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DIFFUSION, HOBILITY AND THE EINSTEIN RELATION

Pablo A. Ferrari , Sheldon Goldstein

and Joel L. Lebowitz

Abstract. We investigate the Einstein vrelation o=BD between the
diffusion constant D and the "wobility" , of a "test parcicle"
interacting with its environment : 8-1 is the temperature of the system
vherc D is measured snd oE is the drift in a constant externsl field
E . The relation is found to be satisfied for all model systems in which
we can find a unique stationary non-equilibrium state of the environment,
as seen from the test particle in the presence of the field, For some
systems, c.g. infinite systems of hard vods in one dimension, we find
non unique stacionary states vhich do not satisfy the Einstein relation.
For sowe models in s periodic box the Einstein relation is the most
direct vay of obtaining D . A precise wmacroscopic formulation of the

Einstein relation vhich makes it mathematically very plausible is given.

1. Introduction.

Ve investigate stationary states of various classical model sys-
tems in vhich 8 charged "test particle”™ (cp) is subject to a constant
external field E in the x-direction. The suitably defined drift or
mean velocity of this tp , Uu(E) , is generally expected, for small
fields to be proportionsl to the diffusion constont D of the tp at
E=0 , vhen the system is in equilibrium, Hore precisely,

u(E)

o £ lim
E+0

where B the reciprocal of the temperature characterizing the equili-
brium state of the system at E=0 . (We set Boltzmann's constant and the
charge of the tp equal to unity. We use the usual physicist's normali-
zation for D : for standard Brownian motion, (du)2 wdt ,D=1/2,
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. : 2
and for the general one dimensional Brownian motion <UD(t) >= 20t) .

Equation (1.1) is the first example of a class of general rela-
cions between linear transport coefficients and equilibrium fluctuations
e.g. 9 and D . lc was derived by Einstein for Brownian particles in s
fluid using physically intuitive quasi-equilibrium arguments [1]). Their
most general formulationm, as Einstein-Green~Kubo (ECK) velations, is
usually derived vis formal perburbation arguments around the equilibrium

scate, see belov and refs.2].

The validity of the ECK relations, or at least of sowe of their

experioental consequences 3appear vell established in many cases, A con-

vincing wathematical derivation, and in some cases even 3 precise formu-

lation, is hovever lacking at present {3] . The purpose of this pre-

sentation is to discuss the meaning and status of equation (1.1) for

various model systems

Formulation of Problem.

Ve shall call a system for wbich the cp has differentiable

d

spatial trajectories, i.e. in vhich the microscopic velocicy v , v € R

of the tp 1is vell defined a mechanical system. For such & systewm
u(E) = <¢v> B"l «Mevis (1.2)
xE° x ‘o

where M is the mass and v, the x-component of v . The subscripts

E and O refer co expectation values in the appropriate ststionary mea~-

sures with and without the field. The microicopic action of the field in
such 2 mechanical system is an acceleration H'E of the test particle
in the x-direction - while leaving all o:hﬁr interactions unchanged. We
shéil later discuss different models of such mechanical systeams. Note
that according to our terminology a particle vhose velocity  undergoes
an Ornstein-Uhlenbeck process is a mechanical system. A system which
evolves in a determiniscic manner according to Newton's equations of

motion vill be called Nevtonian.

In addition to mechanical wmodels we shall also conaider systems

vhere the microscopic dynamics is wodeled by Brownian motion, 8 continuous

spatisl process vhose velocity ia not well defined, In these models the
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electric field acts by adding s drift term proportional to "Edt  to the
displscement of the tp . The definition of B appesring ia (1.1) is no
relatcd to the behsvior of the tp in equilibrium with an external
“"econfining potential” . A similsr situstion occurs for models in which
the position of the tp takes values on a lattice, X € Eﬁ . Here the

electric field acts to “suitably” biss Jumpsin the x-direction .

In general, for wmechanical snd non-mechaoical systems in which
the tp is freetowoveinall of R oc Z¢ , there will be no stationa
probability measure completely describing the entire systews, environmen
plus tp , since the position of the latter will not be localized in the
“stesdy state”. Hovever, if ve ignore the position of the ¢p and consi
der only the remsining coordinastes, describing the eavironment relative

-

to the' tp (including the velocity
of the tp io the case of mechsnical systems), this problem disappears.
It is to ststionary probability measures for this relative descripcion -

the environment seen from the test particie- tavhich<¢ >o and < > refer.

E
For mechanical systems it i3 zatural to define u(E) as

<V but this makes no seunse for non-wmechanical systews. Hovever,

in :llhcases X(t) , (the x-coordinate of) the position of the ¢p
st time t (X(0)=0) can be naturally defined as a random variable cn the
path space for the evolution of the envitbamernt seeo from the ¢Cp ,
equipped with the invarisnt path messure Pp arising from < >. . Ve
‘then have that ¢ X(t) >p/c is independent of t and ve define u(E)
by (ve abuse notation sné vrite < > for the expectation with respect ta
Pe),

u(E) = < X{17 > (1.3)
This definiticn agrees with the previous ont iz the case of wmechaoical
systems, since inthis case X(t) = | v(s)ds . Ve also note that if the
process describing the evolution ot%he environment seen by the tp star
ting from the state < > is csgodic, then

liz E%;l » u(E) (1.4)

r..

a.s. vith respect to PE .
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Observe also that vhile for mechanical systemsthe diffusion cons-

tant D 1is given by [ < vx(O) vx(c) >, dt , an expression vhich makes

o, . . .
no sense for non-mechanical systems, in all cases (under consideration)

ve have

b = 1im (207} < x(e)? > (1.5)
L

Note that equation (1.1) implies in particular that ¢ is zero
whemever D vanishes. This is trivial in the case vhere the tp is
confined to a compact spatial region by an external potential, e.g. by
valls. It is more interesting in the one dimensional system of Brownian
particles with hard cores or lattice gases with jumps restricted to
nearest ncighbor cmpty sites. ln these cases it is known [4 ) that
< Xz(t) >~ cllz so that D is zero. We shovw indeed that in these cases
G(E) = 0 : In fact the infinite volume stationary measures < Jp for
¥ 4 0 turp out to be limits of finite volume E ¥ O , stationary states
containing N particles with either periodic or rigid wall boundary con-
Jitions. In che latter casc the finite volume states are generalized Gibb
sion for which of course u(E) =0 , while in the periodic case we verify

(1.1) for finite N , vich uN(E) v Dy ~ N .

The situation is less clear for interacting Newtonian particles
vith hard cores. The diffusion constant for a tp , having the same mass
M  as che other "fluid" particles, is non-zero { s) . Hovever, just as
for Brownian particles, ve explicitly find stationary measures as liwits
of finitec volume (generalized) Gibbs states. These states, which are spa-
tially identical to those found for Brownian particles, have Haxwellian
velocities, so that u(E) = 0. (They are hovever no longer limits of
stationary states with periodic boundary conditions). Morcover, by
Galileaiinvariance, these states arc imbecdded ,in a family, members of
vhich can be found assigning U(E) any value whatsoever. Presumably,
none .-{ these states have anything to do with the Einstein relationm, not
even Che one(s) for vhich it is satisfied. We expect, but do not prove,
that there are also other stationary states, arising in the limit t© ==
(under the evolution vith E¥0) from the initial state < 2, for
vhich we expect that the Einstein relation is satisfied. Indeed, in caaes
vhere there is more than one stationary state <o (for give§ B and
density), it is omly for those arising in the above way that we expect

“ the Einstein relation to be satisfied and hence ve believe that u(E)

should be defined in these ststes, In fact this is essentixlly vhat the
usual derivation of the Xubo formulss (ECK relations), via perturbation
of the equilibrium state in effect does [2). We present it here as heuris-

tics,

Perturbation Argument.

Let the time evolution of the appropriate probability measure

be given by the forvard generstor of the process Lb-*ELl

v
< (Lo'ELl)u (1.6)

vhere L and LI are independent of E . We consider now the state at ti
t >0 vhen p(0) » B, » the equilibrium state, vhen E=0 ;L p 0.
Then by the standard Dyson formula '

t
p(t) « b *E J' exp[(t-t')LolLlu(t')dt' (1.7)

Let now U = uo-uls be the function whose expectation value in t

correct stationary state is u(E) . (For a mechanical system U =v .,

U =0 ; for a ditfusion systcm U, is & constant). We then write formally,

1 1
assuming that the average of U converges ss t = = to the correct u(E)
and that the limit (1.1) exists and is given by letting t +« after expanding

<U> in E,

o= < ul > «f < U(O)(t')A > dc’ (1.8
N ° o [
vhere
-1 ‘
A v, Ll v, " L‘ log B, - (1.9)

The subsyipt < >, weans that the average is with respect to by and the
. (0} s ox : .. .
superscript Uo (t') indicates that the time evolution is taken with the

generatos L . For a wechanical systew (1.8) is aimply
c=8 c’; <v (t')v > dr' = gD (1.10)

A similar formula [6)is obtsined for a diffusive system with the appropriate

choice of U .
o
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We have avoided making precise statement about the limits
t -~w,E+0 leading to (1.8). This is deliberatc;.we have no vigorous
(or even very convincing) arguments about the validity of (1.8) for gencral
systems [3]. It is precisely this lack of knowledge vhich led us to the pre-
sent work. We believe that in addition to the specific wodels considercd ex-
plicitly here the formulation in the last section has some prowise of lea-
ding to rigorous results for general systems. In particular that formulation

makes Einstein's original argument precise and very convincing.

We proceed ro give some examples of models vith"static environ-
ments for vhich the Einstein relation holds. In later sections ve will
investigate models vith "dynamic” environments in vhich the tp is onc

of the particles in an interacting system.and give a nev formulation of

the Einstein relation.

II. Static Environments.

a) Harkovian Mechanical Models.

In this widely used class of models the velocity of the tp
undergoes either i) a Harkov jump process specified by a transition rate
K(v,v')dv or ii) an Ornstein-Uhlenbeck process. (We take here v € R
since extra dimensions do not introduce any essential nev elements.)Set~
ting x(0) = O the position at time t is given by x(t)= gtv(t')dt'.
The position and the velocity distribution of the tp satisfies a

"linear Boltzman equation

3f(x,v,0) af 1 _ 3Ux) I
— "V 'H [ =t E] 3y (Kf) (x,v,r)  (2.1)
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Ve hsve included here also a force term coming from an external
potentisl U(x) (vhich ve generally take to be zero) in order to clarify
the role of E . The operstor K on the right side of (2.1) represents
the effect of the environment : it is the forvard generator of the
Markov velocity process and is independent of U,E and x . K is
assumed to have 8 non-degenerate eigenvalue zero, corresponding to the

Maxwellian velocity distribution hs(v)

KhB -0 (2.2)

hglv) = (2078072 expl-Q/28w2) . (2.3)

The stationary solution of (2.1) for E = O is the equilibrium distri~

bution
fo(x,v) « C exp [-BU(x))hB(v) . e (2.4)

C 'is s normalization constant vhose meaning is clear when exp [-BU(x)]
is integrable - or the particle is in a rigid box. When U(x) = 0 or

is bounded periodic vith period L it is simplest to interpret

(2.4) as holding for x in R/L, i.e. ve can think of the tp defired
in the periodic box of length L . Alternatively fo is the stationary
Poisson density of independent particles in the x,v plane,

The diffusiun constant D for the tp undergoing the process
defined by (2.1) vith U zero or bounded periodic can be showm to exist
under mild assumptions on K , and to be given,as usual, by the integral
of the velocity autocorellation function as in Equatiom (1.10) with
<> referring to the normalized equilibrium distribution (2.4). It
wight appear that, in this case at least, very few additional assumptions
are vequired to jusfity (1.8) and thus prove (1.1) (see hovever eq. (2.9)
and the subsequent discussion). We do not attempt to investigate this here -
instead ve limit ourselves to tvo cxaoples vhere h(viE) can be computed

explicitly and (1.1) caun thus be.shown to hold,
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For the OU process [9]
1,8 "l (2.5)
Kh = H vgy [vhe (84) = 57 h)

and D = (78)‘1 . It is easy to check explicitely (or by performing a
Galilean transformation) chat for U=0 the stationary velocity distri-
bution is given by

h(v;E) = hﬁ(v-z/y) (2.6)

-1
and 50 0 =y = BD .
A problem may arise, houvever, when K is sn integral operator’

(case 1). )

(KB) (v) = § K(v,v" Ih(v')dv' = [K(v,vIh(v)av! (2.7)

so that EL becowes a singular perturbation : E multiplying the
highest derivative. To see this let us consider the simplest jump pro-

cess, one withoul memory,

K(v,v') = 1‘1h8(v) (2.8)

vith 1 a constant.

The stationary solution of (2.1) can nov be easily obtained for the

case Us=0;

v
h(v;E) = | cexp —a{v-v") hs(v')dv ', o= M/TE (2.9)

is not differentiable at E = 0 . The Einstein relation

r

Clearly h{v;E)
{s nevertheless satisfied,

<v o= tE/H = BDE . (2.10)

The first parc of (2.10) is obtained wost easily by multiplying (2.1) by

v and integrating over V , vhile the second equality follows readily

from (1.10) (In fact the same wethod can be applied to the case
Kev,v') = uivav') W(n) even and integrable, A ¢ 1 . It gives

~ig e g f(1-A)H ~ BD , ¢V efu(v)dv) .. Thus theexiatence of an expansion of
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h{v;E) about E=0 , is certsinly not necessary for (1.1) té hold, vhat
is then 1 Our formulation in saction 5 suggests that (1.1) is valid in
essentially ell cases vhere the motion of the tp , for E=O , converges
Gn the limit of macroacopic length snd time scales) to Brownian wmotion.

The problea however ramains open.

b. Diffusion in a Random Environwent.

We continue the investigation of static environments by conside-
ring the wotion of a test particle diffusing in s potential U wvith s
“conductivity” a(x). The distribution function p(x,t) for thia wodel

(there is no velocity variable) satfsfics the equation

3p(x,t) 9 -1 £l ? 9
20,0 . -2 - g
3t * 3 v '( 3*-0810) 3% * 3% ° (2.11)

vith ay ¥ B'l , independent of x , required to make the stationary
weasure, for E = O , assume its equilibriuvm value, c.f. (2.4). For
U=0 and a constant, the Einstein relacion is then satisfied by
assusption. The question about (1.1) nov occurs vhen U and/or aisperio-
dic or more generally themselves form a spatially stationary random pro-
cess. We shall consider this case in onec dimension where one can obtain

explicit expressions for © and D and shov that they satisfy (L.1).

Consider ergodic, translation invariant rsndom fields U(x) and/
or a(x) , x€ R, defined on some probability space < 0,A,P >.(We
assume that v wmay be identified with Uv,av , or (Uv"w) JWe write
¢.> for the expectation v.r.t. P . For each v € 1 the forvard gene-
rator of the corresponding process X(w,t) is
32!

E]

- E)p]*i&: -a-p] - L‘y-%(ﬂao) (2.12)

L) -1
Lpe -ﬁhv( IX W X
and the «ationary solutions to (2.11) satisfy

vau(x) =0 . (2.13)

According to (2.12) L p = div 3,(e) , vhere J  is the current (opera-
tot)'



414

Thus the first integration constant of (2.13) is the current

J -J(pu) , vhich can be interpreted as

N (t)
[e]

J(p ) = lim
W
[
vhere N (tJ is the (expected) signed aumber of crossings of the origin
o .
(total flux) up to time t of independent particles, each performing

X(w,t) and distributed initially according to a non homogeneous Poisson

process of density pw(x) .

1f P is ergodic one can prove (using ergodicity of the process

. . X(w,t) .
induced in the space of the environments) that the lim ——7?—— exists

Cro

and is independent of w . Thus Cthe effective velocity of the system is

given by

u(E) = lim —4+—= P a.s. (2.14)

X(w,c)
3

t“
and wve have also that < oU(O) > u(E) = J(pv) , SO

J{p_ )
h (2.15)

u(E) =
<pv(0)>

Now we compute u(E) in two cases : ,

a) random potential (a is constant {= 1) in eq. (2.11)) and

b) random conductivities (U is zero in eq. 2.11).

For the caseof a random potential the stationary demsity o, is

- . "
the solution of the equation 1

v 2
Bl —Y CE) Qe sp -0 (2.16)
9x 3x 5x2

Putting the first integration comstant J(pv) » 1 we obtain

}’e-ss(x'-x) JICICO R COD I (2.1

X

pv(x) -

Taking x =0 and using eq. (2.15) we get
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1

- - ‘1
oD - Gt sz(!o dx BE ¢ BEX ¢ ¢ BUO) BIG) >) (.18

Thus
o % lio l’-(—tQ o B¢ ¢ BUCO) , o (BUCQ) 4)-1 (2.19)
£+0

The rightmost factor {s the diffusion constsnt D of the tp
moving in the random potential (provided e.g. c-oU(O) € Lz(p) snd P is

mixing under translstions) , 80 ve have that ¢ = 6D .

For the case of randow conductivities, stationary demnsities o,

satisfy the equstion
2 ) ) .
x [‘v x p) - BE 3;(.vp) 0.

Taking again the first integration constant J(pv) » 1 we obtaim, for
. -BIx

x*0 , 0) - [ &
p\l( ) g _(—)—3 < dx .
1 -1
Thus o F u(E) = , v BE< 1/a > which implies that
<pu105

lim u(E)
E+0

“p<1/a >t

It is known [7,6) that < 1/s >"1 equals the diffusion coefficient
in this case, so velation (1.1) has beea verified for the cases of

random potentials snd random conductivities: see also Appendix B.

III. Dynamic Environmeonts.
7

1. Non-crossing Psrticles in one dimension.

a. Ornstein~Uhlenbeck Dynamics.

We consider first the case of mechanical particles on the line
which interact vis s finite range even paiv potentisl ¢(r) , smooth for
r >0 . In addition theve is a hard core, i.e. they cannot cross. This is
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irrelevant when ¢(r}x= as >0 but we shall keep it anyway. When
two particles meet, or collide, they exchange velocities. All particles
have the same mass and between collisions they undergo independent

Ornstein-Unlenbeck (0.U.) processes with friction constants y/H and

reciprocal temperature B, i.e,

- 3
dv. (v/1olv; de 2/8¢ duil —(1/)4)J_llii Tx'; o(xi—xj)dt (3.1)

vhere the Ui are independent standard Wiener processes.For a givenden~-
sity, the,. presumably unioue,stationary state of this system is a Cibbs

-1
staCe at temperature B for rhe Hamilconianll = (1/2)H VZ . : (x. x y .

It is known rigorously for the case vhen ¢(r) = O but presun-
ably true also for the general non- crossing casc that the mean square
displacement of a particle in an infinite system in equilibrium vith
particle density p behaves asymptotically like ¢ 172 [8) rather than

t,and so D=0 .

The Einstein relation then predicts for this system (and other
one dimensional non-crossing systemswe discuss later) that ¢ should be
zero. As ve shall sec later this is tfuc im a very strong sense vith

u(E) = 0 for all values of E acting on a test particle.

We shall, however, first consider a system consisting of N 0.U.
particles on a circle of length L . We show that the diffusion constant
Dy and mobility o, are of O(N-I) and satisfy the Einstein rela-
tion. The displacement x(t) of che tp is now of course to be inter-

preted as Jv(c'Xe’ , i.e. like an angular variable.

To investigate the diffusion of a tp in such a system,ve aimply
note two facts : a) since there is no crossing DN must equal 5& , the
diffusion constant of the "center-of-mass” % of the aystem. b) The
motion of x 1is en:itelx igdependent of the forces between the particles

(as long as they satisfy Newton's law of action and reaction). Thus, set-

ting

(3.2)

Ue have from (3.1)

N
& = S I3 4e - VaTBY Nl oroaw) . (3.3)
: 1

This gives immediately

-— - -1
D, = Dy (ByN) (3.4
Vhen there is a field E acting on 8 tp , say the firsc parci-
cle, then (3.1) is wodified for i{%1 by the addition of 3 term (E/H)de

on the right side. The center of mass velocity nov satisfies the equation

& -'% (¥ dt - VITBY N} 1: av,] + & 4 (3.5)
i=] i

It follows that in the stationsry state, vhich ve shall discuss next

i - 1 -1
U(E) = < v % " Ry E=8 DN E (3.6)

Stationary States.

The ststionary non—equilibrium scate in the presence of a field
ou the tp is wost tasily obtained by considering the problenm in the
frame of reference woving vith the average velocity of the system E/YN.
In this {rame the stationary distribution of the fluid particles relative
to the test particle is just the equilibriun weasure in che presence of

an electrostatic potentisl E(xi-x )/N . More precisely, setting
vi - (xi—xl) € (o,L) ,i=2,...,N 3.7

the stationary ensewble density wvill have the form
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N
n

h (5012 (3.8)
je1 81

u(xl;x,z)- L-IIexp[—Ba(l)]
- P(y,v)/ L

where

(zJX) - (yZD"'yNnvlovzn'---vN) »

Vi g Vi"E/YN N

- N N
Wy)= 2 (L ¢(yi-y.) *¢(yi) +Eyi/N} ’ (3.9)
i=2 j>i J

P is the density for the enviroument weasure and Z is a normaliza-

tion constant, The statiomarity of u  follovs easily from the fact that

y is 3 canonical Gibbs state periedic inm Xy of period L (in fact,

independent of xl).

N.B. In choosing the domain of the v; in (3.7) we have used
strongly the fact that there is a hard core between the tp and the
fluid particles. This permits the discontinuity in the electrostatic
potential and in P(Z'X) betveen y; " 0 and y; - L vhich corres~-

pond simply to the right and left side of the tp .

To see more clearly vhat is happening, let us consider the case
¢(r) = 0, i.e. hard point particles. In this case P 1is a product wea-

sure

N -
P(y,v) = ha(vl) igz [A(yi)hﬁ(vi)l (3.10)
vhere {changing the domain of y; to (~1/2L,1/2L) for future conve-

nience} A(y) has the form

c exé[-PEy/N] , 0 <y <(1/2)L
A(y) = (3.11)
¢ exp[-PE(y*L)/N] ,(<1/D1c y <0

C=- BE[I-exp(-BE/p)]'llN ., p = N/L

419

Put differently, the distribution of the £fluid particles relative to the

position of the tpis Poleson vith a density

p(y)ha(vi‘ﬁlyﬂ) , oly) = (-2 (y) .

Note that there is a discontinmuity in o(y) at the position of
the tp . Putting p(0%) = p, and p(0-) = oy o the densities to the
right and left of the tp , we {immediately find

N
N

5 ogmey) - e : (3.12)
°1,/°R = exp{-BE/o) (3.13)

The left side of (3.12) reprcsents the differencein pressure 8p , exerted

on the tp by the fluid particles - the net remaining force on it
E-a8p = E/R =y ulk) . (3.14)
is just enough to produce the average motion.

Infinite Volume Stationary States.

Taking nov the thermodynemic limit N+ ,L~+e , NL~p of
this stationary state, ve obtsin 3 Poisson field (for the environment
measure) with constant densities °r (oL) for y >0(<0) vith
°p = O +BE and on either side of the tp a Maxwellian velocity dis-
tributions hB(v) . In this "blocked” state the electric force on the
tp is entirvely balanced by Che difference in pressure exerted by the

£luid on its opposite sides and (E) = O s it should be.

It is useful to note here, snd this will be important later when
ve deal vith other non-crossing systems, that this stationary wezsure
can alsa ba obtained directly as s limit of constrained equilibrium
states in s box vith rigid walls situated at 3L . Suppose ve want Co

obrain rhe infinite volume stare vith some specified density o, to the
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left of the tp . We then put N, = pLI, particles to the left of the
tp and NR - [o +BEJL particles to the right of it. Because of the hard
core interactxon betveen the tp and the other particles NL and N
are conserved quantities. The corresponding equilibrium canonical ensem-
ble density will therefore be given by (vith now the particles labelled

so that the o-th particle is the tp)

a1 MR
B(X_yy WV gy weereXpaVyneena¥ V)2 n h (v )
NL NL 11 NR NR 1'-N

(3.1%)

. exp[BExO])&g_c_;NL,NR)

vhere X is the characteristic function specifying that there be exactly
N oo Np particles on the left, right of x . It is nov an easy exercise
to shov that this state leads to the blocked state vhen L ~ = . (See
section 4 for the lattice version). The above construction will wvork also
wvhen ¢(r) # 0 . Me vill alvays end up with tvo semi~infinite GCibbs states
which, except near the boundary, vill be uniforw with densities PL and
oy deterwined by p(oR.ﬁ) -p(pL,B) e E where p(p,8) 1is the pressure

in the (infinite one dimensional) Gibbs srate with density p at Cempera-~

ture B .

Remark. GCoing back to the stationary non-equilibrium state in the period-
jc box we can also take there the limit L + = wuith N fixed. We obtain
then a stationary envivronment measure in which there are no particles on
the left and N independent particles vith exponentially decaying demsity
on the right. The whole entity is moving to the right wvith a velocity

E/Ny . Such a stationary state cannot be produced by starting with a rigid
box and does not exict vhen E = O ; the particles would then disperse to
infinity. To the extent that one can define 4 diffusion constant here it
would correspond presumably to the center-of-mass of the block and would

satisfy the Einstein relation.

b. Brownian and Jump Dymamics.

The above analysis can be carried out almost verbatim for the

(positional part of) the distribution of interacting Brovnian particles.
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The results are also ssssntially identicsl. The problenm is a bit wore
complicated for particlas oo the 1-d{mensional lattice vhich can only
jump to unoccupied nearest peighbor sites . The absence of complete
translational symmetry mskes the computations svkward, particularly for

the periodic case. They sre given in section 4.

c. Haowiltonian Dynamics.

When y is set equal to zexo in (3.1), ve are dealing with a con-
servative system vhose evolution is governed by classical wechanics. It
is clear thst for such a system the velocity of the center of mass is 3
constant of the motion and thus D, .is infinite. Similarly, under the
sction of & uniform (non-potential) field on the circle the finite systews
center of mwass keeps on accelerating, mno stationary state it possible and
9y is slso infinite.

The situation is different for tha infinite system. Here it was
shown by many suthors [5) for the case ¢ =0, i.e. for hard point par-
ticles that D = <lv|>lp.> 0 , vhere p is the uniform density and
<|v]> the expectation of the speed of the tp , vhich has thc same mass
a1 the other particles, is given in equilibrium by (thHB) . Einstein’
relation would mov appear to say thst when the £field is put on the tp
there should result a non-equilibrium stationary state in which
W(E)JE +8D as E~- O . On the other hand the constrained Gibbs state
constructed in (3.15) is ststionary slso for this system and as before,

gives rise in the limit L + = to the "plocked" state in which u(E) =0

We believe but cennot prove that the resolution of this problem
lies in the fact that the blocked state is not the appropriate stationary
state for this system. Unlike the case of oU or Brovnia; particles, the
blocked state is not unique here. In particular ve expect that there
exists sn entirely diffevent stationsry state, one vhich would be obtained
a8 t =+ e, if wve turned on the field st ¢ =0 when the systemis inequil
riGs:. Such s state should have quite a different velocity distribution
for “out going" particles to the right snd the left of the tp . If such
stste exists it is presumably given by the construction (1.8) and satisfi

the Einstein relation ss is expected from the considerations in section 3
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2. Higher dimensions, Crossing particles.

The existence of a diffusion constant D , 0 < D<=, fora tp
in a general interacting system of particles has been proven so far only
for : a) B-particles interacting via sufficiently soft superstable poten-
tials [6,9]).b) Particles on a lattice at infinite temperatures in dimension
greater than one (also in one dimension vhen the jumps extend beyond nearest

neighbor sites {10)) and for OU particles - with bounded potentials- [11]).

In none of these systems iLs there any rigorous information about the
existence of a stationary state in the presence of an electric field E act-
ing on the tp . In facr, for a mechanical system with “soft" interactions,
the resistance of the fluid to the motion of the tp might be expected to
decrease at large spceds of the latter, as the cross section docs, and there
will presumably not be any stationary state for E > O . The Einstein rela-
tion might still hold however for some kind of “metascable" scate in auch
a system or when E is sealed properly : c.f. section 5 . We shall there-
fore confine our discussion here to the case where the tp is OU or
Brownian while the fluid particles are Newtonian. It vill be seen chat for
these "mixed dynamics" the Einstein relation provides some interesting in-

sights.

We begin with the 0.U. mixed dynamics system, i.e. ve set y«* O
in (3.1) for all i # 1 . It is quite e: iy to see that the stationary state
of the system of N particles in a periodic box with a field E on the
tp is simply the Jalilean Cransform of the canonical Gibbs state : the
positional part remains canonical Gibbs while the velocity part is trans-
formed, hB(vi) - hB(vi -E/Y) indegendént of -N ., It follows further-
more from general arguments about spreading Harkov processes,UZ],thacforxtn-
degenerate interactions,i.e. when the phase space cannot be decomposed in-
_to separate components, this stationary state is unique.
The perturbation argument for the EGK relations given in section 1,
which there seems no reason to doubt, Chen leads to theresult that the diffus-
ion constant for the tp in the equilibrium state, E =0, of this periodic

system 18 (sy)-l ; the same as if there were no ogher particles present.

i

'
i

423

This result, vhils a littla surprisisg at first sight, seems not
too unreasonable for the finite periodic system. After sll the intersc-
tions between the particles conserve wmomentus and energy and the only
dissipation occurs via the tp . In fact, ve shall oov prove this expli-

citely for the case where thetpis a B-particle.

For the mixed dynauics in vhich the tp is Brownian, the tp

has no velocity and in place-of(3.1)for i=1 we have
-1 9 N
dx, =¥ E- 5-;‘—1- ifz O(xi-xl) dt+ ZIBY'd"

.

We can now compute the diffusion constant for E=O0 . Let

N
Ve T v, .
ez b
Then dx, eyl Mav - VITEY aw .

and

x, (£)=x, (0)
1 . R »fﬂii?“([) -y 4 v(r)-v(0)
Ve Ve vE

Since V(t) forms s stationary stochsstic process (with < v >, ¢ -)

the last term on the right does not contribute in the lipit L+ e . Ve
therefore obtain that the diffusion constant of the tp is the same as
if no other particles vere preseat. (Ve also (wore or less) immediately

obtain the invariance principle for the wotiocn of the tp) . .

Consider nov the passage to the thermodynamic limit N+ =, L + =
N/Ld + p . Ve obtsin then (for both the B and O.U tp) a uniform Gibbs
state io the frame of reference woving with velocity E/Y .

It is clear however, that this statiooary state is not the relevar
one for the Eipstein relation. Yor starting with an infinite system in
equilibrium snd putting the field on the tp will surely lead to s state
in which the velocity of the fluid perticles “far avay" will remain
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essentially unaffected by the electric field in higher dimensions.

Also in one diwension for crossing particles, the fluid far awvay will be
moving relative to the tp . It is this state in which u(E) should be
computed. It will then presumably satisfy the Einstein relation, with the

correct equilibrium D for the infinite systea.

We can say a little more about this model if we consider sgain
the non-crossing case. For the finite system in a periodic box the fluid
particles must have the sawe diffusion constant as the test particle,D=

(By)—1 .
states obtained as the Calllean. transforms of the blocked sctates discus-

In the thermodynamic limit we will have the additional stationary

sed earlier. This leads to the family of stationary states moving with

the velocity o and having a pressure jump &p connected by the relation
a = (E-8p)/y .

For YO , E = ap and o 1is arbitrary as ve found for the purely mecha-

nical system.

The question now arises as to what is the diffusion constant of
the tp , again the same as that of the fluid particles because of non-
crossing, in the infinite equilibrium system with E = 4p = O . For the

0.U. tp, it is clearly not just (By)-1 since when y + 0. it should go

to <|v[>/o .

The origin of the problem with all these stationary states appears
to be the interchange of limits t + = , necessary to obtain the statio-
nary state for EF O and diffusion constant for E = 0 in the finite
periodic system, with the thermodynamic limit, L + = . We get the "wrong"

stationary state and diffusion constant. What then is the right ansver ?

1V. Jump Processes on the Lattice.

a) Infinite one dimensional lattice pas.

Ve conaider a one dimensional lattice gas in which all the parti-

cles but one have a symmetric rate of jump (i.e. the rate of jumping to
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the right = the rate of jumping to the left = 1/2). The test particle is
aubjected to so externsl field i1 it jumps vith the rate plresp. q=1-p)
to the right (left),p >q . Ths relstion betwees p, Band E is given
by qlp - . (For this choice ths {formsl) Gibbs state satisfies de-
tailed balance). The interaction of the particlss is merely simple exclu-
eion, so when s particle attempts to jump to sn occupied site the jump is

.

suppressed.

-

Ve describe the system directly as it is seen from the tagged
particle ("environmeat process"). The generator acting on cylindric func-

tions £: (o.l)u N{n:n(0) =1} is glven by

Lf) =~ I @Q/2Xf(n_)-f(n)) ¢+
P x,y70 24
x-y =1l

pl1-a(1)) (£(r ng))=1(] +qll-nC-DIIEC_ g )-£(m)] (4.1)

vhere (txn)(z) ® n{x+z) and

n(z) if z ¥ x,y
nxy(z) w{ n(x) if z =y
n(y) if z=x

The semigroup Sp(t) corresponding to the generator LP deter-

sines a unique strong Markov process n oo (0.1)zz , in such 8 vay tha
9}(t)f(n) © E £(n) vhere E denotes the expectation vith respect to

the process vith initial configuration n .

The set of -extremal invariant measures Je is given by (see theo
rem Al in the appendix)

Je-{pp:0_<_n$1)U (;n=n_>_0) (6.2)

vhere 1y, is a Bernoulli messure vith parameters p, = p Uo the left of

the origin and LI (1-q/p) ;p(q/p) to the right of the origin. Thus
1-p :
X

qlp = = * y_ is concentrated on configurations with no particlea to
3
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the left of the origin and un particles to its right (cf. eq. (A.11)

belov).

The position X(t)of the tagged particle is given by the algebraic
number of shifts of the system (corresponding to the last two terms in the
generator (4.1)) in the interval [0,t] .consider that the imitial configu-
ration n(0) 1is distributed accordimgly with up{x(t)} 0.

The Einstein relation in this case follows trivially : It is known

(cf. [4) ) that vhen E =0, D =0 for all p >0 . On the other hand

U(E) = EXE” . lim BX(E) p(l-p ) -q(1-0,) ~ 0 for all E and all

o >0 . -0

The Einstein relation is, in fact, satisfied for this model in 3
sowewhat stronger semse. In section c) below we show that for a sequence
of periodic approximations the Einstein relation is satisfied with non-
zero diffusion constant D; and wobilicy 0, - Horeover, these quantities
converge to their infinite volume values (0) . Finally, ve will see that
the stationary states wve have described in this section arise as limits

of the stationary states for the periodic approximations.

In the next section, we shov that the same thing is true for box
approximations except that here, of course, the diffusion coastant and

drifc are O .

b) Finite lattice gas.

We consider now fimite apptoxima:ion;_to the preceding wodel : the
particles now move on a finite lattice of length2Lwith reflecting walls
at -L and L . Note first that the Einstei? relation is now trivisl.
Hereover, stationary states for this model are easy to find, even for
Ef§ O, e.g. Gibbs states. The Gibbs states, however, don't have a good
limit as L.+ = . But if we condition the Gibbs states on the number of
particles to the left and right of the ¢tp , in the appropriate way as
L + = , ve obtain a sequence of stationary states (stationary because
particles cannot cross) converging to the meagure H, of the infinite
case. This is based oo the fact that for these constrained Cibbs ststes,

given the position x of the tp , the particles oo its left (right) are

427

uniformly independently distributed vithdensity DL(DY) = which depend vpoa x. What
wust do is show thst x is vell locslized as L + » st & position vhich

gives the correct vslue for o,_lp‘, . This ve proceed to do.

In the box <~L,L put the tp and N sdditional particles,
H of them to ths left of the tp . The position of the teat particle
vedenotedby x . The (average) density to ths left is Py - H/(L+x) ;
the density to the right of the tp is b= 1o, = N-H/(L-x)
Let M/L~3s asnd N-M/L~b as .L + = , Then, vriting y = x/L ,
0, ~ a/l+y = o,_(y) snd or~b/1—yior(y) .

The distribution of the tp corresponding to the constrained

Gibbs state (i.e. conditioned on there being MH(N-H) particles to the
left (right)) when the field scts as before (q/p _e-BE) is given by

Using the spproximation &n n! ~n Inn , ve obtain
£0) = T
vhere
£(x) «BE x + (L*x) Ln(L+x) +
+ (L-0 In (L0 - (L+x-H) tn(L+xH)

- H ta M - (8K tn(H-N) (L-x- (u—u)) tn(L-x-(8-¥)) .

Under the change of variables y« x/L ve obtain F(x) ~ L¢(y)

where  ¢(y) = BEy + (1+y)In(l+y)+(1-y)tn(1-y)~(1+y-a) in(l+y-a)
=(1-y-b) L (l~y=b)+g (N, H)

where g(N,H) arises from the terms of F(x) which don’t depend upon x .
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We thus have that the distribution of y ~ Y oo that for
large L y is near the maximum Yo of ¢(y) . Setting é'(yo) =0 we
find that

-BE (1+y°)(l—b~y°)

et oy (many )
1 Yo 1 avy,

1-p_(y. )
up - r’o
l—pl(yos
2
- " -
voreover el¢(Y) L oL/2¢ GIGYI" v g ehat |y_y°| ~ M.
Thus in the thermodynamic limit y is localized at Y, and hence we ob-

tain the state described in section 4a).

¢) EGCK relation for a periodic lattice model.

We here consider the symmetric lattice gas vith the tp subjected
to an electric field as in section 4a but nov with the particles moving in
a one dimensional periodic box of lemgth L+l , L > 1 . Let X(t) be the
position of the tp in Z induced by our process : X(t) is the alge-
braic number of jumps performed by the ¢tp up to time t (jumps to the
left make a negative contribution). Let O = Xo(t) < Xl(t) <.ee <XN(t)_i L

be the positions of the particles relative to the tp and let

th

Yi(c) - Xi(t) +%x(t) ,i=0,...,0, define the motion of the i parti-

cle in Z (Yo(t) = x(t).) Then by considering the wotion Y(t) of the center

of mass

N . ~
Y(c) =a/u+) I Y, (c) (4.3)
_ i=0
we easily cowpute the diffusion constant for 'E =0 , at least in the
limit L + = : It is easy to check that Y(t) is a wartingale (vith res-
pect to the d-algebra generated by the motion of the entire system up

to time t) . Therefore, since IYo(t)-—Y(t)|< L for all t >0, ve have

that
T2 Trey2
D .- E(Ygi) ) e lim E(Yét) )
t+0
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a
& X 7200
(n+1)

(4.8

Here 1( ) is the indicator function and Xg , ¥141. The last equatior
follovs easily from the fact that each particle jumps to each unoccupied
neighboring site with rate 1/2 .

Ve sre primsrily interested ia the situation in vhich N and L
are fixed. In this case the RHS of (4.4) iz oot as easy to compule a3
it iz vhen < >/ {s Bernoulli vith density p (grand canonical ensembl:

With this slight wodification ve find that

L
L n(x)(1-n{x+1))
x=0 N

(tn(x)]z °

D=«

RFTSES R
p L

(L)

since for large Llp ve have that In(x) ~ Lo

Ve don't vwish to make the approximation above more precise, since
ve vill compute D and u :xplicitiy after again slightly wodifying the
model., The real problem is with the computation of u(E): in order to cow-
pute u(E) ve need detailed ioformation on the stationary measure < Oy

vhich ia not 2o easy to obtain.

Nevertheless, if instead of fixing the length L+l of the box an
alloving N tobersndom ve fix N and allov 1 to be randow in an appro-
priate vay the computations become wuch easier. Consider the process
C?(y) ¢ nit » Y = 0,...,N vhere Ct(y)' {s the gumber of ewpty sitea
to the right of the y-th particle, let v = Vo E,N be a probability

weasure on ! satisfying

N
a) <L>= < I (£(y)+1) > = Sﬁ%ll

y=0

b) v ia s product weasure (i.e. £(y) are independent random

variables) of geometric distributions vith parameters L (i.e
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wiily) = k) =2 (1-a_ D)
¥ y

¢) a_ satisfies the balance cquations (4.5) belov. One can prove

by direct computation that Vv 1is stationary for the process E:(y) , and

hence defines a scationary state < > for our periodic system (with

randem length).

. 8 : : .
We wvant to compute lim 11—1 . We find it convenicnt te consider
. E-0
the quantity
u
¢ 2 c(p,E,N) = ME)
P9

sincc BE ~p-q as E=~0,

0 = lim §8.¢ .
(p~q)}=0

Since a = v(£:£(y) > 0} cthe average vciocity of the y-th

parricle, y ¥ 0 , is gaveo by (li:}ay-ilfz}a “hile that of particle

. y-l
zero is pa_-qay - (We arc identifying N with ~-1). We thus have that
-8E,

a_, 0 <y <N must satisfy the folloving equations (q/p = e ) .
P
1/2)3 -Q/2)a = ¢c(p-q)
( y da P-q
(4.5)
Pa, ~ Qg = c(p-q)

from vhich it follous that (for E > 0)
3, = c{2Ng+1)

a, - c(2Np+1)

b

0<y <N

3, - (1.--')(/}4)8o +{y/N) ay;

The rclationship between p and ¢ is then given by (cf. a) ebove) :

y

L N
1o =y (ZEWL) Ly ¢ L
y=0 %
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1
N-U—yJc(INq+T)~yc (Z¥p+1)

1.8}
o T W L

and taking the limit (p-q)+0 wve obtain

1 ~ ¥ .-l =l
< = T I (H-N(8+1) lim ¢) = = (I-(N+1) limc)
e y=0 (p—q)+0 p-q*0

Thus

. 8(1-p)
0=linm B wPL
(p=q)+0 kel

On the other hand, (see eq. 4.4)

N
D Jo ™y 02,
(ne1)*
N
- 1(£(y)>0) 2 Nel)(1-p) | 1-0
T < > —N’l

y=0 (Nd)2 ° (NOI)2

This proves relation (1.1) for this wodel.

V. Macroscopic Formuletion of Einstein Relationm,

X In our discussions so far the tp has been treated entirely on
a ;icro:COpic level - asking for a description of the stationary states
of the tp on the spatizl snd tewporal scaie on vhich the basic dynamics
of the model is prescribed. While this level clearly gives the wost de-
tailed informstion the Einstein relation concerns quantitizs, D and o
vhich sre measured on very long, i.e. wacroscopic, spatisl snd time scales,
Furthermore being & linear transport coefficient, ¢ “is calculated in the
limit E-+ O so the syatem {3 really very close to equilibrium - bence,
of course, the ‘EGK rclations. It seens therefore sensible to formulate
the Einstein relation in a more macroscopic way. In fact this turns out
to be possible nd hus tha (not so incideatal) advantage that it is not
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nccessary to first find u(E) at finite E and then cake the limit

E -~ 0 . Instead one goes to the appropriate macroscopic length and time
scaler by setting

x'"=¢ex ,t' = czc

vhere ¢ 1s a small parameter related to the electric field E vwhich is
assumed to change 8s E = cE' . A form of (1.1) is then the folloving :
A) . If for E' = 0, vhen the system is in eqﬁilibrium, the rescaled
trajectory of the test particle converges (veakly) to Brounian motion

vith diffusion constant D , i.e.

_ 2
xc(t) z ex(t/g”) —— UD(t) (5.1)
€+0

then in the presence of a field ¢E

x (t; E) — oEct+w(c) , 0=8D ., (5.2)
c+0
Ve believe that A can in fact be proven for all non-mechanical cases conside-
red here and in oarticular for a B-particle in a random environment or inter-
acting vith other B-particles [13) It also seems to hold in
the case of an 0.U. narticle in a periodic potential, recently shown by

Rodenhausen to sacisfy (1.1) [14].

It should be noted that the scaling of the electric field is just
such that it remains effective, neither zero norinfinite, on the macrosco-
pic scale o is then themobility, as in  Stoke's law, for a dilute concentration of B~
particles in a fluid. It is presumably ‘this situation vhich Einstein had
in wind. We are now in a position to present vhst we regard as the best
argument for the Einstein relation, a rigorous reformulation of Einstein's
original ergument. We first observe that if we drop from equation (5.2) the
relation ¢ = BD and replace oE in (5.2) by a more or less arbitrary
function u(E) of the field, what ve obtsin is a sort of regularity
condition for the macroscopic behavior of the tp . Horeover, if the field

is alloved to vary with x on a macroscopic scale

Ec(x) » eF(ex) = ¥ _U(ex)
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the regularity coodition (5.2) should become

t
xc(:; P) — [ u(F(x(s)))detity(c) (5.3)
0 o

(vhere the function u = u(F) does not depead on the particular field
x — F (x) under considerstion, snd the environmeat has the saxme initial

distribution as for ¥ = 0 , {.s. equilibrium).

Now suppose ve have chrdlcopic regularity (5.3). Consider s poten-
tial U(x) ==, |x] = =, sufficiently rapidly, If the syatem is ar tem—

-1 , 80 that it has a stationary state for vhich the marginal

perature B
c-BU(x)

- '
distribution of x ix'~e 8U(x") , thea the distribution pg ™
must also be stationary for the limiting diffusion, Since the current in

this state wust be zero, wve have that
[ ] J(DB) - u(F(x)) pB(x) -DvxPB

- u(?(x))pa(x) ~ D8 ¥(x)pg(x)

30 that u(F)/F 2 0 does not io fact depend on F and o= BD . (It does
not much watter here vhether ve regard x a5 in R or lld . Horeover
for d > 1, it is sufficient to assume that the drift is a vector valued

function U(F ) of the locsl field. It then follows from the (Einscein)

argument that Y(F ) = of « GDF ,vhere o and D may be teamsors).

Put somewhat differently, if og ”:‘~60(x) is to be stationary

for the limiting diffusion, whose (forvard) generator is

Lp = ~V*(u(P)p(x)) + D4p

then 0 and D dust be related by o = BD . Thus the Einstein relation
is morc or less an imsediste consequence of macroscopic regularity (5.3)
and the very meaninog of s system's being at temperature gt , a3 Einstein
originally argued. (Interestingly enough this appears to be the case in the
Newtonian system of hard points when the initial state, before the field i
turned on, is a Cibbs state but not when the initial state is one in which

a1l the particles wove vith velocities £1(17].)
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APPENDLIX 4.
In this appendix ve sketch the proof of equation (4.2) for the
process of section 4 in the infinite lattice. Hore precisely we prove the

following :

Theorem A.1. Ler n, be the simple exclusion process as scen from the

test particle ("environment process"), for vhich the wotion of all the

particles but the testparticlevoveswvithrates p(resp. q) to the right (left),

p>q, i.e. the infinitesimal generator is given in equation (4.1). Then,
the set J_ = of extremal invariant measures for the process is given by

Je - (pc :0<a g I]U(;n :n>0) (A.1)

where p_ is a Bernoulli measure with parameters o_ =o to the left of
the origin and o, = (1+q/p) + a(q/p) to the right of the origin, and
g 1s concentrated on configurations with no particles to the left of
n

the origin and n-particles to its right (see equation A.11) below for

a formal description).

In order to prove theorem A.l we consider the following partition

of x :

X w{n: T n(x) = [ n(x) =«

x>0 x<0
XTe(:z a) ==, I n(x) <=)
x>0 x<0
- (A.2)
X, = {n: £alx) <=, [ 7n(x) =)
x>0 x<0
x"e{n: Inlx) wn, I nx) <=
n x>0 %<0
Now one can prove [IS] that
Jo = U DK UL 0 HED, U InHE)IY
(A.3)

ulynu K'Y
nz_O n
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vhere M(y) is the set of probsbiliry measures concentrsted on y . Wc

prove theores A.l by shoving 3

Taux)) «{y.0c¢co<1) (A.4)
[0 HKDT, = » (A.5)
aKeO) - ¥ (A.6)
auxh 15 ,n30 (a.7)

Proof of (A.4). Let us introduce the zero range process naturally related

to the lattice gas as seen from the test particle ve are discussing. A
given configuration n €X_ can be represented by & doubly infinite se-
quence xi:LGZ, x; < xi*1 N
pied by the i-th particle ({€2Z) . (In the same way configurations belon-

® 0 vhere x; denotes the site occu-

ging to X: snd X: can be represcnted by semi-infinite sequences and
those belonging to Xn by finite sets of eites),

Let xu(t) be the position of the particle initially at site
x, - The process ¢ - (l:t(u))“ez . (t(u) describing the evolution of
the number of sucessive emply zites to the right of the u-th particle,

is the so called zero range process :
Celu) = x ,(0) = x (8) . (A.8)

It is a process vith state space y » Nz and infinitesimal gene-

rator L . given by (on h-cylindric)

L B0 = plh(y. ) =n(0)) + alh(_, ) =h(0))
(A.9)

)-a()) +(1/2) T Ih(g, L )-h(O)]

+(1/2) T [h(g
x70 xx-1 xyf=~1

vhere
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glz)-1 if ze=x and {{(x) >0

(x'y(z) - g(z)+1 if z=y and {(x) >0

g(z) if either zfy , t¥x or E(x)=0
A set of invariant measures for this process is described i{n [16]:
J(Lzr) * (Ya)05;<1
vhere v, is the geometrvic product mcasure defined by

Ya(n(x) “k} = a:(l-ax) (A.10)

vhere 3 = a if x<0 and a_=(qfpla if x>0 . We find (a ) by
x = x

solving the detailed balance equation :
ao(p*(I/Z))- a9+ 31(1/2)
a_l(q*(I/Z)F ap +a_,(1/2) (A.10.b)
a, =(1/2Xak-l*ak¢1) k #0,1

a*v, (n{x) >0) , so O La <1 .

From equation (A.10) ome proves, using coupling techniques as in
[15,16]), tha¢ theonly extremal invariant measures for the n -process on

H(X_) are those described in equation (4.4).

Proof of (A.5) (A.6) (A.7).

.

In the semi-infinite and finite case onec has to look for solutions

of equation (A.10b) alloving one (or two) of the a, to be one. The state

k

space for the corresponding zero range wodel is semi-infinite (or finite).
+ . .

For X  for imstance, ve consider s = 1 for a fixed % < 0 . This

implies that in the corresponding rero range wodel at site « "there are

infinitely many particles" o, frow site k to site k+1 particles enter

. -vith intensity 1/2 (respect q) if k < -1 (vesp, k = ~1). ) the simple
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exclusion plcture o - 1 must be read : “there are no particles to the
left of the (k+1)~th perticle”, so the rate of jumping to the left for
the (k+l)-th particle equals 1/2 if k <=l and p if k « -1,

1n tha seai infinite case ve find solutions of the equations ana-
logous to equation (A.10.b) vhen k = -1 and vhich imply that the density
of the invarisnt the measures wust be that described in equation (A.5)
for the simple exclusion modell. To prove that B, is the only invariant

measure vequives coupling technicalities which ve omit.

Equation (A.6) is studied similarly and the counterpart of equa-
tion (A.10.b) gives us that there ere no solutions vith a, <1 for
n <k and -1 for » fixed k 2 0.

Equation (A.7) is proven folloving the standard methods of finite

state markov chains, vhich imply that
( b L1 j < n} Ijl (i)[1-a (i )b
pin : x. -x, b, , L=, <0l - a (1 -a (1 .
FERT i, ' te1 ® L n i

o —2z(p-q) (n+l)xq+l | (A1)
ghEYC 8n(k) (n*l)zp*l + (n*l)zp*l

APPENDIX B.

In this appendix, ve indicate how from L the invariant non norma-
lizable measure of section 1Ib, ve may essily obtain an invariant probabi-

14ty weasure for the “environment process”. This is tha process induced

by X(w,t) in the space 2 of environments by tha rslation

Uw(t) " Tx(v,t) Vo

(or imply w(t) = ‘X(v,c)v) vhere U, is the configuration of

envi.onments at time t = 0 , and T denotes translation by x .

In fact, the probability measure

0,(0)gp
P <%, (0>



438

is invariant for the environment process. The key to this is the fact
that ou(x) depends on x only through the environment secen from x ,

ie. o, (x) = o‘x"(O) . To see this note first that o,(x)dx P(dv) is
invariant for the process (X(t,v),v) , in which the environment does not

change. The second component of this process, v T, is of course not
the envircnment process. However, after the change of variables

(x,w) — (x,rxu) we obtain the process (X{t,w),w(c)) , with invariant
measure du = ou(O)dx P(dw) . The w marginal for this measure should

be an invariant (probability) measure for the envircnment process, but

unfortunately this is not well defined, since v is not normalizable.

But ve may regard x as a variable defined modulo L (for any L > 0)
both for the measure u and for the process (X(t,w),v(t)) since both
p  and the process (X(t,w)) don't essentially depend upon x ,

X(e¢,vw) ~X(0,v) depending only upon the autonomous process w(t) ., In

this way we obtain 3 normalizable measure v which is stationary for

the process (X{t,w),v(t)) so that the v marginal o, (0)2(dw) is

stationary for w(t) .

The stationarity of P may also be seen directly : We may assume
vithout loss of generality that < ou(O) > = 1 . Then, denoting the tran-
sition probabiiity for the environment process by Qc , and the transi-
tion probability for the position x of the tp by P: , Wwe have, for

£ a3 "nice" function of the environmenr, that

PQE) = [fdx P(aw) b, (0) P(0,%) £ v)

= [f dx P(dw) p,_xv(o)P:_x‘;(o,x) £(w)

= [l dx P(dw) o (-x) BL(~x,0)£(w)

=[P(dw) £(v) [ dx ou(x) P:(x,O)

-l

439 '

= J@v) £(v) o (0) = #o)

vhere ve have used the trsnslstion invarisnce of P » ths fact that

o, (x) -ptxu(o) » the homogeneity of the x-process : P: "(O,X) -P:(y,y*x) ,
snd the stationsrity of Dv(x) under P:' . Y

S

Note that ve didn't need. to explicitly refer to this invarisnt
probability ?eas§r¢ to obtain u(E) . In genersl, assuming ergodicity
. X(t,w g Y .
U(E) = lim =——1= P 4,5, where P is the stationsry probability

t .
weasure for the environwent process. But here P is equivalent to P .
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