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Résumé. — Nous étudions le jellium inhomogéne en deux dimensions ou la densité du fond varie arbitruirement
dans une seule direction. A I' = 2, les densités 4 un et deux corps des particules sonl représentées par des fonc-
tionnelles explicites du potentiel électrostatique créé par le fond. Le présent modéle peut étre utilisé pour décrire

une large variété de surfaces chargées.

Abstract. — We study the general inhomogeneous two-dimensional jellium where the background density varies
in one space direction only. AtI" = 2, explicit [unctional representations of the one- and two-body densities of
the particles are derived in terms of the electrostatic potential created by the background. The presenl model
can be used for describing a large variety of charged interfaces.

1. Introduction.

There has been and continues to be much interest in
the properties of inhomogeneous charged systems.
The motivations for this are as many as the physical
situations in which the non-uniformities play a réle
from Astrophysics to electrical double layer in elec-
trochemistry and biology. In addition, it is sometimes
convenient and justified, even in overall uniform plas-
mas, to consider the fast moving light electrons as
being in equilibrium in the non-uniform potential
produced by a specified fixed configuration of the
heavier ions. This occurs for example in the study of
line shapes of radiators in a plasma.

The simplest model describing a charged system is
based on the one-component plasma (jellium) : iden-
tical particles with charge e move in a rigid background
with opposite charge. Recently the microscopic struc-
tures of various « surfaces » in this model have been
worked out exactly in two dimensions at the special
temperature 7, for which the coupling constant
I'=e*lky T =2 [1-6). These exact calculations involve

(* Laboratoire Associé au Centre National de la Recher-
che Scientifique.

random-matrix methods [7-8] similar to those used for
studying the bulk properties of the two-dimensional
jellium at '=2 [9-10}.

In this paper, we extend the previous exact calcula-
tions to the case where the background density has an
arbitrary shape in one direction pg(x, y) = pp(x). In
addition there can also be an external potential
V.. (x) applied to the particles. At I' = 2, we derive
explicit functional representations of the one- and
two-body densities of the particle in terms of V., (x)
and of the electrostatic potential created by the back-
ground.

We proceed as follows : in § 2, we consider the case
where py(x) =+ p,(p;) as x = — o0 (). We use a
method very similar to the one introduced by’
Jancovici (4] for the step case, pg(x) = p, for x < 0
and pp(x) = p, for x > 0. The density profile of the
particles, as well as the truncated two-body distribu-
tion function, are computed in terms of simple inte-
gral representations. In § 3, we specialize our expres-
sions to the case p, = p,. The corresponding inte-
gral representations are shown to remain valid when
pp(x) is a periodic function, in § 4. Finally, in § 5, we
briefly indicate how to extend the expressions derived
in§ 2, 3 and 4 to the cases where an external potential
is present.
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Throughout the paper, we systematically discuss
general sum rules for inhomogeneous charged sys-
tems [11-14]. A few examples corresponding to simple
forms of py(x) and V,,(x) are studied in detail.

2. The smooth step,

2. 1| FORMULATION OF THE PROBLEM, — We start from
a finite system with circular symmetry : N particles
with charge e in a disk with radius R and volume A.
The disk is filled with a background charge density
— epy(r) such that

for r< R,

pslr) = p
2.1)

and

pB(r) = p(l - d) for Rmaxs r<R,
where 0 < a < 1 and py(r) is continuous for r < R
Two particles i and j interact through the two-dimen-
sional Coulomb potential

U("ij) =—¢€ln (rij/Ls) (2.2)
(L, is an irrelevant scale length). Let Vg(r) be the inter-
action potential of particle i with the background
minus the corresponding quantity at r;, = 0, and let
V be the total interaction potential of the system. For
the inverse temperature § such that I' = fe? = 2, the
Boltzmann factor can be expressed in terms of a
Vandermonde determinant [9- 10], namely

N
exp[ - pVI(ry, ..., W] =4 CXP[— B ;1 VB(".‘)]

"o 0|2
nl L -N
x|Det [ {7t ... -1 (2.3)

(4 is a constant), where z; is the complex number
r;exp(if;) and (r,, 8,) are the polar coordinates ofrjina
given frame,

Since Vy has cylindrical symmetry, the angular
integration of the Boltzmann factor (2.3) upon any
set { 6,} can be performed explicitly. Expanding the
Vandermonde determinant and using the orthogona-
lity of the functions exp(ind)), the n-body distribution
function of the particles becomes [7-8]

Py, ) = cxp[— B g‘:‘l VB(r‘)] X

Det | Ky (2 | .4

BVe(r) =r* + ¢(r) for rg Ry,

BVs(r) = R + 2R} In (r/Ro) + (I — ) (F* — RZ) + ¢(r)

JOURNAL DE PHYSIQUE

No 12

where Ky ,(Z) is defined by
ZP
J. dr r*? exp[ = BV 4(r)]
A

N-1

KN.A(Z) = Z

p=0

2.5

For studying the microscopic structure of the plane
interface, we have to take in (2.4) the successive limits,
R — 00, N - oo, and finally R_,, and R_,, - oo, the
differences (R, — R.,) and (ry = R being kept
fixed. The first two limits are somewhat trivial. The
last one requires a suitable adaptation of the technique
first introduced by Jancovici [4].

2.2 THE ONE-BODY DENSITY. — In the following all
the distances are redelined in units of g = 1/(mp)' 2
and the n-body distribution functions are redefined
in units of p" Once: the limits R = o and N — oo
have been taken, the one-body density is given by

plri) = exp[— BVy(r))] K(r}), (2.6)

where the function K of the dimensionless complex
variable Z is related to (2.5) by

zr ‘
. 2.)

k() = 7 i Jim Ko Za) = 5 52

p=0

with

D(p) = 2J drr?**Uexp[— BVy(r)]. (2.8)
0

It is clear that for a given continuous density A(r),

0 < 7 < Ruux — Rpyg.suchthat pg(R,,, + 1) = ),

the average density (nR?)"! dr pg(r) will, for

r€R
R, and R sufficiently large and (R,,, ~ Rein)
fixed, always lie between p, and p,. We can then find
some R, < R such that the continuous density py(r)
is given by

Palr) = qa(r) + pH(Ry = 1) + p(I — «) H(r - R,),

(2.9
where H(x) is the Heaviside function H(x) = 0 for
x < 0and H(x) =1 for x > 0 and dr ga(r) = 0.
Then, SV y(r) becomes <t

} (2.10)
Ry <r,

N

for
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with '
, drﬂ rll qB(rH) )
o(r) =4J dre=e @2.11)
0 r

(gg(r) is redefined in units of p). gg(r) has a compact support, i.e. g4(r) = 0 for r < R, Of Rya, < r('). There-
fore, we have

¢(r) =0 for r < Ryins

, J\ drll rll qB(ru)

= + YRmin <r<
¢(I’) 4 J;, ' dr - for len Rrs lexi (2 ]2)
Remax J dr’ r" ¢g(r")
@(r) = const. = 4J T L — for  Ru.<r.
r
len

We take now the final limit R, — co defined in § 2.1. In this limit, the differences (Ry — Ryn)s
(Rmax — Ruin) remain finite. Furthermore, putting x = r — R,, we have

d
J dx gg(x) =0, (2.13)
d<
where d. = lim (R, — Ry) and d, = lim (R, — R,). Neglecting terms of order 1/R,, (2.12) becomes
¢(x) =0 for x<d,,
ox) = 4L dx J; dx” gg(x") for d. €< x<d,, (2.14)
d> x’
~ ¢(x) = const. = 4 J dx’J dx” qg(x") for d, € x.
de d<

The essential point of the present method is that the limit (2. 14) of ¢(r) is a continuous bounded function.
Then, the remaining part of the calculation is a straightforward extension of a previous work [4]. Since
xy = r; — R, remains finite, the dominant contributions to K(r}) come from p = R} + sR,./2. For evaluating
the corresponding D(p), we first rewrite (2.8) as

R2 _
D(p) = f drexp[— ¢ + pIn fJexp[ — ¢(/1)] + exp[— aRZ(! — In R)] x

0
X Jm dtexp[—(1 — «)t — aR¢Int + pln]exp[— ¢(\/7)]. (2.15)

R3

Since exp[— ¢(y/1)] is a slowly-varying function which remains bounded when R, — co, both integrals of
(2.15) can be computed by steepest descent methods. Expanding [—¢+pInfJand [— (1 —«) r—aRZ Int+pIn (]
around their respective maxima s = pandt = (p — aR3)/(l — a) gives

D(p) ~ Ro /2 exp(R¢ In R — RZ + Rys5./21In R3) x
X {exp(s’) J:; du cxp[ - - ¢(s\;-§u>]

1 s ® 5/2 + u 2l — a) :
+\/(l______;‘_)cxp{(l — a)]f du cxp[— u? — ¢( e ﬂ} @2.i6

~syTT=ay

(*) For some particular shapes of py(r), R, does not belong to (R, R,..}- The support of q,(r) is not (R s Roud in
these cases. This circumstance does not modify the remaining part of the present derivation.
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Noting that

< - —
ri? exp[— BVy(r,)] ~ exp[REIn R} — RZ + sRy/2In R — 2x3 + 2 x, 52 = $(x)]

for x, <0 and

ri? exp[— BVg(r)] ~ exp[R3 In RS — RE
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2.17)

+ 5Ro/2In RE = 2(1 — ) x} + 2x,5/2 — d(x))] (2.18)

for x; > 0, and replacing the sum over p in K(r?) by an integral upon s, we finally obtain

po) = 669 ol = 9] | dsexpz xe /3 { exp - 0 + e 23] o} e

with
g(x) = exp(— 2 x?) for x<0, 2.20)
g(x) = exp[— 2(1 — &) x*] for 0 < x, ’
and
V(o) = J. du CXP[— W - ¢<s +-u>].
. 2 /]
* + 1 -
v.(s) = —I—J du exp[— ut — q‘)(s———u—\—/(——_—a))] (2.2
VU =) Jogm=a (1 -9y2 /]
(2.19) expresses p(x) as an explicit functional of algebraically, p(x) — | and p(x) — | + « behave

@(x), which is the electrostatic potential in kg T units
(apart from an irrelevant constant) created by the
layered charge distribution with charge density
— eqp(x).

Equation (2.19) was derived for a background
density varying in the finite interval [d., d.] but it
can be obviously extended to the case d. = — o
and d, = oo provided that gg(x) and xqg(x) are
integrable at infinity and that

f dx gu(x) = 0. 2.22)

When gg(x) vanishes identically, we recover Janco-
vici's result [4).

It can be easily checked that p(x) goes to | or to
(1 — «) when x = — o or o respectively. The
asymptotic forms of p(x) — p(% o) depend on the
way in which gu(x) goes to zero at infinity. If gg(x)
has a compact support, p(x) — p(+ o) is essentially
Gaussian. If gg(x) decays exponentially when | x| = oo,
so does p(x) — p(+ ). Finally, if gg(x) decays

0 0

likewise when | x| — co. In Appendix 1, we show
that p(x) satisfies the overall neutrality condition

J dx[p(x) = pa(x)] = 0 (2.23)

as well as the electrochemical potentlal balance {11]
which reads here

J dx x[px) = pa(0)] = ~ §ln(l - ). (2.24)

—

The integral representation of p(x) can be extended
to the case « = | by taking the limit &« — 17 in(2.19).
First, we break up the integral involved in (2.19) into

4] . @ ) ®
ds... + J ds.... In J ds..., we make the variable
- 0

changes = 1,/(I = «). Since ¢ is bounded on [— o

], ¥, (t/(1 — a)) is bounded below, for t > 0, bya
constant (independent of a) divided by, /(T — «). The-
refore, we have

f ds... < const. (I — a)[ drexp[~ * + 2x1/2(1 — «)] < const. (I — &) exp[2(1 — &) x?]. (2.25)
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-

When « — 17, the upper bound (2.25) goes to zero for any given x and thus f ds... vanishes. For s < 0,
0

¥ <(5) and ¥, () are rewritten as

0

¥ <(8) =\/§ exp(— sz)f dvexp[— 2 v? + 2 vs\/—2- - 6] (2.26)

hal: ¢}
and

2

¥ (s) =\/§ expl:(l—_La)J J'°° dvexp[— 2(1 — @) v? + 2 vs\/i . OIF (2.27)
0

When o — 17, the integral involved in (2.27) goes to

f " o exp[2 vs./2 ~ $(v)] (2.28)

0

which is convergent. Using (2.26),(2.27) and (2. 28), we finally obtain
0 —_
o) = j;g(x) expl— $(x)] f ds exp(2 x5/2)[9 <) + @5 ()] e

with

0
() = f dvexp[— 22 + 2vs/2 — ()]

N (2.30)
©5(5) = f dv exp[2 vs\/i 0l

0

g(x) is given by (2.20) with « = 1. For gg(x) = 0, (2.29) reduces to the expression computed by Jancovici [4].
The overall neutrality condition (2.23) is satisfied by (2. 29). The dipole of the charge distribution e[ p(x) — pg(x)]
diverges as suggested by (2.24) with « = 1. This divergence is related to the slow algebraic decay

| 4
p(x) ~ gl (2.31)

when x — co. We point out that this asymptotic behaviour does not depend on the shape of py(x) provided
that pg(x) decays faster than const./x*. In particular (2.31) is identical to the corresponding behaviour for
gp(x) = 0 {4].

In figure 1, p(x) has been drawn for a =1/2, d. = —d, = - |, and pp(x) =1 —(x + 1)/d for — 1 € x < .
We also recall in this figure the corresponding abrupt step case [4].

p{x)

Fig. . — The exnct particle density p(x) at I' = 2 corres-
ponding to the background density py(x) = 1 forx < — 1,
pp(x) m 1 —(x + 1)/4 for | x| < 1, and pg(x) = 1/2 for
x > 1 (p(x) Bnd py(x) are in units of p and x is in units of
a = | /(np)"'?). Dashed line : pg(x); full line : p(x). Dots :
the particle density corresponding to pg(x) = | for x < 0
2 A 0 1 2 X and pgp(x) = 1/2 for x > 0.
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2.3 THE TRUNCATED TWO-BODY DENSITY. — Let p'*™(r,, r,) be the truncated (Ursell) two-body distribution
function

c p(Z.T)(rl, l'2) = p(z)(rl’ r2) - P(rl)P(rz) . . (2'32)
Once the limits R - o0 and N — oo have been taken, wé have
p(Z,T)(rL, fz) = — exp[_ ﬂVB(rI) - ﬂVB(rZ)] IK(Zl z;) '2 . . (2.33)

We introduce the Cartesian frame (x, y) in which the origin is at R, = R, t; and the unit vector along the x-
direction is f,. The corresponding components (x,, 0) and (x,. y) of r, and r, are kept fixed in the final limit
R.in — . Therefore, the dominant contributions to K(z, z3) again come from p = R + R, s./2. Using
(2.16), we find

P Txy, x5 p) = — g(xy) g(x;) exp[ — p(x,) - P(x))] x

© _ 2 -
j ds exp(s(x, + x; - zyml{exp<s2)w<<s)+exp[(, - a)]ws)} ' SR

-

X

For gg(x) = 0, we recover a previous computation [4].. Since the integral J ds... involved in (2.34) can be
-

viewed as the Fourier transform with respect to y of a function of 5 analytical on the real axis, p?"(x,, x5, y)
decays faster than any inverse power of y when | y | —» oo (x, and x, fixed). x, and y being fixed, we find by the
method of steepest descent

pDxy, X0, ) ~ = glx) exp[xd — 37 — p(x)] expl— X3 + 2x, x,] (2.35)
when x; - — oo and

PED(xy, Xz, p) ~ = (I — ) g(x)) exp[(l — «) (x] =) + ¢(0) — $(x,)]
x exp[—(I — &) x3 + 21 —a)x, x;]  (2.36)

when x;, — co. We see that the asymptotic behaviours (2.35) and (2.36) are Gaussian. Unlike the one-body
density, these behaviours do not depend on the way in which gg(x) goes to zero at infinity. When x, = —
and <o, (2.35) and (2. 36) respectively reduce to their well-known bulk forms [15].

Since p'*T)(x,, x,, y) decays faster than any inverse power of | r, — r, | when particle 2 recedes to infinity,

all the multipole moments of [p*"(x,, x,, y) + np(x,) 8(ry — r,)] are expected to vanish as shown by the
theorems derived in [12] (*). Two of these theorems have been explicitly checked here, namely

J- dx, J dy p? N (xy, x3,0) = = mp(x,) (2.37)

- w

(perfect screening sum rule) and
J dsz. dy(r, — r,) p* M (x) x5, ¥) = 0. (2.38)

Using'the same method as in § 2.2 for the one-body density, (2.34) can be extended to the case a = |
with the result

P(z"ﬁ(xl» X2 ¥) = = %Q(XI)G(-’Q) exp[— ¢(x)) — b(x,)] x
2

o —
x f dsexpls(x, + x; = 1)y/2 [9<() + 0.1 | . (2.39)

(*) In [p*T(x,, x,, y) + ], the factor = appears because of our choice of dimensionless units.
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ds... when | y| — o is related to the behaviour when s — 07 of the corres-

ponding integrand in factor of exp(— isy\/i). We easily find by integrations by parts
1

PP Tx, X3, ¥) ~ = g(x)) g(x2) exp[2 $(e0) — d(x,) — d(x)]/¥*

when | y.| = oo (x; and x, fixed). When x, — oo (x,
and y fixed) we obtain by a similar method

P(Z'T)(xl- X3y ~

— g(x,) exp[¢(c0) — B(x,)]/x3. (2.41)

When x, - — o0 (x; and y fixed), the dominant
0

contributions to J ds...
negative|values of 5, and the asymptotic behaviour of
P4 N(x,. x5 ) is still given by (2.35) with o = 1.
(2.40) and (2.41) become independent of the shape
of pg(x) when x, and x, — o0, and x; — 0 respecti-
vely. These expressions reduce then to those previously
computdd for qg(x) = 0 [4].

Because of the slow algebraic decays (2.40) and
(2.41), only the perfect screening (2.37) and dipole
(2.38) sum rules are satisfied, in agreement with the
theorems derived in [12-13). The higher-order multi-
pole moments of p>™x,, x,, y) are not defined. As
noticed in the case gg(x) = 0 [4], the asymptotic
behaviour of the integrated quantity

come from the large

J dx, J dx, P(%'T?(Xp X2, ¥) (2.42)

when |y | = oo cannot be predicted by a general
linear response argument [16] because the decay of
p'* (x|, x5, ¥) when x, or x, — oo is not fast enough.

3. Local inhomogeneities.

We consider now the case a = 0, i.e. gg(x)=pp(x)—p
for any x. The expressions (2.19) and (2.34) are
extended to the cases where — egp(x) carries a non-
vanishing surface charge. We study the two limits
qp(x) — 0 (small inhomogeneity) and dgg(x)/dx — 0
(infinitely smooth inhomogeneity). A few particular
cases are considered in detail.

3.1 THE HOLE WITH ARBITRARY CHARGE. — Let
qp(x) be a continuous function with compact support

[de, d,] and o = dx gg(x). Let pgo(x) be the

de
background shape such as gp o(x) = gp(x) for d. €
x<d, and gqgo(x) = — dé(x + X) otherwise
(— X < d.). The total charge carried by ggo(x) is
zero so the corresponding one-body density of the
particles is obtained from (2.19) with « = 0. Taking
the limit X — oo, d, d, and x being kept fixed, we

(2.40)
easily obtain
p(x) = exp[— 2 x* + 2 ox — $(x)] x
® exp(2 xs\/i)
x J_wdsW‘ 3.1)

with

o(s) =\/§ Jm dvexp[— 2 v +
+ 200+ 2 vs\/i - ¢()]. (3.2)

The expression (3.1) must be the required particle
density corresponding to the distribution gg(x) alone,
by virtue of perfect screening rules. In the limit consi-
dered above, we can replace the 8-part of gg o(x) by
a continuous function g}(x) with compact support
[- X —d — X]and such as

-X

J—X-wi

We have checked that the corresponding p(x) does not
depend on the shape of g§(x) when X — oo uand is
indeed given by (3.1). Making the variable changes

t=(s+0A/2-x/2)A/2in(3.1)andu=v— 1t~ x
in (3.2), we can rewrite (3.1) as

dx gi(x) = — 0. (3.3)

@ 9,2
) = o[- g0a] | BT, .
with
Y(x + t)=j duexp[—2u? — ¢(x + 1 + uw)].

(3.5

Unlike (3. 1), the integral representation (3.4) does not
explicitly involve the surface charge — e carried by

"~ — eqp(x). The expressions (3.4) and (3. 5) can obvious-

ly be extended to the cases where d. = — o and
d, = oo, provided that ga(x) and xgg(x) are integrable
at infinity.

Like in § 2 for the case 0 < « < 1, the way in which
p(x) goes to 1 when | x| =+ o depends on the corres-
ponding asymptotic behaviour of gp(x). In Appendix 1,
we show thut (3.4) does satisfy the overall neutrality
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condition f dxx[p(x) - pp0] =0.  (.7)
O -
J_w dx[p() - pn(,v\)] =0 3-6) The truncated two-body distribution function can
: be computed by starting from (2. 34) with « = 0, and
as well as the electrochemical potential balance [11] by using the same method as previously for the one-
which becomes here body density. We f{ind

PP Nxy, x5, ) = — exp[— 2(x; — x,)3+ 2 ':}’(xz = x1) = $(xy) — $(x3)] x

X J de, f diyexp[— 262 =242 =20, — 1)) (x; — x;) +
+ 20t = )] [ + )W + )], (3.8)

When gg(x) vanishes identically (i.e. pg(x) = p), ¥(s) reduces to the constant \/7—t,k/§. The integration upon
ty and ¢, in (3.8) is then trivial and we recover the known result [15]

p(Z,T)(xh X2, y) = — CXP[_ (x; — Xl)z - }’2] - (3.9)

for the homogeneous system.

Like in the cases 0 < a < 1 studied in § 2, p**T(x,, x,, y) decays faster than any inverse power of |r, — r,|
when particle 2 recedes to infinity. All the multipole moments of [p®T(x,, x,, y) + mp(x,) 6(t; — r,)] are
again expected to vanish, We have explicitly checked that the perfect screening (2.37) and dipole (2.38) sum
rules are indeed satified by (3.8).

3.2 LINEAR RESPONSE THEORY AND MACROSCOPIC PERFECT SCREENING. — Now we study the limit of (3.4) when
gg(x) goes to zero everywhere, Writing

exp[— ¢(0)] =1 = ¢(x) + -,

7 . 3.10
d/(x+t)=\/72—t[l —\/%J duexp(—2u2)¢(x+t+u)+"':l. G109

we obtain up to the first order in ¢
p(x5—1=—¢(x)+7%J dtf duexp(—212—2u2)¢(x+:t+u). 3.1

Making the variable changes (x, = x + ¢ + u, y = ¢ — u), we can rewrite (3.11) as

p(x) =1 = — ¢(x) + :?J dxzf dy exp[ — (x; — x)? — y*] é(x,). (3.12)

- @

The exponential involved in (3.12) is nothing but minus the truncated two-body distribution function of the
homogeneous system (3.9). Therefore, (3.12) is identical to the expression given by the linear response theory,

as it should.
Let us consider an infinitely smooth background and study the corresponding particle density. That is,
we put gg(x) = f(x/L) where f({)is a given [unction and we compute the asymptotic form of (3.4) when L — o,

¢(x) takes the form

¢(x) = L? F(x/L) (3.13)
where F({) is such as

£j-2-15(8.‘) =4/(¢) (3.14)

d&? ‘

Making the variable changes ¢, = u/L in (3.5) and ¢, = /L in (3.4), we get (¢, = x/L)

a

p(x) = expl = L* F(£,)] f 4, exp(— 2 L EDLEs + €. (3.15)

bl A
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with .
Vol + €) = J de, exp[— 2L &2 — L2 F(&, + € + &) (3.16)

-

N

In the large-L limit, (¢, + &) can be compu\‘tcd by the method of steepest descent around the point {, such as

4¢D+%§(¢x+¢,+:o)=o, (3.17)

with the result

U+ ) ~mexp[- 207 8~ LR+ &+ VLV TG+ G E). (1)

Inserting (3.18) in (3.15), we have

@

o)~ L [rowl- 2 Fea) [ eI 7G + &+ &ol

-

xexp[— 2L EF + 2L &L + LAF(, + & + &p)]. (3.19)
o
[I + -] is a slowly-varying function of §, compared to the exponential involved in j d¢,.... The latter

-
integral can then be computed by the method of steepest descent around the point &y such as

=0, (3.20)

—4¢N+§§<¢,+¢N+co)+[4co d5<¢,+¢N+¢D)]ai

which can be rewritten using (3.17) as
én + ¢plés o) = 0. (3.21)

The second derivative with respect to &, at &, = &y of the argument of the exponential involved in (3.19) is
found to be

— 4 LY[1 + f¢&I]. (3.22)

where we have combined identity (3.21) and the differentiation with respect to §, of equation (3.17). After
these manipulations, (3.19) finally reduces to

p(x) ~ 1 + /() = pa(x) (3.23)

when L — co. (3.23) shows that the background is perfectly screened at each point by the particles : the system
does not accept a non-vanishing macroscopic charge distribution. This result is in complete agreement with
the predictions of macroscopic electrostatics applied to a conducting medium in equilibrium.

3.3 PARTICULAR CASES. — We consider the cases where gg(x) = 6(— 1 <) for | x| < //2 and gg(x) =0
otherwise. ¢(x) is then given by

d(x) = 2 6x2 for |x] < {2, }

b(x) = —ﬂ-+251|x| for  I2<|x]. (3.24)

Inserting (3.24) in (3.5), we find

p(x) = \;/2 [ 5—1—(15—4-—-@ - d)(x):| J ds exp[ — 2(s — x)*] {exp(2 8ls) [1 — Erf ((s + y)\/f)] +

+ exp(— 28ls) [1 + Erf (s — 1)/2)] + (1 + &) '? exp[_ 612(12+ 5 _ (12?;{'

[Erf((s+y)\/(] +5)> Erf( y)\/(l 5))]}_1' (3.25)
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where y = /(1 + 8)/2 and Erf is the error function,

2
Erf(z) = —=
J

. 0
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- j d¢ exp(— &2).
n .

Ne 12

(3.26)

In the respective limits, (6 = 0,/ = 0, 0 = d/ fixed) and (6 — — 1%, / fixed), p(x) takes a slightly more compact

form than (3.25), namely _
2.2 o?
plx) = \/— CXP<“ 5~

Jn

)

ds exp[ — 2(s — x)?] x

x {exp(Z as) [1 - Erf<<s + %)ﬁ)} + exp(— 2 o3) [1 + Ed‘((_y - %)ﬁ)] }"‘ (3.27)

and
dsexp[— 2(s — x)?] x

-

p(x) = %‘é—zexp[— ()] J

X { exp(2 Is) {1 + Erf (s/2) +

+ exp(— 2 Is){l — Erf (s

In figure 2, we have drawn p(x) for § = | and / = I.

eXP(—_?_sz)] +

s\/2 n

exp(— 2 sz)J }"
sJ2n '

(3.28)

J2) -

When / —+ 0, § and x — //2 being kept fixed, we recover the abrupt step case [4], When § — oo, / and x

fixed, we find

px) = for

plx) =2 \/%J dé exp[— 2<é

(p(— x) = p(x)). For x > 1/2,(3.29) is identical to the
density of particles near an impenetrable wall car-
rying an infinite negative surface charge [1]. When
x = (//2)*, p(x) diverges like

PR ~ —— 7,
&

which is not integrable at x = //2.

(3.30)

4, The oscillating background.

We show that the integral representations (3.4) and
(3.8) remain valid when py(x) is a periodic function
with period A. For a suitable choice of py(x), all the
Fourier components of p(x) can be explicitly com-
puted.

4.1 THE ONE- AND TWO-BODY DENSITIES, — For any
given periodic function pg(x), we define the mean

density
1 A
p= Ij dx py(x) ;
0

(4.1)

0<x<2

<X
+ é - x>2]/[1 + Erf (6/2)] for 2 < x  (3.29)

p{x)

Fig. 2. — The same as figure | for pg(x) = 1 for | x| > 1/2
and py(x) = 2 for | x| < 1/2 (p(= x) = p(x)).

N

furthermore there is at least one choice of the origin
on the x-axis for which

A
'[ dx xqg(x) = 0 (4.2)
0
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with gg(x) = pg(x) — p, p being given by (4.1). Let
Pa (%) be the background shape such as

Pe.m(x) = py(x) for |x| < MA,

Pemx) = p for MAi<|x|, &3

where M is a positive integer. The particle density
Pu(x) (in units of the p given by (4.1)) corresponding
to pp a(x) is given by (3.4) and (3. 5) with ¢(x) replaced
by the electrostatic potential ¢,(x) created by the
charge distribution — eggp(x) = — e[ pp (%) — p).
Using (4.1) and (4.2), we find for x = ni + ¢ with
- M<n<Mand0gé< A

¢
Prlx) = d(x) = 4 f A&’ — ¢ gs() (4.9

0

(we have chosen the origin of the electrostatic poten-
tials at x = 0). Since the total surface charge carried
by — eqy p(x) is zero, we have also

du(x) =0 for MA<|x]. 4.5

Taking now the limit M — o0, x being kept fixed, we
see that p(x) = lim p,(x) is obviously still given by
M-x

(3.4), with ¢(x) computed from (4.4). Similarly, the

integral representation (3. 8) of the truncated two-body

density remains also valid in the present periodic case.
Using

P(x + 4) = ¢(x), (4.6)

we immediately see that p(x) is a periodic function
with period A In Appendix 2, we show that

.
f dx[p(x) — pa(x)] =0 (4.7)

0

which is a trivial consequence of the overall neutrality.

Using (4.6), we easily check that p'*T(x,, x,, )
has the expected periodicity

pPEDxy + A xy + A y) = p Py, x5, ). (4.8)

p'*(x,, x5, y) decays again faster than any inverse
power of | r, — r; | when particle 2 recedes to infinity,
and thus satisfies multipole sum rules [12] like in § 3,
in particular (2.37) and (2.38).

4.2 PARTICULAR CASES. — Let us consider the cases
where ‘

_k*8 (8 + cos kx)
a0 = 4 (1 + 6cos kx)? @.9)
with |6 | < 1 and k = 2 nt/A gg(x) can be rewritten as

I g2 '
gp(x) = — 2 aln(l + dcoskx). (4.10)

TWO-DIMENSIONAL ONE-COMPONENT PLASMA
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"Using (4. 10) in (4.4), we obtain

_ ln(l + d cos kx)

) (@.11)

$(x) =

Taking advantage of the simple form of the Boltzinann
factor exp[ — ¢(x)], we find from (3.4)

_ R ® exp[—2(s — x)*]
plx) = \/E(l + 6 cos kx) f—wds (ENTYD)

4.12)

with & = & exp(— k*/8). The Fourier components of
p(x) can be computed explicitly, namely

px) =1+ i a, cos (nkx) ,

nw=1

4.13)

with :
L _ep(=n KB) [(\/(l — %) — 1)]" y
" J =Y ¢

X {2 + s[exp(— nk?/4) (i(l_—__:i)_;_l) +

+ exp(nk?/4) Q/—TT—}K—T)] } (4.14)

On the other hand, the Fourier series of pg(x) reads

Pelx) =1+ il a, g cos (nkx), 4.15)

with

Lk [(\/(1—52)-1)J".)<
" Ay - & 8

x[ 5 _(\/(1_—_5’_)—‘)], (4.16)

WA -8)-1) s
The Fourier series (4.13) obviously satisfies the iden-
tity (4.7).

When & — 0 (k fixed), gg(x) takes the simpler form

2

gp(x) = -k4—6 cos kx “4.17)

up to the first order in 4. All the coefficients a, with
n > 2 are at least of order 62, and thus we have

p(x) = 1 ~ 6[1 — exp(— k*/4)] cos kx (4.18)

when & = 0. (p(x) — 1) bcodmw proportional to gg(x)
with the proportionality constant

4[1 — exp(— k*/4)]/k?
which is indeed the expression given by the linear
response theory.




1870
When k — 0 (9 fixed), we find for any n > 1

. Gy
-a—".—n—*]. (4.]9)

(4.19) implies that [p(x) — 17/[pg(x) — 1] goes to 1,
in agreement with the general property of local
screening discussed in § 3.2
For fixed values of k and 6, a, decays essentially like

a Gaussian when n — co, whereas a, decays only
like an exponential. In particular, when k — oo (6 fixed),
the ratio a,,, p/a, y remains obviously finite whereas
a,+1/a, goes to zero like

) 2

- -iexp(— nk*/4) (4.20)
Only the first harmonic a, does not vanish and p(x)
reduces to the very simple form

4.21)

when k — oo, Note that (4.21) is proportional to the
Boltzmann factor exp[ — ¢(x)] : the particles behave
as if they were free (without correlations) because the
period of the imposed oscillations becomes small
compared to the correlation length.

In figure 3, we have drawn up p(x) for § = 1/2 and
k = 2(4 = n). The Fourier series (4. 13) is very conve-
nient for practically computing p(x) because of the
very fast decay of a, when n increases.

p(x) ~ 1 + & cos kx

5. Non-Coulomb external potential.

The previous integral representations can be extended
to the cases where the particles are also submitted to
an arbitrary external potential V,,(x) (in units of
ks T) depending on the x-direction only; this poten-
tial is not necessarily created by external charges and
may take into account impenetrable walls for instance.
For that purpose, we again start from the finite system
with circular symmetry described in § 2. In addition
to the Coulomb potential created by the background,
an external potential V,, (r) is applied to the particles.
Veulr) has the radial symmetry and vanishes every-
where except in a finite neighbourhood of R_,,. The-
refore, the technique used in § 2 can be applied to the
present case. That immediately leads to integral repre-
sentations of the one- and two-body densities which
are similar to (2.19) and (2. 34), with ¢ + V,,, in place
of ¢ alone. This simple substitution of ¢ by ¢ + Vot
is obviously still valid for the expressions derived in
§ 3 and 4.

The present generalization allows us to consider a
large variety of models. Here, we restrict ourselves to
briefly mentioning how to recover some known results
which have been derived by different methods.

Let us consider the abrupt (i.e. gg(x) = 0) step back-
ground described in § 2. Putting V ., (x) = const. = V,
for x <0 and V,,(x) =0 for x > 0, we recover the
results derived recently by Blum and Rosinberg [6]
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»ix)

M 2en/2 x

0 1

Fig. 3. — The same as figure I for py(x) =1 +(I +2cos 2 x)/
(2 + cos 2 x)? (p(n — x) = p(x)).

for an ideally polarizable interface. In their formula-
tion, an impermeable membrane is introduced at
x = 0 and separates the « left » region (x < 0) from
the «right» region (x > 0). Furthermore, they work
in the Grand Canonical Ensemble and impose diffe-
rent fugacities to the « left » and « right » particles. The
ratio of these fugacities is just exp(— V,).

In the case of the square hole described in § 3.3,
we set § = — ] and add the external potential
Ve(x) = oo for| x| < //2and V,(x) =0 for [ x| >
/fe. Taking then the limit / - oo, (x — //2) being kept
fixed and positive, we recover the expressions comput-
ed by Jancovici [1] near an impenetrable insulating
wall,

Finally, let pg(x) and V., (x) be pg(x) =1 and
Ve (*) = Vo + (In (1 + 8))2 for 2 +d<}x|
pe(x) =0and V ,(x) = o for l2 < |x| < 2 + 4,
and pg(x) =1 + & and V,(x) =0 for |x| < /2.
When 6 — co, the correlation length of the inner
region (| x | < //2) goes to zero and the excess charges
stand close to the walls surrounding this region. The
latter is then expected to behave as a perfect conductor
(17]. In this infinite-d limit, we have checked that our
p(x) (for | x| = //2 + d) indeed reduces to the par-
ticle density computed by Forrester [I18] near a con-
ducting wall (3). The derivation of Forrester explicitly
takes into account the image forces induced by the
conductor and thus involves technical methods which
are very different from ours. However, in our approach,
the electrostatic potential difference (¢(co) — #(//2))
turns out to be(— V4 + In 2 — 1/2) rather than — V,,

() The one-body density found by our limit procedure
does not depend on the width / of the perfect conductor.
The « plasma » regions (x < — /2 — d)and (x » /2 + d)
are completely uncorrelated : the electric field created by
8 charge belonging to the region (x € — //2 — d) is comple-
tely screened in the opposite region (x 3 /2 + d) by the
own image of that charge.
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A simple scaling argument shows that (&(//2) — d>(0))
reduces precisely to (1/2 — In2) and thus- (d>(oo)
&(0)) is indeed equal to — ¥, as it should. As a con-
sequence, the inner region (| x| < //2) behaves as a
perfect conductor only up to a constant potential dif-
ference across its surface.

6. Conclusion.

We have studied plane charged interfaces of the two-
dimensional jellium at I" = 2. We have expressed the
one- and two-body densities of the particles as explicit
functionals of the electrostatic potential induced by
the background and of the external potential applied
to the particles. Most previous exact results [1-2, 4-6]
can be recovered by taking suitable limits in our gene-
ral expressions; in particular, surfaces involving impe-
netrable walls are described by letting V., (x) go to o
outside the « plasma » region.

Standard sum rules established for inhomogeneous
charged systems have been explicitly checked. For the
one-body density, the overall neutrality condition and
the electrochemical potential balance [11] are satisfied.
The conditional multipole sum rules [12] for the two-
body density are also satisfied by our expressions. In
most cases, the two-body correlations decay faster
than any power law when one of the particles recedes
to infinity; all the multipole moments of the charge-
charge correlation function should then vanish. When
the background fills only one half-space (i.e. pg(x) =

Appendix 1

for x > 0) long-range correlations appear in the y-
direction : near the step, a positive charge cannot be
«strongly » screened because of the absence of nega-
tive charges in the whole region (x > 0). In this case,
only the first multipole moments of the charge-charge
correlation function vanish, in agreement with the
theorems derived in [12, 13]; if there is also an impe-
netrable wall located at x = 0, the asymptotic form
of this correlation function can be predicted by general
arguments {13, 14, 16].

As illustrated by the previous sum rules, the present
model exhibits the purely Coulomb characteristics of
electrified interfaces. Then, it can be used for essen-
tially two purposes. First, it provides a test bench for
approximate theories. Second, by adjusting the back-
ground shape and the external potential, one can
«simulate » a large variety of real charged surfaces :
electrolytes near a conducting wall, metallic surfaces,
permeable or impermeable membranes, ideally pola-
rizable interfaces, etc.
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In this Appendix, we show that the integral representations (2. 19) and (3. 4) of p(x) satisfy the sum rules (2.23),

(2.24) and (3.6), (3.7) respectively.

Let us first consider the smooth step case where p(x) is given by (2.19). We define

g= J dx[p(x) — pp(x)]. (A1)
Using (2.22), we rewrite Q as
Q=0Q0.+0.,, (A1.2)
with
0
0. =J dxp() — 1] (ALY)
and
- f dx[p() - (1 - @], (A4
)
Replacing | by
f dsexp[~ (s - x /2] (AL.5)
in (A1.3) and (I — a) by
L2 v~ [ J
ds exp - xJ2 — a) (A1.6)
(I - a v

JWANAL DE PRYSIQUE. —— T, 45, N 12, DACEMBAE 1984
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in (Al.4), we obtain after integrating upon x

0. 1 J-w is { exp(s?) ¥ (s) %[l _ Erf(s)]} (AL.7)

T 72w DU + expGH( ~ )WL O)]
and . '
1 [" exp(s¥/(1 — @) ¥ () 1 L }
=7 L & { oG b0 + eIl — g 20 TRV =@l g ALy

Adding (A1.7) to (A1.8), and using (Al.1) and (Al.2), we find

j dx[p() ~ ps(x)] = 5—\% j ds{Erf(s) — Erf (s/3/(1 = )] (AL.9)
which clearly vanishes for parity reasons.
Let D be
D= f dx x[p(x) — pp(x)] . (A1.10)
D can be rewritten as
£D=£D<+il)>+£—(?, (A1.11)
with .
]
D, =j dx x{p(x) = 1] (A1.12)
and -
D, = J. dx x[p(x) = (1 = a)]. (A1.13)
]

Replacing again 1 by (A1.5) in (A1.12) and (1 — ) by (A1.6) in (A1.13), we obtain similarly to (A1.7, Al.8)

_1 [ ! 4 2
D=3 L & { (e ¥ -0 + expGT — )P @] & PV O]+

+ S’SE(__‘__Q — s[1 = Erf(s)] } (Al.14)
k14

_ 1 d a0
P j wds{[exp(sz)¢<(S) + exp(s}/( — @) ¥, ()] dS[CXp(s (1 = a) ¥ (5)]

ml -«

T
Rewriting the integrals upon s involved in (Al. 14) and (Al.15) as Tlim j ds..., we get from (Al.11), (Al1.14)
-4 Q0 - T

and (A1.15)

D=

L. aT? exp(T) ¥ (T) + exp(T2/(1 — &) ¥»(T) ]} $()
zr"fl»{(T:T) '"[cxp(TZ)w- D+ e TN = ) (- D T A
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From the definitions (2.21) we easily obtain when T — o0
bo(= T ~r,
exp[ — ¢(0)
y(T) ~ —B[z—T—]eXP(— T,
exp[ — #(0) (AL.17)
bo(= 1)~ 2RO T - ),
JT
¥>(T) ~ —===exp[— ¢(0)].
N
Inserting these asymptotic behaviours in (Al.16) @
and using the definition (A1.10) of D, we finally Rewriting the definite integral J ds... involved in

obtain
f dx [p(x) = o] = — ghn(1 = @) (AL.18)

which is the required result.

We turn now to the hole case where p(x) is given
by (3.4). For the present derivations, it is more conve-
nient to rewrite (3.4) as

 exp[— 2(s — x)*]
p(x) = exp[~ ¢(x)] f ds 70) '

(A1.19)

with
Y(s) = Jm dvexp[ — 2(v — $)* — $(v)]. (A1.20)

Q is again defined by (Al.1). Q.can be rewritten as
C=Q+Q, —0o" (A1.2])

where 0. and Q. are defined by (A1.3) and (Al.4)
respectively with & = 0. | is replaced by

\/% fw ds exp{— 2<s —x+ iz’-ﬂ (A1.22)

in (Al1.3) and by

\/% rw dsexp[— 2<s —x- %ﬂ(m 23)

in (A1.4). This allows to invert the integrations upon
s and x in the definitions of Q . and Q.. By a calcula-
tion very similar to the one giving (Al1.9), we then
obtain '

oot o[ 9)
— Edf ((s - %)ﬁ)} —a. (Al.24)

T
(Al.24) as lim f ds... and using an integration by
T—w T

parts, we transform (A1.24) as
E @ c 2
- \/Ej_wdss{exp[— 2<s + 5) :|
a 2
— exp[— 2<s — 7) ]} — o. (Al.25)

The remaining integral J ds... of (A1.25) is obvious-
ly equal to — o./mA/2. and thus Q vanishes.

The derivation of the dipole sum rule (3.7) is very
similar to that previously used for the smooth step.
The replacement of the constant part (ie. 1) of pg(x)
by the expressions (A].22) for x < 0 and (Al.23) for
x > 0 is again the essential trick of the method. Using

also

«©

tim [4(T) ~ ¢(~ )] = - 4 f dx xq5(0)

- @

(Al.26)

we have explicitly checked that

J dx x[p(x) — pa(x)] = 0. (Al.27)

Appendix 2.

We show that the integral representation (3.4) of
p(x) satisfies the identity (4.7) when pg(x) is a periodic
function with period A

Using (4.6), Y(s) can be rewritten here as

A
W(s) = [ duexp[— ¢(s + )] Gw), (A2.1)

0
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with
L
[+

Gu) = Y exp[— 2(u + ni)?]. (A2.2)

Using again (4.6), we have
Yis + pA) = Y(s) (A2.3)

for any negative or positive integer p. Therefore (3.4)
becomes

A

_ _ G(x — )
p(x) = exp[~ $(x)] L ds—-——w(s) . (A2.4)
Defining
A
Q= J dx[p(x) = pa()], (A2.5)
0
we obtain
A
Q, = j dx p(x) — 2 (A2.6)
]

since the surface charge carried by — eq,(x) on the
interval [0, 2] vanishes. Replacing p(x) by (A2.4),
we rewrite the integral involved in (A2.6) as

A 1 A |
fo ds W(S_)L dx G(x — s)exp[— ¢(x)]. (A2.7)

Muking the variable change v = x — s jn the integral

A
J dx..., we transform (A2.7) as

0

A A
L dsw-és—){f dv G(v) exp[— ¢(v + 5)] +

0o

0
+ f dv G(v) exp[— ¢(v + 9]

-5

A-y
+ f dv G(v) exp[— ¢(v + 5)] } (A2.8)

A

Since G(u) exp[ — ¢(u)] is periodic with period 4, we
see that the two last integrals between the brackets
{ ..} in (A2.8) cancel out. The first integral in these
bruckets is nothin§ but Y(s); the total integral (A2.8)

reduces then to J ds = 4 and we indeed have
0

A
f dx[p(x) — pe(x)] = 0. (A2.9)

0
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