 applies with minor modification since {(i) assumes values in the
continoum [0, 1]. Theorem 2 also holds — to construct uy reset the configuration
to be identically 1 at the instants t=N, 2N, 3N, .... The conclusion is the
existence of a concave function A: [0, 1] —(— oo, 0] such that

a) A(x)<0ifx<p_orx>p,

b) lim¢ ' log P(Z,e[a, b])= sup A(x) if min(A(a), A(b))<O.

t—=o asx<h

Examples

We consider now some examples of TIA.
1. Basic Contact Process [Lig].
1 if n()=1
ch,m={p Y qG) if nG)=0

Jlli—ifl =1
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where >0 is a constant. One of the basic results for the process is that for
any d, there exists a critical value S,€(0, oo) such that if f<f, the system is
ergodic and the unique invariant measure is §q. If > B,, v_=4, but v, +5,
and 0<p., <1. From Corollary 1 it follows that the “free energy” A(x) corre-
sponding to v is negative for x>p,, but this corollary gives no information
for x<p,. We prove now that for d=1, A(x) is negative for x close to 0:

(3.6) WX =xPsYvinl)=n0)=...=n(i)=0}

[A] .
K ) possible

choices of k sites out of |4]. But it is known [D.G.], [Lig] that each term
on the r.h.s. of (3.6) is bounded by Ce™ ", where C and y are positive. So

where k is the integer part of (1—x)|A4| and the sum is over the (

A
v{XAgx}_S_(l P l) Ce 7k,
Hence
limsup (4| logv{X <x} < —(1—x)log(l ~x)—xlogx—(1 —x)7,
A7

which converges to —vy as x — 0.
We do not know whether A(x) is negative for every x<p..

2. Basic Voter Model [Lig].
@a™t Y A=n() if gi)=1

o lli—jll=1
c(i,n= Qd)-! Z n(j) if n@)=0.
Jlli-jll =1

In d=1, 2 there are only two extremal invariant measures: §, and &,. In d=>3
there is a one parameter family of extremal invariant measures {v,: 0<p<1}
where p can be chosen as the density of v,. These measures are translation
invariant and FKG but their correlations decay very slowly. We will verify
that for any v, with 0<p <1 the corresponding “free energy” A(x) is identically
0. The main tool is the dual of the voter model: a system of coalescing random
walks [Lig]. At each site of 4 start a simple symmetric continuous time random
walk with mean holding time 1. The walkers behave independently before meet-
ing, but when they meet they coalesce. Let N, be the number of distinct walkers
at time ¢; then N, — N, a.s. and by duality

|4]

(3.7 v,{n(x)=1,xed}= ) p* P(N,=k).
k=1

We will use now (3.7) to show that

(3.8) lim | 4]~ log v, {X =1} =O0.
A—Zd
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From (3.7), for any «

Vo {X 4=1} 2 p! 1" P(N,, | 4|
Therefore

| A7 logv{X (=1} 2| A% Y log p+|A4| " log(1 — P(N,, >|A|"9).

From the techniques used in [B.C.G.1] it follows that E(N,)=0(A4|“~ 2,
using then Chebyshev inequality

P(N, > | A[ S| A7 B(N,) =0 (| AJd ==~

The choice a=d—1 completes the argument for (3.8). It follows that A, (x)=0
for any xe[0, 1]. By an analogous argument A_(x) is identically 0, and hence
the same is true for A(x).

We conjecture that
| A4+ ogy, {X 4,2 x}

converge to a non trivial limit but were not able to prove it.

3. Ergodic Systems. As already observed our results are more informative for
ergodic TIAs. Various sufficient conditions for a system to be ergodic are known,
For instance if the system is additive and extralineal, in the terminology of
[Gri] (this means that it can be constructed with a random graph and that
there are spontaneous births of particles) then it is ergodic by Theorem 2.2
. of Chap. II of that book. An example in this class is a Voter model with sponta-
neous flips, defined by the rates:

Qo > (A—n(+é  if yi)=1

=] = |
Qo™ ¥ nG)+p if #())=0
57 =1

where f and § are positive.
1t is also known that if we add large constants to the rates of any TIA
the resulting process, which is clearly a TIA, is ergodic (Theorem 4.1 of Chap. I

of [Lig]).

Small Fluctuations and Large Deviations

We turn now to the relation between the large deviations and the central limit
theorem. In various cases it is known for invariant measures of TIA that

o?= Y Cov,(1(0), n(i)) < co.

ieZd

See for instance Theorem 4.22 of Chap. I of [Lig] or Theorem 2.6 of Chap. II
of [Gri] (this one includes the voter model with spontaneous flips).
Assuming that v is translation invariant and FKG, one can apply a theorem

by Newman [New] to prove
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| 41712 (1(1)— p) > Normal (0, o)

ied

in law as 4 — Z*, where p=E,(1(0)). If v is also non degenerate, Var,(#(0))>0
and therefore o?>0. The following well known heuristic argument leads to
a relation between A(x) and ¢?:

W{Xa=p+x]4]" P} ~exp(lA] Ap+x]4]7 1)
~exp(A1(A(p)+A'(p) x | A1+ 2" (p) x* | A]71/2+..)).

Assuming that A'(p)=0 (A(x) has a maximum at p) and remembering that A(p)
=0, it follows

VX =p+x|A|7 2} ~exp (X (p) x*/2).
Hence

(3.9) ol=—A"(p) "

This relation is indeed true when v is Bernoulli (independent case) and for
Ising models at high temperature or with non zero external field (here v is
the unique Gibbs state) [Ell; Lebl], but in general it is not even true that
A"(p) exists. For instance consider the nearest neighbor ferromagnetic Ising mod-
el in two or more dimensions at low temperature and without external field;
the corresponding reversible Glauber dynamics is a TIA (on {—1, 1}#* instead
of {0, 1}%) and the Gibbs measures are invariant for this dynamics). In this
case v_ and v, are different but have the same function A(x), which is null
on [p_, p.] and negative outside this interval. With respect to the measure
v, the correlations decay exponentially, so that 62e(0, co). But it is clear that
the second derivative of A(x) at x=p, coming from the left is 0. It turns out
that coming from the right this second derivative is 6 [Leb1] (02 is the suscepti-
bility). :

An even more interesting example is the case of a spin 1 Ising model [BK.L.;
S1.] on Z% d =2, with energy

Ut=31 % (@=n()*+egXm),

lli=jll=1

ni)=—1,0, 1, geR is a parameter. 1f the temperature is low enough there
is a value of g such that there are three extremal Gibbs states: iy, p_ and
Mo With respective densities, p, = —p_ >0, and p,=0. These measures are trans-
lation invariant, FKG and have exponentially decaying correlations. Since they
are Gibbs measures corresponding to the same interaction they have the same
function A(x), which is null for p_<x=<p, and negative outside this interval.
So A(x) has derivatives of all orders equal to zero at x=p,=0. But if the temper-
ature is positive u, is not degenerate and therefore 0<g?= Y Cov,,(1(0),
iez?
1(i)) < oo. Similar situations occur for higher states Potts models.
We leave as an open problem the question whether (3.9) holds for the unique
invariant measure of ergodic TIA. One should note that at the critical tempera-
ture of an Ising system o= co, but then 1”(p)=0, so that (3.9) holds.
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4, Perturbation by an External Field
Proof of Theorem 3. Define
I, (W)y=|4|"" logE, , ,(exp(h' | A]| X ,))
() =11 4,6(H)=|4]"" log Z(4, )
Then
4, (W)=]4]"" log 3 (Z(A4, )™ va(n) exp((h+ 1) | 4] X 4)

new

=0 (h+h)—II 4(h).
By the argument given in part ¢ of Theorem 1, IT ,(h) = II (1) as | 4| — co0. So
lim 114, (h)=IH(h+h)—II(h).
A—Z4

Hence

inf(IT, () — I’ x)=x h— IT(h)
h

+inf(I(h+1)—x(h+ W)= 20c)+x h— I (h)=2,(x)
h
and by a standard argument using a Chebyshev inequality (see [EIl], Theo-
rem 11.6.1(b)),
limsup [A] 7! logvyn{Xs€[a, b} S sup 4,(x).
A—2Zd

asxzb

For the lower bound consider first h>0. Fix a point xe(a, b), then for ¢>0
small enough

liminf|A|™ " logv, ,{X 4€[a, b]}
A—2zd
=liminf | 4|7 ! logv, ,{X se[x—¢ x+¢&]}
A—Zd
>liminf|A| 7! log[(Z(4, h)) ! exp(| 4] h(x—¢)) v{X se[x—¢ x+¢]}]
A Z4d

=—II(M+h(x—e)+ sup ()

x—egSy=sx-te
Making ¢ — 0 the r.h.s. above converges to 4,(x). Since x is arbitrary

liminf|A|™* logv, ,{X s€[a, b]} = sup A,(x)= sup 4,(x).
A—Z4

a<x<b asxsb

The case h<0 is analogous.
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5. Discussion

Various approaches are known for proving large deviations theorems for depen-
dent random variables. 1t is natural to ask (as we did) why we could not simply
verify the hypothesis of some of these general theorems for the cases considered
here.

Lanford [Lan] proved that (1.2) holds for any w, <a<b<w, for Gibbs mea-
sures. So if we were able to prove that v is Gibbs w.r.t. some nice enough
potential we would be finished. Unfortunately the only condition that we know
to prove that a measure is Gibbs — the continuity of some conditional expecta-
tions (see [Sul]) — seems hard to verify in our cases.

Many approaches do not work for our problem because we consider random
variables #(i) indexed by Z* while they consider random variables indexed by
Z or R. That is the case of approaches by Accardi and Olla [A.0.], Olla [O1.]
and Orey [Or.]. Even in the case d=1 their conditions seem to be difficult
to verify in our case and to be related to Sullivan’s condition [Sul.] mentioned
before.

Finally the approach due to Sievers, Plachky, Steinbach and Ellis [Si; PL;
P.S.; Ell] and used in other applications to infinite particle systems [C.G.1;
C.G2; B.C.G.2] requires that one first proves the convergence of
|4~ log E,(exp(h|4|X ) to a convex function IT (h) which is differentiable.
The problem is that we do not know how to prove this last condition. We
should remark that unfortunately the method that we used is not suitable for
proving large deviations theorems with “fat” tails like in [C.G.1;C.G.2; B.C.G.2]
and as we expect for the voter model,
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Note added in proof. 1. After this paper was finished, we learned from “Grimmet, G.: Large deviations
in subadditive processes and first-passage percolation. In: Durret R. (ed.) Particle Systems, Random
Media, and Large Deviations, pp. 175-194, Providence: American Mathematical Society 1984” that
Hammersley and Kingsman worked already on large deviation properties under a condition similar
(but not equivalent) to FKG (they considered so-called superconductive processes). Grimmett also
remarks in the paper that the techniques used in these works can be adapted to the case of FKG
sequences of random variables to prove part of our Theorem 1.

2. After this paper was finished, R. Durrett and one of us (R.H.S.) proved for the upper invariant
measure of the contact process the function A(x) is negative for x<p,. This result is contained
in the paper “Large deviations for the contact process and two dimensional percolation”, which
is to appear in this journal.



