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Abstract

We investigate the asymptotic behavior of the trajectoriés ofva tagged
parLicle (tp) in an infinite one dimensional system of point particles. The
particles move independently when not in contact: the only interactions
between them are (generalized) elastic collisions which prevent crossings.
This is achieved by relabeling the independent trajectories when theyvcross.
When these trajectories are differentiable,‘as in particles with velocities
undergoing Ornstein—Uhlenbeckbprocesses, coiiisioné.gorre5pond to exchange
of véloci;ies.

Wé prove very generally that the suitably scaled tp tréjectory converges
(weakly) to a simple Gaussian process. This extequ the results of Spitzer
fof Newtonian particles te very general npn—hrossing processes, The proof

is based on considering the simpler process which counts the crossings of the

origin by the independent trajeéctories.

I. Introduction

We consider an infinite system of identical poinﬁ particles uniformly °
distributed on the line. Suppose that the positions of the points change
with time and éhat xi(t), i € Z,denotes the position of the i-th point at
time t. Harris [1] introduced a generalized "elastic collision" process de~
fined on the path space of this infiﬁite particle system: iet x{(t), i=1,2
be the independent motion of a pair of initially adjacent points with
xl(O) < xz(O). Then in the absence of the other particles the collision path of
particle l is yl(t) =.min(x1(t), xz(t)) and that of 2 is yz(t)==max(x1(t), xz(t)),
i.e. the collisions do not change the t;ajectories of the system but preserve

the order of particles.



In this paper we consider system{¢with quite general trajectories
xi(t), 1 € Z, undergoing collisions of the Harris type, and prove cenfral
* limit theorems and generalized ‘invariance priﬁciﬁles for the suitably
normalizéd trajectory of a tagged particle. “In fact we are able to estab-
lish asymptotically normal behavior for the tagged particle collision process
(invariance p;inciple) f;r quite general motions for which the free proces-
ses are i.1.d. and are independent of the initial positions xi(O), ieaz.
‘Our work generalizes and strengthens the results of Harris fl] (colliding
Browﬁian motions), Spitzer [2] (Newtonian particles) and Gisselquist [3]
(colliding stable processes); it also covers the more recent work of_
Norio [6] (colliding fractiomal Brownian motions).

The kef to our analysis is the process n(t), the algebrgic number of
.crossingé of the origin up to time'tf In section III we show that the
tagge;‘éartigle process &(t) is asymptotically the same as p_ln(t), yhere
p is the density of particles. Then, in sections IV and-V,we analyze the
asymptotics of n(t), which in section VI are translated to the process y(t)

using the results of III. A partial summary of our results is given in

section VII, Section VIII ends this paper with a collection of examples.

11, The model

The free motion

Let (X, ,Px) denote a Poisson point process on R of density p,with

F
2x
€ X representing the initial configuration of our system of
particles. We let each particle move independently according to the same

- - . + .
stochastic process (&, F,, P§>’ where £ € £ is a function £: R - R with



£(0) = 0, concerning which we shall assume the following:

E(]&(t)]) = f lE(t)| dPg < o " for all t € R+ (2.1a)
E(E(t)ﬁ = 0 for all t e m* (2.1b)
CE(JE@®)]) v = £+ (2.1c)

(We also require the technical assumption, automatically satisfied if the’
paths of £ are in C or more generally in D (with §€ chosen'suitably), that

t -+ E(]E(t)|)_is measurable, used only to derive (4.7).) Thus the evolution
“éf our system is given by the collection (X, {gi}iez)’ where the Ei are

i.i.d. random variables also independent of X, each particle X, € X under-=

going the stochastic process

+ .
3i(t) = x,(0) + Ei(c)., t €R (2.2)
with {xi(O)}ieZ being the initial configuration X labeled so that

ees < x_2(0) < x_l(O) < xO(O) <0< xl(O) < x2(0) e

We find it convenient to represent this evolution via a Poisson system
(2, F, P) built over R X £ with intensity measure .du = pch;dPE, where
.dx denotes the Lebesgue measure on R. This means that for each A € F with
H(A) < o, NA(w), the number of points of w in A, is a Poisson random variable

with mean p(A). R X E is naturally equipped with a family Tt’ t € R*,of

mappings

n

: X = + X
Tt R R

(x, &) » (x + £(t), 6.5)

E(s+t),

where (Gtg)(s)

o+

* .
We assume that etE C % for all teR .



inducing a map E%:Q + 0

w = {(x,i)i} {Tt[(x.i)i]}iez T oW .

ieZ
We identify each point w € § with ({xi(O)}iez. {gi}iez) in the obvious way.

Using this representation we :immediately obtain that the distribution of
points on R,initially Poisson with density P, remains'so for all times urder
the evolution (2.2) (see also [4]). 1In fact we obéain more. If £(t) has

stationary increments (so that 6(t) preserves P,.) then T preserves P, since
y P £ =t =

Tt preserves U. More generally, §i°g;1 E‘gt is Poisson with intensity
measure
_ dut -=;pdx:dPg s where Pg' = Pa' G—I(t) . ' (2.3)

e

The collision process

Now we describe the evolution when "elastic collisions" are taken into
account. We begin with an informal description. . We may visualize the
elastic collision motion by imagining thatlthe particles at time t = 0 are
all coloured differently, say the O-th particle red, the ~l-th particle blue
and the.+1—th particle green. Then at all later timés the blue particle will
be the left nearest,neighbor, and the green the fight nearest
neighbor of the red particle, i.e. the particle order ;s preserved.

Although this description is not completely precise,it suggests the following
definition.

Define (gf. (2.2))

N@) = |[{ij1<o0, x, (t) > 0}/  (2.4a)



and

N = [t 1>0, x(e) <0} (2.4b)

and define

n(t) = NT(£) - N (t) . | - (2.5)

We interpret n(t) as the algebraic number of crossings of the origin, which
in fact it is if the particles have velocities, i.e. if E(t) is Pg a.s.
differentiable. Let xz s 1 € Z, denote the-positioﬁs of the particles at
time t . labeled in their natural order with respect to the origin,i.e.

t < F

; t t
< < < <
1 S X, < 0 x1 < x2 o

t
0

Ne define the position of thetest particle (the particle which at time t = 0

is at xO(O)) by

y(e) = %y - (2.6)

A moment of reflection will convince the reader of the appropriateness of

this definition. See however [1,3].

Remark: Though in this paper we are interested only in the motion of the
test particle, once this is defined we easily obtain a precise definition
for the elastic_collision.mdtion of the entire system,since the order of
particles is preserved and . the unlabeleQ system evolves as described
earlier. This prescription agreeé with that of Harris [1]. ) [:>>
Note that n(t) is a simple random variable, since N+(t) and N (t) in

(2.4a,b) are i.i.d, Poisson random variables: By definition

N+(t) = NA*(t)'

and

Na=(t)

N (t)



where

é_+(t) = {w= (8] x<o0 and. E(t) + x > 0} ,
and

AT() = {w= (x| x>0 and E(t) +x < 0) .
Therefore

EQN () = EN () = u@a () = u@ () =

0
[paxar, 4E(t) > x) = o] BV 0)arg =

N

_E(I&(c)l) | (2.7)

by (2,la) and (2.1b); “(+) is the indicator function of the set (),
Since A (e)N A+(t) = ¢, N+(t) and N (t) are i.i.d.,
Therefore

E@®)? = pE(E®]) . o (2.8)

Since at time t the particles are Poisson distributed, we expect by

the law of large numbers'that x;/n 3 p-l and hence by (2.6)
. -1 .
y(t) ~vp 7 on(t) (2.9)

for n(t) large. By (2.1c) we expect n(t) to be large for t large, so that

by (2.8) the asymptotics of (y(t)) should be given by the asymptotics

te[0,%)
of the process (p_ln(t:))te[O o) * We now give a precise formulation of (2.9).
’



IITI. Approximation of tp motion by the crossing process

(3.1) Proposition:

(1) Suppose that for t € [0,T], T < «, there exists a function ¢(A) such

that ¢(A) »© as A+ o and

lim Tim P(x 5'51Q552) = 0 . ‘ (3.2)
X foreo $(A)

Then for each t > 0

yar) o 57l nlae) o o (3.3)

in probability.

(ii) Suppose there exists a function $(A) and B > 0 such that

=y AB = . .
iioomT(K')— = 0 : (3.4)

n(at) J = 0 (3.5)

Vo (4)

lim 1lim Pi{x < sup
X¥0 Ao t€[0,T]

for any T < =, and

sup . E( sup  |E(s) - E(E)|) < w . (3. 6)
t€ R s€[t,t+1]

'Then the rescaled difference process

-1 :
Y(At) - P n(At) 3 0

Vo(a) A

- in "distribution", i.e.
[]

>8) = 0. [:>, O (3.7)

Remark: If the paths of E are highly irregular, then sup [E(t) - E(s)|

y(At) _ p—l n(At)

Vo (4) o)

lim P( sup
Avo  t€[0,T]

and sup fn(E)I need not be measurable. In cases of dubious measurability.



"measure' should be understood as "outer measure" and "expectation" as

"outer expectation"

E(f) = inf Elg) .
g2t

g measurable

Note that if £ has paths in D and (3.6) is satisfied,then sup|n(t)] is

measurable (see Remarks at the end of section VI).,

Proof of Proposition(3.1): We first prove (i). The key is the following

(3.8) Lemma:

Given any € > 0 and N > 0 there exists n, > 0 such that for any t > 0

B(ly(t) - o™ n(t)] < n()) > 1-n, SR RO

where ==

*

peln@®] for |n@)] > n
{ ' (3.10)
2ny  for In(t)| < ng . [:>> |

Proof: We assume for notational convenience that p=1. Let

n (t) =

E,no
G . = {w] lxn(O)-nI < €ln| for all |n| > ngt - (3.11)

By theflaw,ofﬂlarge numbers

xn(O)
> 1 P a.s., (3.12)
i.e. e,n
lim PG 0) = 1. (3.13)
no+°°

Therefore,by the invariance of the Polsson measure on R,given n > 0 there

exists n0 > 0 such that



€,1
Plo e "H:> 1-n .

€,n

But for wt € G 0

Ixfl(;) n(t)| < ehn(t)] . for[n(t)\_>_ n,

while

Ixt - n(t)l < 2n

e for In(t), <n

0 0°

since for|n] 6 < n,

(3.3) now easily follows from (3.2) using the observation that

' -1 a_(At) '
{ly‘(At) - p—ln(At)] < ne(At)}/\ {Iy(At)—D n(At) N 6_’} C{ﬂe X 5} _

J ¢(A) $(A)

{—Jn(At) > 6/5}
$(A)

for A sufficiently large. D

We now turn to the proof of (ii). For Y > 0 and k > 0 define

ny(£) = e+ “ (3. 14)

and let
eln(t)l . for |n(t) > no(t)
ne(t) = { ‘ (3.15)
‘ 2no(t) for |n(t)] < _no(t)
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(3.16) Lemma: Given any € > 0, n > 0 and Y > 0 there exists a k > 0 such

“that

B(ly(e) = p7" n(e)| <n_(t) forallt>0) > 1-n , (3.17)

where ne(t) is given by (3.14) and (3.15). [:>>

Proof: We again assume that p= 1. Suppose first that E(t) has stationary
increments, so that the full Poisson system is invariant under It'
Using the notation - for complements,we have that

_E,m
PE )

.g({x;-nl > |nle  for some |n] >m)

oba© [

where (di)ieni are i.i.d. exponential variables with mean 1. Therefore for

A

> |n|€

n
) (d;-1)
i=1

2" YD

any £ > 1
gﬁae’m) < const. m . : (3.18)
Let
A5 = (@B eRXE| sup |E(®)] > ¢x} | (3.19)
‘ 0<t<1

and note that

- - -1
A%y = pE(e ! sup [E(t)]) = pe q. (3. 20)
0<t<1
Thus (by Markov's inequality) ,
T pet qe-1) |
P(N_>T) < e 5 A€ . . (3. 21)

A
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Define

& = 5PN {n_<em} (3.22)
A

and observe that by (3.18) with £ > Y_l and (3.21),

V _Esn (t>/';'
a(k) = z+_g(§ ° )< =
t€Z
and therefore
limoa(k) = 0 .

ko
Thus, for any n > 0,
. & (£)/% +
_r;({wteg_, for all tezZ }) > 1-n
fer k-gufficiently large. -
(3.16) now follows from the observation that if w € EF’m then
4e,2m

w_€G

¢ for all O f t < 1:

4e,2m for some t € [0,1]. Then fhere

Suppose that w € QF’m and w, g€ G
exlsts n, with |n| > 2m, such that Ixi - n‘ > 4e|n|° Suppose n > 0 and
x; > n + 4en; the other cases are similar.: Then at fime t there are fewer
than n particles between the origin and n + 4en, while at time t = 0 there
are at least n + [en] particles between the origin and n + 3€n, since
xn+[€n](0) <n ; [en] + e(n+[€n]).< n + BEq. Therefore at least LEnj
particles which at time t = 0 are in [0, n+3en] must at time t be in
(-w,O]l/ [n+4en, ). But because w € QF’m, there can be at most €m such
particles. . ’

More or less the same argument covers the case where E(t) may not have

stationary increments, the main difference being that in (3.20) and (3.21)

q should be replaced by (3.6). [:>
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ii) now follows from the lemma with y < B/2 in the same way as for i). [:)

(3.23) Remark:

(i) 1If n(At) converges in distribution, as A + ©, to a random variable zZ(t), (3.2)
l¢ (4)
holds and,by (3.3), yat) converges in distribution p-l Z(t).
J¢(A) '

n(At)]te[o p] converges weakly (i.e. in dlstrlbutlon, for the

b (a)

Skorohod topology on D) to a process (Z(t))te[0 T]’ ‘then (3.5) holds and,

(41) 1If {

by (3.7), {z;;:;]te[o p] converges weakly to p <z(t))te[c T] l£ (3.*9

CLMA(B 6) hold . (Technically speaking the latter conclusion requires that
y has paths in D (cf. remarks at the end of section VI).) [:>

(3.3) can be sharpened to L2 convergence.

(2.24)%Temma

1f L ELEGO]

oo OB

for some function ¢(A) and some t > 0,then

lim ¢)(A)na((y(zsnc) o laan? = o . D

Proof: We compute,again setting p =1,

<«

I Bt - % fnan=m))

n=-%

E((y(At) - n(At))?)

7 E((x_(0)-m)?P)!/P p(n(ary=m)l/a
L]

A

<«

cp) J |n| B(n(at)=m)t/9

= OO

LN
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where %-+‘% =.1, C(p) is a suitable constant, and the last inequality

follows from the fact that x (0)-n 1s a sum over centered i.i.d. exponential
] n

variables.:

For q < 2 we proceed by writing the lasq sum as’

® 1 1_1
¢ ) |n|] B(n(at)=n)?® B (n(at)=m)d 2
n:—@
1. 2_.);
< e e | 1 eda@ey] > |a)® J
1 11, 3
< o EaanH? emendH? ? | ]
n=-—00 —-2
|9
1 .
Cew = C(p) E(at)D)d SR .
where for q <‘%, E(p) < e, But
1 1 L
q _ a4, (€leans
Lin 5y EGn ahT = o TV

for q > 1. [:>’

Remark: In previous works [1,2] a collision process ;(t) with $(0) =

was considered, i.e. at time t =0 particleé are distributed
according to the Palm-distribution,which may be obtained from the Poisson
distribution by adding to each configuration of the Poisson point process

an extra point at the ofigin. Let {ﬁz}iez deno;e the positions of the
particles at time t in this new process,again labeled in their natural order

with respect to the origin. Since under Z& the particles move independently
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e_ ')
of each other and of their initial positions,it is easily seéﬁJ%g;t for n>o

t At t
X
n—l - n - n

For the collision path y(t) we have of course that §(t) = §§(t)’ where
n(t) is the number of "signed" crossings of the origin in the A—process.
Thus

t ~ t
Xo(e)-1 S Y S X ey

]

Since Proposition (3.1), formulated in terms of the crossing process
n(t), applies as well to any process m(t) which satisfies the hypothesis
for n(t), and in particular to m(t) = n(t) * 1, it follows that

° t

X (£)£1 D—l(n(t) 1)

R,
and therefore

&) ~ o lage) .

-

IV. Asymptotices of n(t)

(4.1) Proposition:

_n_(.t_)__ =;>~ N(O,_l)

JeE[E(®)] o

L .
- denotes convergence in distribution ) [:>
Proof: Since Qf::T§===T is Poisson with mean %, it follows from the
PE|E(L)

Poisson convergence to the normal that

+ + L
JeE(E® )

Since N+(t) and N (t) are i.i.d.,the result follows. [:>
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We wish to knowmore than the behavior of n(t), t+<=; we wish to consider the

asymptotic behavior of the paths as a whole, i.e., that of the process
[a(At)

Vo (a) te[0,%)

suggests, and we shall prove below, that in order for such a

as ‘A + ®, yhere ¢(A) is a suitable normalization. (4.1)

process to have a nontrivial limit the following condition should be satisfied

by £ For all t > 0

. E(lE@)]) _ - |
iif‘ﬁﬂlm)) AR (4.2)

(4.1) and (4.2) obviously imply that for each fixed t>0, niat) is well
: ‘ \’¢(A) '
behaved as A + ®, yhere

ba)y = E(EMQW]) . . (4.3)

o A

We wish to allow normalizations ¢(A) more general than ®(A),since $(a)
is frequently not as simple as we would like. Again by (4.1) any normaliz-

ation ¢(A) must satisfy

11 BUEBDD o () < o | (4.4)

P 17N
for all ¢ > 0.

4.5 Remark:

Suppose ¢(A) satisfies (4.4). Then

E(E@s)]) _ .. E(E@s) D) B(E(AsD)])
lim lim
Ao $(A) i OB E(JE(AS)])

c(st)

c(s) co(t) . (4.6)
nA(t)

o ()

has a trivial limit) or

Thus either c(t) = 0 for all t (and
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co(t) < ® for all t (i.e. (4.2) is satisfied). Note also that
d(A)
lim —=%- = ¢(l) .
e O(A) [:>

Suppose (4.2) is satisfied. Then since co(t) is measurable and

0(hst) _ g, $(As) S(Ast) {s) c (t)
o) (o]

°(a) i 2(A) 0(as)

¢ (st) = lim
o oo

it follows that

1

ta for t > 0
c () = (4.7)
' 0 fort=0

where o > 0, sirnce co(l) =1 and £(0) = 0. That in fact o > 0 follows from
(2.1c). .
Remark: If & has asymptotically stationary increments then o <'1l,since in
i <
this case co(t+s) < co(t) + co(g).
Remark: o = 0 may- occur. Consider for example E(t)=v log(l+t) for some

centered random variable v.

Remark: Note that $(A) = A% h(A) with H(A) a slowly varying function.

Thus (3.4) with ¢ = ¢ can fail only if o = O. E:}

From now on we fix a normalization ¢(A) satisfying (4.4) and define the

process mn, by

n. = (n(t))._. = [Bat) . (4.8)
A 2620 [ﬂ;zg; 50

Note that by (4.6) and (4.7), c(t) =c(l) ;a for some o > 0.
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(4.9) Proposition:

Suppose that there exists a function c(s,t)) < « such that for all
s,t € [0,x)

E(]E(As) ~ E(AL)] _ ‘
iiz EYTN) c(s,t) . (4.10)

Let Z be the centered Gaussian process with covariance

0(s,t) = 5 (e(£) + c(s) - c(t,s)) .

Then the finite dimensional distributionsof n, converges to those of Z ag A+,

Proof: By the Poisson convergence to the normal and (2.8), for all t > 0

L
n,(£)  ==> NH(0, pe(t))
Ao

Similarly, for t > s, by (4.10) and (2.3)

L

n () =, (6) =2 N, pe(e0)
since
n(t) - n(s) = @ (£) - N'(s)) - (N'(£) - N (s))
and
V(o) - ¥ = Ni(e-s) ,
where
N:(t—s) = [{1] %,(s) 0. and x, () > 0}]

and similarly for N (t) - N (s).

Thus it is clear that if the finite dimensional distributions of n,

- converge to those of any process Z' as A + o, or even along a subsequence

N
L
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A -+ ®, then
n .
Z'(t) = N(0, pc(t)).
and

2'(t) - 2'(s) = N(0, pc(s,t)) .
Thus the process Z' must have covariance

E(zZ'(s) 2'(t))

5 @' (0)2) + E(2'(s)2) - B((2' () - 2'(s))2))

O(s,t)

]

Thus we are done once we show that for every 0 < tl < t2 < s4s < tn < o

(i) '(Z'(tl), ceas Z'(tn)) must be jointly Gaussian
and. '

(ii) (QA(tl), ceos nA(tn)) is (asymptotically, A + «) tight.

n
Ll Mg

We now fix. 0 <t, <t < tn < m'. -Fdr

l 2 a0

o = (al,;..,an) e {> <"

define

+ . :

Ny o= 1[40, x(t) 00,00n, x, (2 ) 0 O}
and

Moo= L | 4>.0, %, (8)) @0, x,(c) 0 O}

+

Similarly define N and N, _, replacing (t,s...,t_) by (At.,...,At ).
» O 1 n 1 n

A0 A

For each fixed A

*

+ | -
{NA,oc}ae{>,_<_}n U {NA,a}ae{>,f}n

is an independent family'of Poisson random variables.
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Let Ni : +
A0 E(NA,a)

Vo(a)

N> -
A, 0

and observe that for any 1 <1 <n

n (t.) = o S . | (4.11)
AT ’ (21:, Ao 2 A,0 :
ai=.> ai=.<.
Thus
| , pE(|ECAL.)])
—+ 2 -2, _ 2, _ i
g. BN, )+ 2 E(N, ). = E(n,(t)7) = XN

— pc(ti) .

R Ao

from which follows not only (ii) but also the (asymptotic) tightness of the
=%
A,of

Thus every seqﬁence Ah + ® along which the finite dimensional distribu-

' =%
tions of n, converge has a subsequence along which the family {NA,a}ae{>,§}n
jpintly'converges in distribution to an independent Gaussian family, again
by the Poisson convergence to the normal and the fact that $(A) —> e,
Ao

It follows from (4.11) that all limit points of (nA(tl),...,nA(tn)) as A+

are Gaussian. [:>>

Remark: If £ has (asymptotically) stationary increments, (4.10) follows from.

(4.4) and c(s,t) = c(t-s) for t > s. 'Thus,in this case,

o(s,t) = Spe()(t* + 8% - (e-)%) . . (4.12)

with 0<a<1, where for a =0, o% = 0, and Z(t) has station~

ary increments, a fact which is also directly obvious without considering the
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form of o(s,t). If o > 0, .Z has continuous paths, since E(Z(t)z) = pc(l) ta,

Remark: For A > 0 (cf. Remark (4.5))

1ig EUEMAL) ~ E(Ms) ]

C(}\ss }‘t)
o ¢(a)

_o1gg S E(E@AEY - E@MAs)]
e OA) p(ax)

\ c°(>\) c(s,t) ,

provided c(l) > O,while if c(l) = 0, c(s,t) Z 0. Thus

c(hs, At) = A% c(s, t)

and Z isa self similar Gaussian process with parameter ao/2.

Remarke - If € isself similar with parameter B > 0,.i.e.

L .
EO) o = OB o s

B

then (4.10) 1s satisfied with ®(A) = A” and Z 1s a self similar Gaussian

P

process with parameter B/2.

Remark: The self similar Gaussian processes with stationary increments have
covariance (4,12) with 0 < a < 2 (where for o = 0 (4.12) should be regarded
as allowing for many possibilities -~ which we shall not describe here).

For 0 < o < 2 ' these processes are called fractional Brownian motions [7].
For the case ¢ =,2,see Example (8;1); |
Remark: 'In view of the previous remark,all the Gaussian processes Z with
cévariance (4.12) with 0<a<1 arise as a limit of nA(t) as'A -+ o, Thé case

o = 0 is special. The process with covariance (4.12) with a = 0 is the

following:
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» X(t) + Z for t> 0
2(t) =
0 for t =0

where (X(t),Z) is a family of i.i.d. Gaussian variables., We do not

te[0,®) _
kpow, however, whether this process can arise as a limit of‘ﬁA(t) as A+ o,

(The reader should consider, however, the 2nd remark following (4.7).)

V. Tightness of the scaled crossing processes

We now consider the process (qét))te[O,T]’ for some fixed 0<T< o,
dgnoted again by .

.Ihe paths éf n, can be very irregular, and in particular fail to be
"in b, even if & has continuous paths...Consider for example E(t) = W(t),'
a standard Wiener process. Let H C R[O’T] Ee such that for all A the
baths of n, are in y almost‘sureiy. We may assume tﬁat D = D([0,T]) C H.
Since the paths of n, in general need not be‘in D we cannot egpect f(nA)
to be measurable, for f a bounded function on H continuous in the sup-norm
or even Skorohod topology. We shall see however that we nevertheless obtain
for every bounded function f continuous in the sup-norm topoiogy that

E(f(ny)) —>= E(£(2)) . | (5.1)

Ao

in a natural sense.

The main ingredient in the proof of this is
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5.2 Definition:

For h € H let

W (® = sw[n(e) - )|
s,t€{0,T]
|t—s{<6

A sequence of measures (Pn)nem on H is C-tight if for each positive n

. there exists an a such that

P ({h|n(0)| >a}) < n foralln2>1 (5.3)

and for each positive € and n there exist § > 0 and n such that

P ({h|w(8) >€}) < n foralln>n_ . (5.4)
n h - - - 0
A sequence {Xn} of processes (;.e. ) .random elemegts of H) is C—tigﬁt if

the *induced measures {Pn} form a C-tight sequence. [:>"

5.5 Remark: If H = C then C-tightness amounts to the usual tightness for

measures on C. Tf H = D then C-tightness implies the usual tightness for
measures on D,and if furthermore Pn converges to P in finite dimensional

distribution then Pn converges weakly to P and P(C) =1, [5] E:>

We now make (5.1) precise. As before we denote by E(°) the outer ex-

pectation and bylg(')'the inner expectation, i.e.

E(f) =  sup E(g)-
gt
g measurable

(5.6) Lemma: Let {an be a C-tight :.sequence of random elements of H, and

suppose that the finite dimensional distributions oan converge to those of
X. Then X has (a version also denoted by ¥ with) continuous paths,and for

' every bounded function £:H + R continuous in the sup norm tppoldgy
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E(£(x ) —> E(£(x))

n
and

B(e(r)) — &) . [>

n+re

~ Proof: We first défine (for n sufficiently large) a regularization ;n of

=m

Xn with continuogs paths. Let nm = Em =2 7, m>1, Then by C-tightnesg

there exist dm and no(m) such that for all m

‘ > <
W(Wxn(ém) Em) n. for all n > no(m) .
Let m(n) = sup m. If m(n) =« then(a version of) Xn has continuous’
n_(m)<n B
[o] ~A ) -~
paths, so we set Xn = Xn in this case. For -® < m(n) < =, let X be the
A n
11 i of
near<1nterpq}atiog of {.Xn(t:)}te(S N
m(n) .
Since lim m(n) = w,‘{%n} is also C-tight and its finite dimensional distri-

n-+o .
butions also converge to those of Y. Therefore X has a version with con-

L
tinuous paths and Xné==$>X. Moreover, for every € > 0, there exists a

set K C, compact in the sup-norm topology,such that for all n

X > -
E(xn € K) > 1 €

(provided X is defined). Any bounded function f on H continuous in the
n ‘ '
sup norm topology is, of course, ﬁniformly continuous on K; moreover, by

the proof of uniform continuity, for any €' > 0 there exists a 8§ > 0 such

that ‘ ’
t
) - £()] < €

provided h1 € K and ||h1-h2” < 8. It follows that for any € > 0

B(EGC)) -e S B(EOL)) < B(£C)) < BER)) + ¢

for n sufficiently large. [:>
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We use the following proposition to establish the C-tightness of

{nA} (i.e. of {nA } for every sequence An + ®),
n

5.7 Proposition:

Suppose {Xn} is a sequence of random elements of H satisfying:
(1) {x_(03} is tignt.

(ii) For all n there exists Gn > 0 such that
(g) theve exist B8>0, 0 > 1, and C > 0 such that for all n

(sufficiently lavge)

2%, - @1 < cle-s|” (5.8)

for all s,t € [0,T] with |t-8].> 8 s

aﬁd o
(b) for every € > 0 and n > 0 there exists an n such that
> < > .
@(wxn(én) £) n for all n > éo . (5.9)
Then {Xn} is C-tight. [:>

Proof: We may assume without loss of generality that T = 1 and Gn = Z-k

for some k > 0 depending on n. Given n we have that

|h(e)-h(s)| < Th(e)-h(e")] + |h(s)=h(s")| + |h(t")-h(s")]

where s',t' € GHN and 0 < t-t'; s-s' < 6n . Thus for any § > 0

w (8) < 2w (8.) +  sup |h(t)-h(s)| .
b T h'n t,sed N .

|e-s] <848
t,s€[0,1}
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Therefore, by (5.9), we need only show that for any € > 0 and N > 0, there

exists a 6 > 0 such that for all n sufficiently large

P(wén)(é) >e) < 7 ) (5.10)
n .
where

W8 = s [n(o) - ws)l .

© t,s€8 N

n
| t-5] <8
t,s€[0,1]

But this follows from (5.8) by the usual 'dyadic rational" argument:
Choose a A such that 2-(0-1) < AB < 1. Given n for which (5.8) is

satisfied, let

— i ; i+] k - , k_
Gk.— {lxn( k) Xn( k')l f A .fOl' X 0,13...’2 1} °
2 - 2 .

By (5.8)

BG) > 1-cyf

k - .

where -

Y A-B 2(1"0) < 1.

Given € > 0 and n > 0,choose ko such that

and -0
k>k
-0

Since every interval in [0,1] can be expressed as a union of elementary

dyadic intervals involving at most 2 intervals of length 2k,it follows that

(5.10) is satisfied with 6 = 2-k°. [:>
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We now apply Proposition (5.7) to the family {nA} with GA = A_l° We
shall see that (5.9) follows easily from (3.6);while if E(1) Has stationary
increments, then if (4.4) holds uniformly in t»(5.8) is satisfied. 1In fact,
a uniform version of a condition substantially weaker than (4.4) is sufficient,

even if £ (t) does not have stationary increments.,

(5.11) Proposition: Suppose that (3.4) (i.e. 0 > 0) and (3.6) are satisfied,

and that there exist a K > 0 and a K > 0 such that (for all A sufficiently

large) '
E(JE(AL) - E(as)]) K .
XN < K|t-s] (5.12)
for all s,t € [0,T]. Then the family {nA} ie C~tight. D

Proof: By (2.lc), E([E(t)[) > 0 for some t, and without loss of generality
we may assume that E(lE(l)I) > 0. Moreover,just as in the proof of

Proposition (4.9),ﬁe consider only £ having stationary increments.

We establish the hypotheses of Proposition (5.7) with 6A = A-l.

« Then

=lro

Choose an even number V >

E(n) ) < 2° Bty - et e)))

in

V2 L E(Ew)]))

IA

const. ((E(|E(L)|))

since N+(t) is a Poisson random variable with mean %-E(|E,(t)|)e

It follows that for t > BA R 0

E(InA(t)IV) < const.((m( ¢§ﬁ§) ))\)/2 V’(Eil%%%%llﬁv/z) < const, tKv/z
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by (5.12) (for A sufficiently large), which establishes (5.8).

To establish (5.9) we observe that for any € > O,

{wn (SA) > g} = { sup In(t)-—n(s)l > € ¢(A)}
A s,te[0,AT] ‘
|s-t]<1

C__ U { sup |n(t) - n(s)| > —g-\’cb(A)}

s=0,...,[AT] te[s,st+l)
thT

<:::; \\J/ {w ] w e {§é1 >'§ (a1},

s=0,...,[AT]

where_él is defined in (3.19). Thus (cf. (3.20) and (3.21)),.

e ]

wlm

: ¢ (A)
P({w_ (8) >e}) < AT e exp'pE( sup |E(t)]) (e-1)}
A O<t<l

and (5.9) thus follows from (3.4). D

If £ has stationary increments and ¢(A) = Aa, o > 0, then (5,12) can

be replaced by a condition which is easier to check.

(5.13) Proposition: .Suppose that £ has stationary increments, that (3.6) is
satisfied, and that ¢(A) = Aa, o > 0. Suppose further that there exists a

T>0,a y>0 anda C>0 such that
EC(JE)]) < ct’  for all t<T . (5.14)
Then the family {nA} is.C—tight° ‘E:>
Proof: We may assume without loss of generality that vy < q. .By (4.4)
E(]E(t)|) < const. t%

for t sufficiently large. Note that because £ has stationary increments,
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it follows from (5.14) that E(IE(t)|) is bounded on compact subsets of

[0, ©). Thus for all t > O

!E(Ii(t)l) < const, Y V 2 .

Therefore

b (A)

for .t < T (and A > 1), [:>

y .
E(JEat)]) < const.(Cj%;?)\/ta) < const. tY
R

VI. The rescaled collision process

Let ¢(A) vsatisfy (4.4). Then we dgfine the rescaled collision process
Yy by 7 ,
y(6) = HE e 0,1

By virtue of Proposition (3.1), {yA} has the same asymptotic behavior
as {nA}; this would follow immediately from Remark (3.23) if n, had paths

in D, but,as we have already noted,this will frequently not be the case.

(6.1) Proposition: (i) 1If & satisfies (4.10)sthen the finite dimensional

distributions ofvyA converge to those of 2, where 2 = p—lz'isthe Gaussilan
-1
process with covariance 0o(s,t) ﬁ-2§4 (c(t) +c(s) =c(s,t)). *

(11) If £ satisfies (3.4), (3.6) and (5.12),then {y,} is C-tight. [:;>

Proof: (i) is an immediate consequence of (3.1)(i) and fropositiop (4.9).

Moreover, the C-tightness of {nA} implies (3.5),and hence,by Proposition

(3.1)(ii), the C~tightness of {y,}. [:;>
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Remark: Our tightness condition is essentially (3.6). If this is not
satisfied,the paths of y, are presumably highly irregular and,in particular,
not in D. Thﬁs (3.6) appears to be the minimal condition for the existence

of a decent collision process.
Remark: If for all 0 < T < ®

EC sup |E(E)]) < =
0<t<T

then it is easy to see that if the paths of £ are in C (respectively D)
then‘the paths of v, are in C (respectively D). Note also that if the paths

of £ are in D then, P almost surely,

sup ]nA(t)l = sup |nA(t)|
0<t<T 0<t<T *

t rational

is mea%Urable, Similarly v (8) is measurable in this case.
a A . .

VII. Partial summary

(7;1) Theorem:

Suppose £ has stationary increments and satisfies (2.1).

Then the following are true:

(i) (Central Limit Theorem)

L
L&) _—%n0, o7}

\IE(IE(t)l too
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(ii) (Convergence of finite dimensional distributions)

I1f for all t 2 0

E(EMAR)]) _ . o
lim =505 = e(t) < ,

Ao
o
then c(t) =c(l)t, o >0 ,

and

YAE) s, E(t)

M) v

. 1} R Y
in finite dimensional distribution, where Z is the Gaussian process with

tovariance 0(s,t) = %-p—l c(l)(ta+-sa-1t—s|a

¥y, (£)

(iii) (Functional Central Limit Thecrem)

Suppose that for some 0 > 0

s E(l&éA)J) - >0 < o« | (7.2)
. A Ao . ’
and that
E( sup . |E@)]) < = . ' (7.3)
0<t<1

Suppose further that there exist T > 0, ¥ > 0 and C> 0 such that

EC[EC) ) < ct’ for all t <1 . (7.4)
Then as A + ®
zé%%l)tzo converges weakly to (Z(t))tZO .

Nll-

A
where Z is the Gaussian process with.covariance 3(s,t)

in the sense of Lemma (5.6). [:>

Lo % |t-s|%).
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(7.5) Remark: By self similarity and the fact that 2 is Gaussian

E(Z(xs) | 2(s)) = C(x) Z(s)

and hence

a(s,t) = ¢ c(t/s) .

If Zz(t) is Markovian,we furthermore obtain that for x,y > 1

Clxy) = C(x) C(y), so that
so that
C(x) = xB o or ce(x) = 0 .
~ _ a-8 B ~ - . . -
Thus 0O(s,t) = const. s t or 0(s,t) = 0 in this case, and hence

2 (see also [7]).

(a nondegenerate) Z is Markovian only for o =1 and @

- VIIT. Examples

Eaantress o1

(8.1) The ideal gas [1,2]:

Let £(t) = vt, where v is a centered random variable with E(Ivl) < oo,
Then (7.2) is satisfied witha =1, 0 = E(Ivl),and (7.4) is satisfied with
C = E(Ivl) and v = 1. Thus B} (7.1)iii,'(%§é£lﬁt>o converges weakly to the
A -

Wiener process with diffusion constant p—l E(!vl).

(8.2) Colliding Brownian particles [2]:

Let £(t) = W(t), a standard Wiener process. Then (7.2) is satisfied

with a =-;— sy 0= E . Furthermore

E( sup [E(t)|) = 2BE(|E(1)]) and (7.4) holds with c =\[%' and Y = %-'

O<t<1 -
Thus by (7.1)(118), 5E)
A -

. n - : 1 1
with covariance o(s,t) = -%- p 1 f%-‘ (@:L5 +8? - It—slfi).

converges weakly to the Gaussian process
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(8.3) Colliding Ornstein Uhlenbeck particles:

Let £(t) = x(t), wbere

dx(t)

v(t) dt

dv(t) -v(t) dt + dw(t) ,

with the stationary initial distribution for v.

By the "Central Limit Theorem'" for the Ornstein Uhlenbeck process

. 2
,ELEL:+ N(0,D) with variance D = lim Elé%&l_l =1,
vt £
Hence ' .
| A | ; 2
E(JIE@A)]) > E(lw(l)l) = =
VA e
Moreover
e BUEW]D < E(vD e,
and since
' t
lv(t)] < [ |v(s)|ds +C forall 0<t<l,
o
where |
C = IV(O)I + sup |W(t)[ ,
0<t<1
we obtain by Gronwall's inequality that
lv(t)| "< ce®  forall 0<t<1.

Therefore

E( sup [E(t)]) < E( sup |v(t)]) < E(|v(0)|) + E( sup [W(t)|))e .

0<t<1 0<t<l 0<t<l
e
Hence, by (7.1)iii, (zé%%l)t>0 converges weakly to the same limit as in
. A pi

Example (8.2). [:>
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Examples (8.1) and (8.2) are special cases of

(8.4): Let £ be the Gaussian process with covariance

o(s,t) = '% & +s” - |5V, o0<v<2.
Since E(|E(t)]) = ji‘ v/2 , (7.2) and (7.4) are satisfied with a =Y = %
-c =12
and 0 = C = T
Since there exist B > 1 and o > 1 for which
B = o
e(g®)] - £ < Tles]”,
. , k k
we obtain by the proof of (5.6), replacing A" by al, that
‘ C
P(sup |ECE)] 2 %) < —5
Oftfl : X
~ s ‘s y(At) :
where C < », Thus (7.3) is satisfied. Therefore ( v/2 ) converges

.o

weakly to the Gaussian process‘with covariance
A 1 -1 (2", v/2 v/2
g(s,t) =5 P f;?(t +s°/% - |t-s]

(8.5): Let & be the:symmetric stable process of order 0 < v < 1, so that

E(|€(t)|) = tl/v E(|€(1)|) [(3,4]. Thus (5.2) and (7.4) are satisfied with
o=y =v ! and o =c=E(EW]).

Since § is a martingale [4]

p( swp 60| >0 < HEdemP) < =,
0<t<l x

provided B > 1 is sufficiently small,and (7.3) follows. Therefore

(zﬁégl) converges weakly to the Gaussian process with covariance
A1/2\) t>0 _

~ 1 -1 1/2v 1/2v 1/2v

Sty = 2 ol (e D EP + B L s MR,

2
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