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The use of the angular median and related effective spherical potentials to
predict thermodynamic properties of nonpolar homonuclear diatomic liquids
has recently been shown to be efficient and accurate. Here we compare the
results obtained from median-like methods for some other molecular liquids
with simulation data. We find impressive agreement for linear triatomic mol-
ecules but results for tetrahedral molecules and for the overlap potential are
very poor. The characteristic shape of potential energy frequency distribu-
tions at fixed separations is suggested as a criterion for the success or other-
wise of the median potential.

1. INTRODUCTION

The prediction of equilibrium properties of molecular liquids by currently
available perturbation theories is not, in general, very simple or accurate. There
are two notable exceptions: the use of Padé approximants for the free energy of
molecules whose sole anisotropy is multipolar [1, 2] and the treatments of non-
polar homonuclear diatomics based upon a hard dumbel] reference system [3-6].
Even here the prediction of correlation functions is much less satisfactory than
that of thermodynamics.

A recent innovation has been the successful use of the angular median poten-
tial [7, 8] and related potentials [8, 9] to reproduce the thermodynamics of some
model molcules. We emphasize that even where these potentials give extremely
accurate thermodynamic results, they are very poor at predicting structural
properties [10, 11]. Also, although these potentials could in principle be used as
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reference systems in perturbation theories, no perturbation corrections have
actually been calculated. There are at least two good reasons for continuing this
approach of regarding the median as an effective spherical potential (ESP) rather
than a spherical reference system. First, the arguments which led to the median
potential [8] suggest that, for a natural path in_potential space, the perturbation
corrections should be small. Second, for any moderately realistic potential, the
perturbation corrections will be very hard to calculate. A concrete example of this
is discussed in more detail below.

In fact, apart from some hard objects [12, 13], the only molecular models for
which the median-like methods have been tested are nonpolar homonuclear
diatomics [8, 14, 9, 15]. This is natural since such molecules have been exten-
sively simulated but, as a result, the methods have not really added any new class
of theoretically ‘understood’ potential models; rather they enable thermodyna-
mic results of comparable accuracy to those of references [3-6] to be obtained
from a much simpler and faster computation. One of the major motivations for
seeking this greater simplicity was to facilitate the study of complicated mixtures
and a start has been made in this direction [16].

It has already been noticed that median-like potentials are not useful for
multipolar molecules [17, 14]. In this paper, we address the question of whether
such potentials are useful for anything other than diatomic molecules. In §2 we
consider in some detail polyatomic molecules and the so called overlap potential,
as well as remarking briefly on multipolar potentials. The results are tentatively
interpreted in terms of frequency distributions (at fixed separation) of potential
values in § 3 followed by concluding remarks in § 4.

2. THERMODYNAMIC RESULTS

(a) Polyatomic (site—site) molecules

Consider a symmetric m-atomic molecule XY, (for example CS,, CF, or
SF¢) with Lennard-Jones (L.]) atom—atom potentials

12 6 .
W 4p(r) = 43AB{<G_:§> - <G_:q> } ‘ n

Then the total intermolecular potential v is determined by m, the X-Y bond-
length [, and six L] parameters exy, Oxx, €xy,» Oxys vy, Oyr- It is convenient to
write

’U(R, na) Qb) = vXX(R) + ‘ny(R, Qa, Qb) + 'UYY(R: Qa’ nb)) (2)

where Q7 QP are the orientations of molecules a and & whose centres are separ-
ated by the vector R, and

’Uxx(R) = ‘pxx(R) 3

(R Q% Q) = S un(R+ D)+ Y U(IR—n0) @)
i=1 i=1 .

vyy(R, Q°, %) = Z Z Yyy(|R + Un{ — n?)i)' (5)

i=1 j=1

Here nj is a unit vector along the XY bond to ¥ atom k in molecule ¢.
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Table 1. Coefficients appearing in equation (8), the fit to the ESP W(R) for linear triatomic
(m = 2) and tetrahedral (m = 4) molecules.

m AB v 4%, 443, ah a5, 4,

2 XY 12 4000 207380 30-2628 —14-3134 9-11776
2 XY 6 4000 463944 0-814756 . 0-130504 —1-84746
2 YY 12 4000 414760 85:0292+ —64-4101 —22-0825+
2 YY 6 4000 9-27888 —0-267648% —7:31992% —3-54689+
4 XY 12 8000 176-000 143673 7311-22 126944

4 XY 6 8000  40-000 91-8706 187-104 —443-485

4 YY 12 16000 704000 16698-8 176835-0 29264400

4 YY 6 16000 160-000 111100 4594-88 366691

t Allowing for a trivial factor of 4, these values do not correspond exactly to those given for
homonuclear diatomics in [9]. This is because the Y-V elongation here slightly exceeds the
maximum value for which the fit of [9] is valid.

The basic median procedure [7] uses an ESP w(R) defined by
J'dQ" fdﬂb sgn [v(R, Q° Q% — w(R)] = 0. (6)

It was found for elongated diatomics, however, that splitting v into its repulsive
and attractive parts before taking their individual medians and recombining these
[9] improved agreement of thermodynamic results with simulations. For
diatomics, the spherical potential obtained by taking separate medians of the r~ 12
and 7% terms in the site—site potential proved most accurate and had the addi-
tional advantage of yielding a universal ESP for any elongation [9]. This and the
use of a Laplace transform identity greatly reduced the computer time needed to
calculate thermodynamic properties (see [16]). '

Since we do not wish to prejudge the efficacy of potential splitting for other
molecules on the sole basis of results for diatomics, we have carried out calcu-
lations with ESPs of three types:

-

(i) Basic median [equation (6)].
(ii) Separate medians of two expressions, the sums of @/l » " !? and r~® terms.

(iii) Separate medians of four expressions, the sums of the 2 and 7~ terms
in vyy and vyy, respectively (plus the trivial vyy).

As in our previous work, we continue to use Ross’ procedure [18] to obtain the
thermodynamics of the sphericalized fluids. The calculations for type (i) are
obvious generalizations of those in [14] and the ones for types (ii) and (iii) are
obvious generalizations of those in [9].

In a physical sense, ESP type (ii) is most analogous to the splits used for
diatomics but, because there are two atomic species in each molecule, it is only
type (iii) which avoids recomputation of medians for different potential param-
eters. For a given basic molecular geometry (i.e. a given m), an ESP W(R) of type
(i) can be obtained for arbitrary values of the parameters &4, O4p 8s a linear
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combination of just four universal functions. We have obtained fits to these
functions of the same form as those given in [9] for diatomics:

12 6
S
12 R ! 6 R
e (%5) an7) - (52 0 7))
12 R 6 R
+ 45”{(%) Myy, 2(7) - <%> MYYﬁ(‘[)}: (7

M gp(x) = x {gldh + gllhox 2 + @il + @i T+ b )

[

where

The coefficients ¢}y, are given in table 1. We note that although our methods
clearly can be applied to arbitrary values of &yy, Oxy, all simulated systems we
consider satisfy the Lorentz—Berthelot rules

Oxy = %(Uxx + oyy) 9)
Exy = (Exx EYY)I/Z' (10)

Tildesley and Madden [19] have simulated a model of CS; of the type con-
sidered above with /= 1:57A, occ = 3-35A, 0= 3524, ecc/ks = 512K, and
ess/ks = 183-0 K. Although there have been other simulations of CS, [20, 21] this
is the only publication in which thermodynamic results have been given. Simula-
tion and median results are compared in table 2. Clearly, as for diatomics, (i)
gives energies that are much too high while (ii) and, more so, (iii) reduce this

Table 2. Comparison of median-based and simulation results for thermodynamics of a
triatomic Lennard-Jones model of CS, (model A of [19]). p represents the pressure
and U the excess internal energy.

po3/ess (upper row)
U/Negg (lower row)

Cplgem™d  T(K)  pody  kyTess (i) Gy . (i) MD
109 395 0376 2158 +0:59 +0.01 —0:43 +0:10
~1167  —1323  —1342  —13-92

1-16 355 0400  1:940 +0:77 +0:17 —039 +0:06
1259  —1432  —14:53  —1503

122 319 0421 1743 +0-98 +0:42 —029 —003
—1340  —1529  —1553  —16:07

1-26 298 0435 1628 +122 +072 —010 +0:08
1393  —1592  —1618  —1669

127 283 0438  1:546 +1:02 +0:54 —030  —0-04
—1409  —1613 —1639  —17-00

1-34 244 0462 1333 141 +1:16 +0:07 ~0-06
—15:01  —1723  —1754  —1814

1-42 193 049 1-055 +173 +2:02 +057 +0-08

—16:13 —18:57 —18:95 —19-62
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discrepancy. Pressures are not so good as for diatomics but the relative errors are
misleadingly large because the simulations aimed for near zero pressures to allow
comparison with experiment. For diatomics, it was the accuracy of the median
approximation for higher pressures that was most impressive but, in the triatomic
case, there are no high pressure simulations.

There are some molecular dynamics simulation results for thermodynamics of
tetrahedral L.] models of CCl, [22] and CF, [23], obtained using the quaternion
algorithm due to Evans [24], and also some Monte Carlo results for CCl, [25].
We find that the median-like methods fail completely for tetrahedral molecules in
the region of available simulations. As an example of the least bad results, we
quote those for a single state point of CCl, modeled with / = 1-766 A, Occ =
324, 000 =354, ecc/hy = 512K, and eqefky = 1435 K [22]. For pod,q =
0128 and kg T/ecic; = 3923, the simulation gives podici/eciar = 0-05, U/Négicy =
—11-48 while the ESP of type (iii) gives podic/Ecier = 1-14, U/Negyc) = —2-83.
The ESP pressures become much worse still at lower temperatures. Despite the
poor results, it is interesting to note that the two very different molecular poten-
tials in [22] give very similar ESPs.

(b) Owerlap potential
The overlap potential [26] is defined by

12 6 12
o(R, 0y, 8,) = 48{<%> - (%) } + 885(%) Fo(0,, 6,), )

Fo(0y, 8;) = Py(cos 0,) + Py(cos 0,); —4 <4 <4,

where 0, 0, are the polar angles of molecular axes relative to R and P, is the
Legendre polynomial of order 2. It is a very simple way of crudely modelling the
effect of the addition of short range anisotropy to a LJ atom. Qur interest in it
here is largely due to the fact that its median can be calculated analytically (see
Appendix of [9]) and is just a L] potential

[(a"\12 o'\ 6
w(R) = 4¢ {(E) - <E> }, (12)

where ¢ = K;''¢, o = K}/%0, K; =1 —26(1 — 3/n). Consequently median ther-
modynamics can‘be found from the fitting functions of Nicolas et al. [27] or Ree
[28] for the L] fluid. We choose to use the latter fit and the results are compared
to simulation results in figure 1 for various values of & at a single density and
temperature.

Clearly, for 6 < 0 (oblate) the median is worse than the mean (equivalent to
0 = 0). For § > 0 (prolate), the median is better than the mean but it is still not
very accurate except at small §. The failure of the median ESP in the oblate case
is a manifestation of a more general situation: Consider any potential of the form

(R, Q° Q%) = s(R) + SF(Q°, Q)R (13)

and an angular average 9(R) defined by

fdﬂ" fdﬂbf[v(R, Q4 Q" — 3(R)] =0, (14)
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Figure 1. Change of internal energy due to anisotropy for the overlap fluid at po® = 0-85,
, median results; ———,

ky T/e = 1:29. O, MD results of Haile quoted in [26];

RAM results.
(15)

where f is an arbitrary function. Then

?(R) = s(R) + 1R,
(16)

where
Jdn" Jdnbf[F(Q", 0% — 1] =0.

Provided 7 # 0 and & can take either positive or negative values then, for 6t >0,

?(R) > s(R) for all R. However, when a spherical liquid has not too extreme an
anisotropy added, the molecules will tend to reorient into lower energy configu-
rations and so any ESP which gives the correct energy must have 9(R) < s(R) for

at leat some R.
We briefly digress here to point out that the (temperature dependent) RAM
potential [29] v(R), defined by ‘
jdﬁ" fdﬂb[exp {—Bu(R, 0%, OQ°)} — exp {—Bovr(R)}] =0, 17)

does not fall into the class of averages represented by equation (14). It is expected
to give energy lowering for both positive and negative & since the Boltzmann
factor averaging always gives markedly greater weight to attractive potentials. For

the overlap potential, we easily find that

6 g 12 JZ(\//\)

—28( =] p—ptIn = 1
Joale)]oe ) o

v4(R) = 4s{<;
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where

12 X
A= 12[38]5](%) , Jslx) = J dt exp {—(sgn 8)t*}.
o

RAM internal energies have been calculated for the overlap potential using Ross’
procedure [18] (taking care to allow correctly for the temperature dependence of
the RAM potential) and are shown in figure 1. The internal energy is indeed
lowered from its 5 = 0 value for both positive and negative values of d, but the
size of the effect is considerably overestimated for large | §|.

For prolate overlap molecules, the median seems to provide a better reference
system than the mean, but is not (in zero order) as accurate as for diatomics. In
view of the simplicity of the potential this appears the most likely system to be
amenable to perturbation expansion about the median reference system. In the
usual spirit of perturbation theories about a spherical reference system we require
that the first order term vanish. This is ensured by choosing the form of pertur-
bation [12]

(R, Q) = (1 — ADw(R) + ky TA(1 — 1) sgn [v(R, Q) — w(R)] + 120(R, Q).
(19)

Then the hardest integral to evaluate in the second order term of the free energy
expansion is proportional to

fdl de jd:i g1, 2, 3) sgn [v(1, 2) — w(R,)] sgn [o(1, 3) — w(R,5)]

(20)

where the superscript of the triplet distribution function indicates that it refers to
the median potential. The angular part of the integral in (20) may be written

n 1 1 1 ’ 2 2
j d¢f d.ulj dllzf duy sgn <u% +#§—-> sgn <ué+#§~—> (21)
0 0 0 0 n n

where y; = cos 0;, (i = 1, 2, 3), iy = cos & cos 8, + sin « sin 6, cos ¢, and o is the
angle between Ry, and R;;. (¢ represents the azimuthal angle for the axis of
molecule 1 about R, ;).

It is elementary to reduce the expression (21) to

n 1 2 2 ’
L d¢ L dmv(;; - uf)v(; - #3>, (22)

N 1 (x<0)
V) = 1-2Jx (O<x<1)

but we are then left with a five-dimensional integral to evaluate numerically.
Whilst this is certainly feasible it is equally certainly not simple and is likely to
consume considerable computer time, even when the commonly used Kirkwood
superposition approximation is used for g§"(1, 2, 3). The procedure of expansion
in spherical harmonics which makes perturbation theory about the angular mean
and RAM reference systems easily practicable [26, 297 does not appear promising

where

(23)
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for median perturbation theory due to the singular nature of the sgn function or
the function 7 arising from it. Thus we have not considered it worthwhile to carry
out numerical calculations of the above approximation even for this extremely
simple molecular model.

(c) Remark on multipolar potentials

For molecules where the only anisotropy is multipolar, the median potential is
not useful. Indeed for dipoles [17] and other odd multipoles the median is just
the isotropic part of the potential. We have remarked previously [14] that the
median potential for dipolar hard dumbells is more repulsive than that for the
corresponding nonpolar dumbells. More recently we have found that a similar
effect occurs when a dipole (ideal or otherwise) is added to a diatomic Lennard-
Jones molecule. Thus, the median has exactly the opposite effect to that necessary
to produce correct physical results for dipolar molecules with nonspherical repul-
sive cores. (Addition of a dipole moment should lower the internal energy.)

3. DISTRIBUTIONS OF POTENTIAL VALUES

A proper understanding of why the median potential yields such extremely
accurate thermodynamics in some cases is still lacking. The mystery is only
deepened by its failure for correlation functions [10, 11] and none of the mathe-
matical arguments in [7, 8, 15] give any clue as to why the median should give
much better thermodynamic results for linear triatomic than for tetrahedral mol-
ecules. Indeed, it is natural to think that, in at least one sense, tetrahedra are
“closer’ to spherical symmetry than triatomics: in the large R expansion of the
molecular potentials, the first angle dependent term occurs at a higher negative
power of R for tetrahedra than for triatomics. Perhaps the best heuristic approach
is the use of frequency distributions for pair potential energy values at fixed

frequency

potential energy

Figure 2. Frequency distribution of potential energy values at fixed centre-centre dis-
tance R = 3/ for the r~'? term in vyy of a linear triatomic. Both frequency and
potential energy units are arbitrary. The vertical line indicates the median of the
distribution.
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frequency

potential energy

Figure 3. As figure 2 for vyy of a linear triatomic,

separation and all possible orientations, first introduced by Gray and Joslin [17].
Here we use this approach in an attempt to gain some insight into the results of
the previous section.

Considering first polyatomic molecules, we show in figures 2-5 frequency
distributions of the r~!? parts of the atom—atom potentials of linear triatomic and
tetrahedral molecules. We see that the distributions for tetrahedral molecules lack
the sharply peaked shape of those for linear triatomics. The value R// = 3 chosen
corresponds, for the triatomic vyy (figure 3), to figure 5 of [14] where the fre-
quency distribution was given for the full diatomic L] potential. Comparison of
these two figures shows the effect of the potential splitting: both distributions are
highly peaked, but the median is quite close to the peak position only for the
softer potential. It appears from these examples that the median method only

frequency

potential energy

Figure 4. As figure 2 for wyy of a tetrahedral molecule.
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frequency

potential energy

Figure 5. As figure 2 for vy, of a tetrahedral molecule.

works well for anisotropic short-ranged repulsion when applied to a distribution
of potential values that is strongly skewed towards low values and has a median
close to a sharp peak.

We can also look at the above observations in a slightly different way. The
usefulness of the median in statistical analysis is precisely the fact that it tends to
ignore ‘ rare values’, For diatomic molecules of not too great elongation, the ‘rare
energies’ are for end-to-end configurations and it is good to ignore these since
they comprise the energetically unfavourable tail of the frequency distribution.
For elongated diatomics, the crossed configurations become very energetically
favourable compared to parallel and ‘tee’ ones [11], and therefore represent
additional ‘rare energies’. Ignoring these is a failing of the median but this is
minimized by splitting the total potential into the least rapidly varying parts
consistent with the molecular geometry [9].

For CCl,, the important configurations are those where a Cl atom of one
molecule fits between three Cl atoms of another molecule. These are presumably
‘rare” compared to those configurations where a Cl atom of one molecule opposes
one from the second molecule, this being reflected in the slow fall-off of the
frequency distribution from its values at the lowest energies. We suspect therefore
that the accurate validity of any ESP over a wide range of states is less likely than
for diatomics, but presumably ESPs can be found entirely empirically which
reproduce some range of experimental thermodynamic data for tetrahedral mol-
ecules.

Further insight may be obtained by considering the overlap potential. Here
the frequency distribution is easily calculated analytically from

dF,; —1<Fy<3%
p(Fo) dFy = (24)

— 2% cos™! {%(F0+l)_”2}:| dFy; 1< Fy<2.

/1 oA
ol
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Figure 6. Frequency distribution for Fy (the angular part of the overlap potential) as
given by equation (24).

p(Fy) is plotted in figure 6 and gives the shape of the potential value distribution
for prolate overlap molecules. Compared to the mean, the median tends to ignore
the tail of the distribution at high potential values and so the median results
improve on those of the mean. However, since the distribution is not at all
peaked, the median results are still poor. The distribution for oblate overlap
molecules is just the opposite of that for the prolate case. The median now
ignores the important contribution of the low energy tail of the distribution.
Incidentally, frequency distributions of the potential indicate how poor a rep-
resentation of real molecules the overlap potential is. Site-site models of prolate
molecules, which have some potential values essentially arbitrarily large at small
separations, seem much more realistic. The oblate overlap distribution correctly
has a finite tail at low values but a real polyatomic oblate molecule (such as
benzene) will clearly also have a few arbitrarily high potential values at small
separations.
A large quadrupole moment is well known to have a significant effect on
molecular thermodynamics. This is partly due to long range effects which the
median obviously cannot be expected to describe accurately. The rather flat fre-
quency distribution (figure 7) of a pure ideal quadrupole—quadrupole interaction
potential
0?
R®
Fo(0y, 05, ¢13) = 15[1 — 5 cos® 6 — 5 cos® §; — 15 cos® 0, cos® 0,

(R, 0y, 0,, ¢,) = FQ(911 05, ¢12),

(25)

+ 2{sin 0, sin 6, cos ¢,, — 4 cos 6, cos 0,}*]

shows, in the light of the above discussion, that the median method is also
unlikely to be useful for treating the near neighbour effects in any strongly quad-
rupolar fluid. As for prolate overlap molecules, the median is slightly better than
the mean but, because the distribution is not strongly peaked, not very accurate.
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Figure 7. Frequency distribution for Fy, (the angular part of the quadrupole potential).

4. CONCLUSIONS

Based upon results reported here and in previous papers [14, 9, 12, 13] we
conclude that median-like potentials are useful for predicting thermodynamics of
prolate site-site molecules. The method’s areas of success have been tentatively
related to the shape of potential distributions at fixed R. It is successful when, for
small R, there is a pronounced peak near the minimum energy including nearly
half of all possible configurations. For larger R, the distribution is narrower and
almost uniform so that the median is close to the mean. Oblate and nonlinear
molecules do not have the required shape of distribution at small R and the
median is not successful for them; prolate overlap molecules represent another
failure for the median but their rather pathological potential distribution (figure
6) seems to indicate that they form a very poor model of the anisotropic repulsion
in real molecules. We seem thus to have delineated, albeit in an empirical manner,
the limits of the usefulness of median-like potentials. :

Finally we make a few more general remarks on sphericalized potentials. The
advantage for large scale molecular thermodynamic calculations of an ESP over a
spherical reference potential to be used in perturbation theory seems clear. The
median potential itself is only suitable as an ESP for the limited range of molecu-
lar models indicated but differently defined ESPs may work for other types of
potential. One possibility is the empirical B,-inversion procedure of Smith and
collaborators [30, 31] which has recently been formalized [32]. However, it is
more suited to inversion of experimental thermophysical data, since calculation of
B,(T) from a given nonspherical potential is itself a fairly major undertaking.
Another spherical potential giving the exact B,(7) for a molecular potential (but
avoiding its explicit evaluation) [33] has a cusp and so probably cannot be reliably
treated by the standard methods for atomic fluids.
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Due to lack of extensive simulation data for anything other than homonuclear
nonpolar diatomics it is hard to judge whether useful ESPs exist for other molec-
ular potential models, let alone give a prescription for obtaining them from a
given model. For example, most simulation studies of multipoles to date have
chosen a fixed state point and varied the multipole strength. A prerequisite for
determining a suitable ESP (if such exists) will be simulation data for an extensive
region of the temperature-density plane, if only for a few specific molecules.

This work was supported in part by U.S.A.F.0O.S.R. Grant No. 85-0014. We
thank Michael Wertheim for useful discussions on the representation of orienta-
tions of nonlinear molecules.

Note added in proof —The recently suggested variationally optimized ESP of
Shaw et al. [34] leads to very accurate results for extremely elongated diatomics.
For prolate molecules, however, their potential is just the median which as we
have seen is not very accurate. For oblate overlap molecules, the variationally
optimized potential is the midpoint of the range of the potential distribution; this
is still given by equation (12) but with K; =1 —|3|. As a result, the energy is
lowered compared to d = 0 but the overestimation of this effect is even greater
than that predicted by the RAM potential.
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