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1. Introduction

The length and time scales on which we can observe nature varies from
the subnuclear to the supergalactiq. Statistical mechanics is the mathe-
matical bridge between the atomic and macroscopic scales, roughly the eight
orders of magnitude from Angstroms to centimeters: The properties of a
macroscopic object are obtained as averagesvof suitable functions (observ-
ables) on the (microscopic) phase space in an appropriate ensemble, i.e. a
probability distribution over the microscopic configurations. For equilib-
rium systems this is the Gibbs ensemble characterized most conveniently by
the temperature and chemical potentials of the components. For an n-component
system these variables form an n+l dimensicnal space of thermodynamic para-
meters.

The most interesting problems in statistical mechanics are related to
the phenomena of phase transitions in macroscopic systems: cooperative
phenomena which would be truly astonishing if they were not so familiar.
Indeed they are p;ime examples of small causes having large effects. A
small change in the temperature or chemical potential in certain parts ol
the parameter space can result in enormous changes in the density or other
macroscopic properties. The points in the parameter space at which such
t'catastrophies’ occur are marked in the phase diagram of the system:
This diagram gives a decomposition of the thermodynamic parameter space
into regions in which the number of phases is constant.

The simplest such diagram is that of a one component system where the

thermodynamic space has only two dimensions. For most values of the
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temperature T and chemical potential the system is in some definite phase
uniquély determined by the parameters, i.e. there is only one Gibbs state.
There are, however, some values of T and Y lying on smooth curves, at

which the state of the system is not unique - it can exist in either of

two pure states: gas-liquid, or fluid-solid. At the triple

point the system can exist in three different pure states - gas, liquid and
solid. These states have different particle and energy densities, and one
of them, the solid, even has a different symmetry. There will generally

be also other coexistence lines where the symmetry of the crystal changes
or where quantum mechanically driven transitions occur. For an n-component
system the structure of the phase diagram is still richer. The thermo-
dynamic parameter space now consists of T and all the chemical potentials
H,s 1 = 1,...,n.

When the systems parameters move across a coexistence line or surface
some properties of the system, e.g. density, composition, change discon-
tinuously from thegr values in one of the pure phases to their values in
the other. The system is then said to undergo a first order phase transi-
tion. The understanding of such transitions from first principles is a
central theme of equilibrium statistical mechanics - a subject whose aim is
the derivation of laws governing the equilibrium behavior of mgcroscopic

objects from the laws governing the interaction of their microscopic

constituents.



2. Background and Current Status

The first recorded theoretical speculations about the microscopic
basis of phase transitions go back to ancient times - they are summarized
in Lucretius' famous poetic review article De Rerum Natura [1]. The
subject was taken up again in more recent times by van der Waals [2] and
Gibbs [3]; the first constructing explicit, albelt approximate, formulae
describing the liquid-gas transition and the latter creating a general
macroscopic and microscopic formalism for dealing with this problem.

The key feature of the macroscopic or thermodynamic part of Gibbs'
formalism is to consider the (appropriate) free energy of a macroscopic
system as a function of the systems thermodynamic parameters. This function
is convex and appropriate partial derivatives of it determine the density,
concentration, etc. First order phase transitions then correspond to
discontinuities in these derivatives. The microscopic part of Gibbs'
formalism - our statistical mechanics - supplies a prescription for comput-
ing the free energy of a system with a given microscopic Hlamiltonian.

Gibbs theory also provides us with ensembles, i.e. a probability
distributions on the microscopic phase space of the system. All properties
of a microscopic system (not just density, composition, energy) can be
abtained as ensemble averages of suitable functions éf the microscopic
state of the system. We are particularly interested in the Gibbs state of
the infinite volume, or thermodynamic, limit of a physical system: it i;
this limit which properly represents bulk properties of a macroscoplc systom.
Furthermore we are interested in systems with translation invariant inter-
-actions and therefore define pure phases to be translation invariant or

periodic 'bxtremal"Gibbs states [4-6]. The existence of multiblb'pﬁrc phasus
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is therefore connected with the non-uniqueness of the infinite volume
limit. Properties of such infinite volume Gibbs states is one of the
central objects of study in what has become known as '"'rigorous statistical
mechanics".

The rigorous study of the existence of phase transitions for systems
with given interactions dates from 1936. At that time Pelerls invented an
argument to show that the Ising model on a d-dimensional lattice, d > 2,
with nearest neighbor ferromagnetic interactions has spontaneous magnetiz-
ation at low enough temperatures. The system can thus exist in either a +
or a - phase: the signature of a first order phase transition. Dobrushin
and Griffiths later made the argument mathematically precise to 'convince
even a stuEborn person'", This argument has been extended and new
methods have been invented, to prove phase coexistencé, i.e. first‘order
phase transitions, in a great variety of systems [6].

These methods fall into two categories., The first kind require that,
like in the original Ising model, the different phases be related by a
symmetry of tﬁe Hamiltonian. The second category, the one on which I am
currently working with J. Bricmont and K. Kuroda [7], are various extensions
of the Pirogov-Sinai theory [8,9]. This theory, now beautifully described
in chapter two of Sinai's recent book [6], gives a comprehensive descrip-
tion of the low temperature phase diagram of a large class of lattice systems:
systems used to model Ising like magnetic transitions as well as coherent
segregating and ordering transitions in alloys, i.e. ones in which the

crystal structure of the alloy remains unchanged.

The setup is as follows: The system is described by occupation (or

spin variables which can take on a finite number of values at each site of



a d-dimensional regular lattice, d > 2. The particles can interact with
arbitrary finite range periodic potentials, e.g. a spin 1/2 Ising system
with one, two and three spin interactions., The Hamiltonian, Ho, has n
periodic ground states, n finite. There is a non-zero minimum energy per
unit interface, or "contour', separating two-ground states: the Peierls'
condition,

Pirogov and Sinai study the structure of the phase diagram of the

Hamiltonian H , which 1is a perturbation of HO,

in the parameter space ul,..., un—l , obtained by keeping T fixed.
They prove that at sufficiently low temperatures the phase dlagram perfectly

mimics the topological structure of the ground states of HU: There are

n-lines emanating from the origin on which Hu has n-1 perilodic ground states,

two dimensional surfaces bounded by pairs of these lines on which there are
n-2 ground states, "etc.
As an i1llustration consider the case of a spin one system on a cubilc

(or rather lattice) with nearest neighbor interactions
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Then the structure of the phase diagram at zero and low temperatures can be

obtained from the Pirogov-Sinai theory. It is sketched in Figs. 1 and 2.
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Fig. 1. T=20. Fig. 2. 0 < T << J/kB

The symbols I, II nad III refer in 1 to the ground states Si = -1, Si = +1,
and Si = 0, all i, and in 2 to the corresponding pure phases. The bold

lines represent phase boundaries. The uniqueness of phase III at My = My = 0
in Fig. 2 is due to the fact that its entropy is higher; it has twice as
many low energy excitations, corresponding to changing a single spin Si
lASi| = 1, per unit volume. The shape of the lines in Fig. 2 can be obtained
as an asymptotic expansion in epr—J/kBT‘ [11]. (They are not drawn accurately
in the figure.)

The physics behind this picture is gimple: due to the Pelerls' condi-
tion, the low temperature pure phases are nothing more than ground states
in which there is a "sprinkling of droplets" of the other ground states.
The contours surrounding these droplets represent excltations. At low
temperatureé the high energy cost of contours with large areas dominates
the entropy and keeps them small and dilute. The Pirogov-Sinail theory may

be thought of as an extension of the Pelerls' argument for ferromagnetic

Ising spins with nearest neighbor interactions to systems in which the



Hamiltonian and ground states do not possess any symmetries. The rigorous
mathematical proof of this fact 1s highly non-trivial and involves some
powerful mathematics.

This theory is, as far as I know, the only rigorous theory which deals
with phase transitions in general lattice systems, but unfortunately it 1s
not well known to physicists and metallurgists despite the simplicity of its
concepts and the significance of its conclusions. The appearance of Sinai's
book, based on lectures Sinail gave in Hungary in the late 70's and updated
with additional comments, should at least partially remedy this situation.
I say partially because the book is not easy casual reading. The arguments
are mathematically deep and require concentration. Fortunately a compre-
hensive and updated review of this subject, which 1s more accessible to
physical scientists, will soon be available [11]. The joint work with
J. Bricmont and K. Kuroda in [7] is aimed at extending the Pirogov-Sinal theory
to continuum systems and lattice systems with infinitely degenerate ground states.
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