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Summary. We generalize the results of Spitzer, Jepsen and others [1-4] on
the motion of a tagged particle in a uniform one dimensional system of
point particles undergoing elastic collisions to the case where there is also
an external potential U(x). When U(x) is periodic or random (bounded and
statistically translation invariant) then the scaled trajectory of a tagged

particle yA(t)zy(At)/l/Z converges, as 4 — oo, to a Brownian motion W (¢)
with diffusion constant D=p,_, {|v|>/p? where p is the average density,
(Jvl>=V2/xBm is the mean absolute velocity and f~' the temperature of
the system. When U(x) is itself changing on a macroscopic scale, i.e. U (x)
= U(x/ﬂ), then the limiting process is a spatially dependent diffusion. The
stochastic differential equation describing this process is now non-linear,
and is particularly simple in Stratonovich form. This lends weight to the
belief that heuristics are best done in that form.

L. Introduction

The motion of a tagged (test) particle (tp) in an equilibrium fluid is one of the
most studied problem in statistical mechanics [1-9]. It is a paradigm for
extracting a (hopefully) simple stochastic description of the behavior of one
component of a system with an enormously large number of degrees of free-
dom undergoing a complex deterministic evolution. The latter is for a classical
fluid given by the Hamiltonian equations of motion while the former is known
only approximately in the absence of some coarse graining [9]. We can
achieve this by looking at the trajectories of the tp on a space and time scale
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which is very large (macroscopic) compared to the time scale on which the
(microscopic) velocity of the tp changes. This is generally expected to yield a
universal diffusive process in which the precise nature of the fluid interactions
enter only through the diffusion constant.

An actual derivation of this expected result exists, despite the efforts of
many, only for the simplest model systems. Chief among them is the fluid of
hard rods or point particles on a line in which the tp is identical with (has the
same mass as) the other particles [1-47]. In all these studies the fluid was taken
to be spatially uniform so the resulting diffusion process was independent of
the position of the tp. As a consequence there was no distinction between the
Ito and Stratonovich prescription for the stochastic differential equation de-
scribing the process [107], i.e. we were dealing with a case of additive noise.

In the present work we consider (for the first time we believe) the case
where the fluid is not spatially uniform in equilibrium. We show that the
resulting process is still a diffusion but now inhomogeneous. The “noise” is
therefore no longer additive and the stochastic differential equation describing
the process now looks very different in its Ito or Stratonovich form. Interest-
ingly we find that the Stratonovich form is definitely simpler - it involves no
drift terms - and more natural. This gives weight to a general belief, which
until now was based on very little rigorous evidence, that heuristic approxi-
mations are better done in the more symmetric Stratonovich form than in the
mathematically simpler Ito form.

Model, Method, and Results

We consider an infinite system of identical point particles on the line moving
in an external potential U(x). The only interactions between the particles are
elastic collisons, ie. in a collision velocities are exchanged. These prevent
particles from crossing, without affecting the infinite system motion if labeling
is ignored. The particles are distributed according to the stationary grand
canonical ensemble, i.e. their positions and velocities are Poisson with density
(B2 py exp { — BLU () + 407},

As in [4] we study the asymptotics of the collision process of a tagged
particle by relating its position at time ¢ to the signed number n(t) of crossings
of the origin by particles before time ¢: n(¢) is the number of particles crossing
the origin from left to right minus the number of particles crossing from right
to left, which, of course, is the same as for the “free” motion, i.e. the motion
without collisions.

To describe the essence of our approach consider first the much studied
case U=0 [1,4]. Then without collisions particles move in straight lines. As
tagged particle we choose the first particle to the left of the origin at ¢=0.
Following the path y(1), t=0, of this particle (with collisions) one finds easily
that

(i) y(t)=x;,,=the position of the n(#)-th particle to the right of the origin
at time ¢.
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Next observe that

(ii) n(t), t=0, is a simple random walk with “+1” jumps and jump rate
p{|v]>, where p is the density of the ideal gas and (Jv|> the first absolute
moment of the velocity distribution of the particles. This follows from the fact
that in the free motion (a) particles can’t cross the origin more than once and
(b) in the ideal gas Gibbs state, which is stationary, “distinct particles are
independent”. Therefore n(t), t 20, obeys the classical (functional) central limit
theorem (Donsker’s invariance principle) [11] with variance p{|v|> t: the pro-
cess n(At)/]/Z, t=0, converges in distribution as A—c0 to Z(f), a Wicner
process with diffusion constant D,=p{|v|>. Finally, for the ideal gas Gibbs
state we have that

(i) X}~ p~n(t) and therefore we obtain by (i) the invariance principle
for y(t), t=0, with variance p~'{|v|> t[3]: y(4 t)/]/Z, t20, converges in distri-
bution to p~! Z(t), a Wiener process with diffusion constant D,= {|v|>/p.

Now suppose the particles are moving in an external potential U(x). Then
the equilibrium density will be spatially varying: p(x)=p, e~ #U™ (B=inverse
temperature). Just as for the case U=0, y(t)=x;,, where n(f), now the “cross-
ing process” at the maximum of U (which we assume to be at the origin), obeys
the invariance principle: n(At)/]/Z, t=0, converges in distribution to Z(¢), a
Wiener process with diffusion constant D,=p_..<[v]>, where p;.(=p(0)
=p,e PV, Uy,=sup U(x). Moreover, if U(x), x€lR, is a (translate of) a simple

of a translation invariant random bounded potential, then we have that
xj,(,i~/3“1n(t) and hence that y(At)/]/Z, t20, converges in distribution to
5~ 1 Z(t), a Wiener process with diffusion constant (p,;./P)(<|01>/8)=(0min/P) Dos
where p={p), the average density. This result does not, in fact, require full
translation invariance, but merely that the “average density on the left” and on
the right exist and agree, i.e. that the “macroscopic density” p be constant. If
they do not agree, so that the macroscopic density § has different values on the
left and on the right of the origin, it remains true that xf, ~ /=" (n(t)) n(t) and

hence that y(At)/ﬂ, t=0, converges in distribution to Z(t)=p"1(Z(®)) Z().
Z(f) can be described by the stochastic differential equation dzZ
=(p(Z(1))~ ' odZ, provided that the differential is interpreted in the sense of
Stratonovich [14].

We obtain the same result even if the potential varies on the macroscopic

scale A: Let

U (x)=U(x/)/4) and hence p,(x)=p(x/)/4)

and consider now again the rescaled displacement of the test particle y,(f)
=y(At)/]/Z. As A— oo the scale of the potential changes in just such a way as
to make the external force on the tp, which is the same as that on any other
fluid particle, have a finite nonvanishing effect over the macroscopic time scale
At. Moreover, on the macroscopic scale the density varies as p(x)=p,
~exp[ —BU(x)], i.e. the macroscopic density p(x)=p(x) in this case.
Furthermore, since n(t) is the number of particles between the origin and

y(t)=x},, we should have that dn=p, dy and hence that y(At)/“[/Z, t=0,
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converges in distribution to a process Z(t) satisfying dZ=p~'(Z)odZ. This
turns out to be correct, again provided the stochastic differential is interpreted
in the sense of Stratonovich.

We thus obtain in the limit A —co the diffusion equation for the probabili-
ty density of the tp p(x, ) (x and ¢ on macroscopic scale)

op(x,t) 10 [

(1 ot 20x

~BD) K () p+ D)

X
where K(x)= —dU(x)/dx, D(x)=p,exp[ —BUyI{|v]> p~%(x) and the mobility
BD(x) satisfies the Einstein relation, as it must [11] for the equilibrium distri-
bution to be a stationary solution of (1.1).

We conclude this section by noting the following consequence of the way
the diffusion constant D depends upon the macroscopic density p: If U(x) is
quasiperiodic then D exhibits sensitive dependence on the modulation parame-
ters. For example, if U(x)=cos x4 cos kx, then D= D(k)=D*, independent of k,
for k irrational and is unequal to D* for k rational; in fact, D is continuous at
all irrational k and discontinuous at rational k. These facts follow from the
corresponding facts about p=g(k). Similar results were discussed in [13] for
diffusion in a quasiperiodic potential (Smoluchowski equation). Here the
source of the discontinuity is perhaps more concrete since it lies in the density.

These results, for which we have just given heuristic arguments, are proven
in the subsequent sections. The next section contains a detailed description of
the model. In Sects. III and IV n(f) and its asymptotics are studied. The
corresponding results for the collision process y(¢) are then given in Sect. V.

II. The Free Motion

We consider an ideal gas of identical point particles moving in an external
potential U(x) and distributed according to the corresponding Gibbs state. We
shall assume throughout the paper that

(2.1) U(x) is bounded (and for convenience positive)
(22) K(x)=—U'(x) is continuously differentiable

and

(2.3 v0)=U,= sup U(x).

(2.1) is the key assumption. The existence and uniqueness of the motion
considered below is ensured by (2.2) and (2.1), while (2.3) is a harmless but
convenient condition, the role of which will become apparent later.
Let
(X: l/):({xl()}, {Ui})> X?, UiER:» i€z,

specify the initial positions and velocities of the particles, labeled so that

0 0 -0 -0 0
X2, ST SxS0<xIEx) S
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The evolution of the system is given by the collection

(X @), V(O 0=={x:(0}, {0i(0)}),

where x;(t), v,(¢) are the solution of the equations

dx;(t)
. do(®) .
S = K x(0)

with x,(0)=x} and v;(0)=v;.

The (invariant) Gibbs state of the system is conveniently described by a
Poisson point process (@, %, P) built over the phase space I'=R xR with
intensity

(2.5 du=p2mt p(x) e~ dxdv, p(x)=poe "', py>0,

where f>0 is the inverse temperature and dxdv is the Lebesgue measure on
R xR, using the natural identification of each point weQ with a sequence
(X) _V)'

Let T, t 20, denote the Newtonian flow on I" given by the solution of (2.4).
Then the mapping t,: Q — Q given by

o=, V)~ {T(x;, v)}iz=0,

1

preserves P. In particular, the marginal distribution P,=Pom_ " is preserved,

where 7, is the projection on the first component of w.

II1. The Collision Process

We now take elastic collisions between the particles into account: The trajecto-
ries of the “unlabeled” system remain unchanged, but the order of particles is
preserved, ie. particles cannot cross each other. This prescription agrees with
the Newtonian evolution of the system with elastic collisions, i.e. when a two-
particle-collision occurs the velocities of the colliding particles are simply
exchanged.

We wish to observe the position y(f), t=0, a random process on (2, % P),
of a tagged particle. The simplest choice for tagged particle is the one starting
at x3. By our assumption (2.3) it is then also the first particle to the left of the
absolute maximum of the potential U. We relabel X (f) and denote by {x}} the
positions at time ¢, labeled in their natural order w.r.t. the origin, i.e.

~t -t A t ~
X, Ex  Sxp 20X Ex5

It is easy to see that when the tagged particle starts at xJ our description of
the collision process is equivalent to the following formula for y(t):

3.H yO)=x,4, 20,
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where n(t) is the signed number of particles crossing the origin by time ¢ (the
“current” through the origin).

The essential point of the assumption (2.3) is that U(x) achieve its sup-
remum. The additional assumption that this is at the origin is made merely for
convenience. We wish, however, to allow other possibilities for the choice of
tagged particle (than the first particle to the left of the maximum of U). In
general, instead of (3.1) we have that

(3.2 YO =X, 120,
where
(3.3) m(t)y=n(t)+r

and r is the (possibly random) “index” of the tagged particle: the initial
position of the tagged particle is x% r will be random, for example, if the
tagged particle is the particle nearest a specified position g.

In the Smoluchowski case, in which U varies on the macroscopic scale,
UA(x)=U(x/]/Z), we wish also to allow for the possibility that the tagged

particle is initially located near a specific position ¢ ,=q7/ 4 on the macroscop-
ic scale. In this case r=r, depends explicitly on 4 and satisfies

(34) ralV A~ a=] pl)dx.

O

We note in passing that, just as in [4], our main results are also valid when
the tagged particle is an identical extra particle added to the system at a
specific position.

IV. The Asymptotics of the Current n(r)

By conservation of the energy, +v?+ U(x), particles can cross the origin (the
absolute maximum of U) at most once. By the independence properties and
time invariance of the Poisson field P we easily find that the mean current
through the origin per unit time is zero and its variance is

4.1 D,=Em(®)*)/t=pye Uy B2rn | |v]e " dv

=poe PP E(|v))
and that n(f), t=0, is a continuous time simple symmetric random walk with
jump rate D,. Donsker’s invariance principle immediately gives [11]

(4.2) Proposition. Let

n=0,0)z0.  naO)=n(AL/Y/A.

Then n, converges in distribution to Z=1 D, W (n,=Z), where W is a standard
Wiener process.
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V. The Asymptotics of y()

We introduce new coordinates
(5.1) f=f()=[ple)dz=] py eV dz.
0 0
Since dX=p(x)dx and U is bounded
P=PoF !
where
F:Q-Q, Flo)=F(X,V)={f(x) v},

is a Poisson measure with density on R?
da=dx(p/2n)* e " do

and with spatial density 1.
Denoting by
T,=FotoF 1:Q-Q

the “image of the Newtonian evolution 7, under F”, we have that

Pot '=PoF~'oFot loF '=Por loF"'=PoF~'=P

285

since Pot,”!=P, and in particular, that the marginal distribution P.=Pon_?,

is preserved by T,.
We consider now the process (see Eq. (3.3))

(5.2) yO=fG@) =%, 20
(5.3) Proposition. Let

TAO=AON 4, 120,
Then for any T<co and any 6>0

lim P( sup [y,(6) —m,(6)]>0)=0,

A- o te[0, T}

where m,(t)=m(A4 t)/]/Z.

Proof. The proof is the same as that of Proposition (3.1)(ii) of [3]. Roughly
speaking one uses (5.2) and the stationarity of P, noting that ¥//n—1, P as.,
and that (in distribution) [m(t)] - co as t—oco, so that X, /m(t)—1 as t—co.
The crucial step is to control the density fluctuations in the Poisson field P,
over a finite amount of time. For this, Condition (3.6) in [4] is needed. We

leave it to the reader to verify that

(5.4) E(sup suplX,, (1)~ <po()/2Uq +Elo) < co.

te[0, 1] x
replacing (3.6) in [4], ensures the Proposition (5.3).



286 D. Diirr et al.

To establish (5.4) let
Xy, o) =S(x,, ()
where (x. ,(f), v, (1)) satisfies (2.4) with x(0)=x and v(0)=v, and note that

Oy, (O=dX, (O)/dt=(dx,, ,(©)/d) p(x, 1))

19, o Ol=po(V2Ug +10]),  £20

and hence

which proves (5.4).
By virtue of Proposition (4.2) we obtain from Proposition (5.3) [11]

(5.5) Corollary. Let Z be as in Proposition (4.2). Then

V=27

V.1. Cesaro-mean Diffusions
 Let g=f~" where f is defined in (5.1). Then by (5.2)

y(©)=g(()

and

YAD=Y (AN A=h (7,0,
where
(5.6) h(x)=A"*g(A*x).

Clearly, h,: IR - R is continuous for all 4. Suppose that
(5.7) h, converges uniformly on compacts to a (continuous) function A,

Then, denoting by H,, H the (sup-norm continuous) functions on C[O0, T],
T< o0, given by

H (&)= (4 rero, 11>
observe that for y=(y 4(t));cp0, (6 C0, T] for all 4)
(5.8) Ya=H(G)=H(G)+H,7,)—H(y,))=H(Z),
since H is continuous in the uniform topology on C[0, T, and h,— h uniform-
ly on compacts while, by virtue of (5.5),
lim P(sup y,(¢)>B)=0

B—-w 10, T

uniformly in 4, so that H(y,)—H (7 ,)=0.
Suppose again that (5.7) holds. Then by (5.6) & is homogeneous: h(yx)
=vyh(x) for all y>0. Thus h(+y)=yh(£1), ie.

_fh()x x20
h(x)_{_h(—l)x x<0
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and in particular

1 h(1

(5.9) lim ~g(x)={1( )

x_»{+oo

But g=f~"! with f(x)=.fp(z)dz and p(z) uniformly bounded, so that (5.9)
transforms casily to 0

(5.10) lim L f(x)={

(g™

(1)~
h(—1)~

Note also that by the remark following (5.16), if lim y ; exists then (5.7) holds.
Conversely, suppose that

lim 1f(x)={’7 ie lim 1g(x):{’;:.

o fte X P e X

Then (5.7) easily follows with
P
pix  xz0
h(x)= .
() {p‘l x x=0

(5.11) Theorem. Suppose that the following Cesaro limits exist:

We have thus proven

1 L

lim — [ e '™ dx=p/p,

(5.12) foe 1 ’

lim — {e '™ dx=p/p,.
L} £

Lo —w

Then for Z as in Proposition (4.2)

(5.13) ya=Z=((p"ZW) Z®)20
where

s P x=z0
(5.14) p(,\)—{g <0

Conversely, if lim y ; exists, it is of the form (5.13) and (5.12) holds. [

Remark. Z is a diffusion process formally given by the (Ito) stochastic differen-
tial equation (Ito’s formula [14])

(5.15)  dZ=4(p~'—p~")D,0(pZ W) Z(®) dt+p~ (Z)YD, dW(),

where p is defined after (5.13). If Stratonovich differentials are formally used
instead, the equation for Z simplifies,

(5.16) dZ=p=Y2)YD,-dW,

since the ordinary rules of calculus apply to Stratonovich integrals.
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Remark. We remark that for a general U, not necessarily satisfying (5.12), the
family {h,},,, is compact in the topology of uniform convergence on com-
pacts, by the Arzela Ascoli Theorem. To see this note that [dh ,(x)/dx|< eV
uniformly in A and x, and that h,(0)=0. Therefore if (5.7) is not satisfied, then
there exist subsequences 4, and 4, on which different limits h and /i are
obtained and hence different limiting processes h(Z) and h(Z).

V.2. Smoluchowski-type Limits

We now consider potentials U,(x) which vary on the macroscopic scale, i.e.
(5.17) U,(x)=U(x/A?%)

{with U still satisfying (2.1)~(2.3).

Therefore we have to replace p(x) (=p, exp(—BU(x)) by p,(x)=p(x/A?)
and thus the Poisson field (2, # P,) becomes A-dependent. Slightly abusing
notations we use again n,, y, and y, for the processes now defined on
(‘Q> %PA)

The reader may easily check that all results prior to Sect. V.1 are valid
when P is replaced by P,, provided Z in Corollary (5.5) is replaced by Z,=Z
+4, a Wiener process starting at g; cf. Eq. (3.4). (In Proposition (5.3) m(t)=n(1)
+1,4.) Moreover, it is now very simple to obtain the asymptotics of y 4 from
(5.5).

We have that

ya=hy(7)  where h,i(-)=l/iZ 2D
with

X

1409=[ o) dz={ p (1/7) dz=Y/A /A %)

Sil®=VAf-1¢/4-1x)
hy()=f~1()=2g(")

But

and therefore

so that in fact

(5.18) Ya=8(7 )

We thus obtain

(5.19) Theorem. Suppose that U, varies on the macroscopic scale (Eq. (5.17)).
Then

(5.20) V4= Z=@ZO+D),s0,

where g is the inverse of the function x— | p(y)dy, with p=p, e~ Y™, and where

0
q is related to the initial position of y, via Eq. (3.4). (Z is as in Proposition (4.2)).
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Z is a diffusion process given by the stochastic differential equation
(521)  dZ(t)= —3BK(Z@) D, p(Z(t)~>dt+Y/D, p(Z()~ AW ()

with Z(0)=q. Using Stratonovich differentials

(5.22) dZ=p(Z() VD, dW ().
Proof. (5.20) follows from (5.5) using (5.18) and the fact that g is continuous
[11].

(5.21) follows from Ito’s formula and the observation that g=f~"' so that
by (5.1)
dg(x)/dx=p(g(x))~"

d*g(x)/dx?= —p(g(x)) " *(dp(x)/dX)ys
= — K (g(x)) p(g(x))~*

while (5.22) follows from the fact that the ordinary rules of calculus, in
particular the chain rule, are valid for Stratonovich integrals. []

and

. Remark. The Fokker-Planck (forward) generator corresponding to Z is
L= —(d/dx)b+%(d?*/dx*) D(x)
and written in a “diffusion symmetric” form

L= —(d/dx)(b—%1dD(x)/dx)+%(d/dx) D(x)(d/dx)
with
b(x)= —4BK(x) D, p(x)?
and
D(x)=D, p(x)~2.
Noting that
b(x)—4dD(x)/dx=}BK (x) D(x)

we obtain that

L= —(d/dx)( BK (x) D(x) ~1D(x) d/dx)

and we easily read off that Lp(x)=0, ie. p(x)=p,e U™ is a stationary
distribution for Z. We may also recognize in this “diffusion symmetric” form
of L the Einstein relation between the “mobility” v(x)=21BD(x) and the Dif-
fusion coefficient D{x). Note that the usual form of the generator suggests an
“anti-Einstein relation”, since b(x)= —v(x)K(x) so that b(x) and D(x) are
related by an Einstein relation with a minus sign.

Remark. The fact that Z is most simply expressed as a Stratonovich integral

can be understood in terms of symmetry properties under time reversal: n(t)
and [ p(Z)~' odZ are both antisymmetric.
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