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Summary. We prove the existence of phuase transitions in non-symmetric r-
component continuum Widom-Rowlinson models, Our results are based on
an extension of the Pirogov-Sinaj theory of phase transitions in gencral
lattice spin systems to continuum systems. This generalizes Ruelle’s exten-
sion of the Peierls argument for lattices (o symmetric continuum Widom-
Rowlinson models. The Pirogov-Sinai picture of the low temperature phase
diagram for spin systems goes over into a phase-diagram of the Widom-
Rowlinson model at large fugacities 2=(2¢...,2,_,). There is in z-spuce a
point where the system has r-pure phases, lines with r—1 phases, two
dimensional surfaces with r—2 phases, etc,

1. Introduction

In this article we analyze the structure of Gibbs states, ie. the phase diagram,
for r-component non-symmetric continuum Widom-Rowlinson models at large
fugacities. The notions of Gibbs statcs were introduced by Dobrushin [4, 5]
and Lanford-Ruclle [7] as random fields with specified conditional probability
distributions to describe the cquilibrium states of the system,

The rigorous proof for the coexistence of Gibbs states for two-component
symmetric continuum Widom-Rowlinson models was given by Ruelle [16], see
also [8], by a (non-trivial) generalization of the Peierls argument for lattice
systems. His argument can be extended to r-component models in which the
different components are identical except for labeling. The coexistence of r-
phases occurs when all fugacitics are equal and large enough. Cassandro and
Da Fano [2] obtained the asymplotic properties for correlation functions of
contours for the symmetric Widom-Rowlinson model. They used the method
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122 J. Bricmont et al.

of integral cquations for the chain correlation functions, first proposed by
Minlos and Sinai [t1, 12] for the Ising modcl.

The symmetry requirement is built into these argument in & way which
seems very hard to relax. In particular they require a priori knowledge of the
parameter valucs at which the phase transition will occur, c.g. equal fugacitics.
This makes it hard to sec how the Ruclle method can be generalized to cases
where this information is not known in advance, ie. for the ordinary liquid-
vapour transition in a one component system. In fact it is difficult to see how
the Peierls method can ever lead to a proof of coexistence of phases which are
not connected by symmetry. It is the purpose of this paper to make a start on
overcoming this burden of symmetry.

Our method is based on generalizing the Pirogov-Sinai theory [13, 14, 17]
of phase transitions at low temperatures in non-symmetric lattice systems. The
basic idea of the Pirogov-Sinai theory is that, at least at low temperatures, the
homogeneous pure phases are simply related to the, not necessarily symmetric,
ground statcs of the Hamiltonian. In our model the ground states will cor-
respond lo the Gibbs states in the limit of cqual infinitc fugacitics of all
components. There are r such ground states each containing only one type of
particles. Since the interactions are not required to be symmetric however, the
coexistence of pure phascs will occur at Jarge unequal fugacities with each purc
phase consisting primarily of one component.

The outline of the rest of this paper is as follows. In Scct.2 we give a
precise description of our model. We consider explicitly only the case where
the particles move in two dimensional space but our results are valid also for
all higher dimensions. We also introduce there the notion of contours, which
are the Pirogov-Sinai excitations of the ground states. We use here Ruelle’s
basic construction for transcribing lattice notions into continuum systems.
Section 3 states the results and Sects.4 and 5 give the basic estimates on
contour correlations and proofs. In cases where the arguments are similar to
those of Pirogov-Sinai the proofs arc only sketched. Section 6 gives some
physical background and discusses further extensions of the results,

2. Description of Model and Definitions
2.1 r-state Widom-Rowlinson Model

We consider a system in the two-dimensional plane R? consisting of » species
of particles with fugacities z,, wes={0,1,...,r—1}. The interaction between o
and p-particles is via a hard core pair potential

4>,_,;(r)={w i1 rl= Ry 2.1

0 otherwisc,

Rz.p.->—_8>0 for a# f, R,,=0.
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Let V be a square in IR2, We denote the configurations of particles in ¥ by

éy=(£~'o, ""-’—\‘r‘ l))

ny

— . 3 . .
where x,=(x},...,x%)eVx ... x V is the configuration of a-lype particles.
When ¢=(x,,...,x,_,) is given, the distance between ._\'a=(x°,‘,...,xff‘) and x,
=(xf},...,x") is defined by

(x4 Xp)=Min [ xg —x|.
k1

The partition function for the system is given by

|
ooty - Hot one Myl
. _f[]"();YO_[(I"I“—Vl Id"“l?—“r— 1 VV(JO, TR l) (22)
v 4 v

0 if d(x, Xg) <R,z for some (o, f)°

Wi(xg .oy = .
(%o 1) {1 otherwise,

where we used the notation

fdmx;= [ dxidxt .. dxi.
1 4 VXVx.xV '
[ EA

Hi

2.2 Definition of Contonrs

Consider the configuration E=(xg,...,X,_ ) in R? satisfying
d(xp X)) >R, 5 for all asp. (2.3)

We cover R* with a grid (d-Z?) of spacing d. The squares of this grid are
called elementary squares. We choose d sulficiently small, so that two particles
of different species cannot be found in the same or in adjacent squares, i.c

1 . .
d<—=MinR, ;. (Two squares are adjacent if they touch by a side or a

2Y/2 atp

corner.) However, for simplicity of notation, we shall from now on redefine

our unit of length d=1. Also, il A is a set of elementary squares, |A| denotes

the number of elementary squares in A and A=R*\4, the complement of A.
To each elementary square ¢ we assign a label a(t)e{0,1,...,r} as follows;

()= r il there is no particle in ¢
J il there is at least one particle of type j in 1.
p p

Wf}_'én a(t)=j, we say that t is a j-square.
Take a square C, of side (N —1)d>2R, R=MaxR, ;, and put
."x" a®p

Ci=Co+i, ieZ? .

R
RIS T T e
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For a given configuration &, a square C, is called irregular if there are two
elementary squares f, and f, in C, with a(t))Fa(t,) and a(t,)=Fr, alty)=+r.
Other squares are called regular. Thus, in a regular square, there is only one
type of particles.

Let I' denote a connected set of irregular squares. A contour I'is a pair; I’
and the set a(I')= {a(t);tel'} of labels in I, I'= (L ().

The complement of I [ is decomposed into connected components. There
is one infinite component called ExtIl’ and several finite ones whose union is
IntIT We can associate, in a unambiguous way, a given type of particles to the

boundary of each of these components. We decompose IntI'= | ) Int, I" ac-
mes

cording to this label and we denote by o(I') the label associated with Extl’
Finally let Aq:{F;o(H")=q} and 0(IN=I"'uInt I We shall use later the follow-
ing obvious observation; there is a constant k', >0 (at least 3/N?) such that

#{tela()=r} >k, |I'l.

Let & denote the totality of contours which are obtained from all configu-
rations and let 8={I;,..., I} be the set of contours which is obtained from
some particular configuration.

For a given 9, there will be only one type of particles which can be put into

s
any square leV\ (JI;. We associate the corresponding label to each such
i=1 s
square. With such a labeling V\UF,. is decomposed into r components ac-
cording to the label, me&. =1

We denote the m component by V,(9). Given a set of contours, we dis-
tinguish the outer contours those that are not contained in the interior of any
other contour. Finally we observe that, in the complement of the set of
contours, the system is a free gas, with one species of particles in any connect-
ed set and with no influence from the other species.

2.3 Definition of Gibbs Measure

Let 4 be the set of all families 8= {I};, of contours in R2. We say that the
family of contours d=(Z},..., 1) is compatible with (¥,g) il the following
conditions i)-v) are satisfied:

i) Le# for each I}

ii) O(I')=gq for each outer contour Irofd

jif) d(I,V)z [ for each I" of &

iv) there is no contradiction in boundary conditions of 0

v) d(I, 1)>1 for each 1.

We denote by ., , the totality of the family of contours which is com-
patible with (V,q). '

For each I'=(I;a(I')) we denote by {55,y the set of elementary
squares s, I' such that a(s) . We define the functional Z(I') of I' by
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Za(sy) " “a(sy)
m=1 me1 Mloon! P

where x5 . is the configuration of particles of type a(s;) in the clementary

Za(si)
square s,,

The Gibbs measure E () in V with g-boundary condition is given by

l N
PV,q(a) :Xl’.q(a)m ”I;I@Z(D",I;Iyz'[ ( l/m(a))’
where

{ il deun,,

Xv.q(0)= 0 otherwise,

(2.5)

Z’}'(Vm(a))=exp{zm|Vm(6)|} is the partition function of a free gas of m-type in

Vau(0), and Z9(V) is the normalization constant,
We next define the Gibbs measure of outer contours, Let

0= 0=} .. e, 00) () = i+ ),

The Gibbs measure B3 (+) of outer contours is defined by

u ou I 4 m
Py,q'(ﬁ)=xy,i,(ﬁ)mZ‘}(V\ILEJOO(T))};Z(T)I’]Z (Int,, 1)
Zi(V) o ZUn) . Z"(Ine, 1)
__.out S m
20 N e
where
[ de.mp

u’ul ')=
X (0) {0 otherwise.

3. Statement of Results

Throughout this section we fix the fugacity zo sulficiently large,
=(zy...2,_)eR"~" and consider the parameter space

U(so;zo)z{z‘e]R’“‘;IE—E(O)I—E max |z;—z,(0)] <&, z, ),
Igisr—t
where 2(0) =(z,, z,, e Zg),
We define the correlations functions of outer contours by

Prg(@)= 3 B2 @),

i o' Y

put 2

Estimates for the correlation functions of outer contours play an important
role in the proof of the phase-coexistence. In particular consider the cstimates

Pr.q(@) Sexp{—Lz,|0)),

(3.01)
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%, (1, I5) = iy ({11 P} o ()] S exp{ ~3zo(IG |+ 1) —e zod (I, 1)}, (3.2)

where ¢>0 is a constant and d(I}, ;) is the distance between I, and I If
these estimates are satisfied for k-different boundary conditions ¢ then therc
are (at least) k-pure phases [17].

Theorem. For sufficiently large z,>0 and some £,>0, we have the following
picture:

1) There exists a point 2,6 (g0; 20) Such that the estimates (3.1) and (3.2) are
satisfied for all qe & when =1,

[I) There exist curves Yo, Yy «+os v, SU(eg3 2o) each of which starts from
i, and (3.1) and (3.2) are satisfied for any qe S\{a} when Zey,.

[11) There exist 2-dimensional open surfaces *,'a_ﬂc@/(ao;zo), o, fe; the
boundary of which is given by 7, and §,, and (3.1) and (3.2) are satisfied for any
geP\{e, B} when ey, ;.

1V) In general, there exist k-dimensional open surfaces y =% (&;2o); AcY
and A=k, the boundary of 7y, is given by ¥ amp €A, and (3.1) and (3.2) are
satisfied for any ge S\ A when ZE€Y 4.

Furthermore | ) 7,2 % (g3 20), where 7 is the closure of 7 4.

Ay

Let us remark that if follows from (3.1) that the probability
B} (Eeuy ,; the square at 0 is a g-square under &) = 1—g(zo) (3.3)

uniformly in ¥, where g(z,)—0 as zo—00. This estimate means that typical
configurations in V with g-boundary conditions consist of a large “sea” ol ¢-
squares with small “islands” of other types of squares, surrounded by contours.
In other words, for value of £ in y,, the limiting Gibbs measures {PF(* W gesrra
obtained from F/, by taking the limit |V|—co are all distinct. Furthermore
each limiting Gibbs measure () satisfies the estimate (3.2) and hence is
indecomposable, i.e. it represents a pure phase.

Thus we have the Pirogov-Sinai picture of the phase diagram [13, 14, 17]: r
phases coexist when Z=Z,, r—1 phases except the a-phase coexist when Zey,,
etc.

4. Contour Model

[n this section we introduce the contour model and summarize the properties
of correlation functions of contours without giving detailed proofs. The proofs
are similar to those in the Pirogov-Sinai papers [13, 14] and in Chap.2 of
[17], to which we refer for details.

4.1 Rarefied Partition Function and Crystalline Partition Function

Let us consider the configurations in which IreA, is the only contour. The
probability of such configuration is given by
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1

B ()= Z(I)- Z$(V\OUN) [T Z3p(tnt,, 1)

Z(V)
:Z.{}(V) Z(ﬂ [‘[Zrl,!(ll]tryl)
ZYV) Z4(In) . Z4(Int,)
I Zyn
= eX “m ) lnlmr (41)
757y Jorp (G
where Z§(V)=24(V)/Z4(V).
Setting
Hy (N = ~log (g— [Texpitz, zmlm,,.rl}). (4.2)
we then have
l -
¥.ql :—Zw"o(_VSCXp{»I‘,‘-'(/r)}' (4.3)

It follows from the definition of contour that there exists a constant k',
0 <k <1 satisfying
#{tela(t)=r}>k, I

for each I so that we have

Z(N<explk, zy [0} (4.4)

for some constant k; <1 if Z=2(0).
Hence, H: (ﬂ") hds a lower bound proportional to |47 if I=2(0), ic it
satisfies the PClCl|b condition, see [17]

H(IN) 2k, 2, |71,
where k,>0 is a constant,
Let us consider the configurations in which 7" is the only outer contour.
The probability of such configurations is given by

300 =055 23V NOUD) - 20| 270, 1
_ L2 oz, ) (4.5)
Zy(v) Zi(n L Zegng, 1 '
If we put
Z{n . Z2"(Int, N
74 _ m . (46)
o) z}(mgz;um",m
then
Zi(n
oul(ﬂ")_ 2 ) (47)
0
More generally
! =
B, oy )= o ] 240, (45
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We call Z4(V) and Z§(1) the rarelied partition functions and the crystalline
partition functions respectively. We have the following ‘relation between the

rarefied partition function and the crystalline partition function; cf. Egs. (2.17),
(2.18)y in [17}:

Lemma 4.1

i) Z5(V)= 2. [Tz (4.9)
th.. FocouterinV i= 1
i) Ze (N =cxpi —HUD [ 2600, 1. (4.10)

"

4.2 Contour Model

We now introduce the probability distribution on the set of familics of con-
tours with the same outer boundary conditions. This is called the contour
model. Since all contours have the same outer boundary conditions, such
familics do not necessarily correspond 1o realizable configurations. But [lor
such a simple system we can apply the usual Peierls argument and obtain the
properties of correlation functions of contours in the same way as in the lsing
model. In Sect. 5 we will give the precise relation between the contour and the
real system.
We shall now define the contour model more exactly. We say that a family
of contours ¢={/;..... I} of 4, is compatible il d(r, ry>1 for all i) Let D,
denote the totality of compatible families ol contours. Consider the functional
F,(+) on A, which satislies
o DY
sup ———< %
e, l]r‘
and Fq(ll")?;r\]ﬂ. >0,
We call such a functional F (+) r-functional.
The contour model is the probability distribution on D, defined by

| .
P. Y= A ,— Fyt@)
‘v‘,(() /|(() Z(V‘Fq)t 5 (41])

where

(@) ] if dcV, forall I'ec
v (0)=
Zy 0 otherwisc

F (&)= FD),
Iec

and Z(V{F) is the normalisation constant.
We define the crystalline partition function Z(IMF,) for the eontour model
by
Z(INF)=c~ a5 o=, (4.12)

q
calntdl

We have the following obvious relations between Z(V|F,) and Z(INFE):
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Lemma 4.2

i) Z(VIF)= 5 [17em) (4.13)
.. Hoviomerind® i= 1
i) ZUNFy=c" F0 | Z(In, T1E). (4.14)

m
For each OeD,I let @(7) denote the otality of outer contours, We define the
correlation unction ol contours by

Lo Vg

ALl =Y B (. (4.15)
For each deD, satislying ¢ 1™ und @) =c we define the correlation
functions of outer contours by

Pl =Y B, (4.16)

FTrENT TN

o

Since the outer conditions ol utl contours i ¢ ave fixed to be ¢, the
following estimate lor correlation Tunctions ware casity obtained from the stan-

dard Peierls argument (sce ¢.g. [17]. Lemma 2.6 and Proposition 2.2),

Lemma 4.3 ( Peierls inequality)

NS UAF s = Fat®

i) 2 (C|F)sem "

i) f)',(("rllil)éu—l<.,((=).

ln the same way as in the tsing model, we imtroduce the infinite votume
contour correlation equations. These cquiations are expressed as equations in
some appropriate Banach space. (Sce p. 52 of [17].) They have unique solutions
A1) and p(+|F) whenever s sulliciently kirge. We summarize the proper-
tics of these correlation functions in the following.
Lemma 4.4 ([13, 14, 17]). For sufticiently lurge © the following propertivs are
satisfied : ’

D 2 (@IF) = A0 F) < Cyom it (417
2) |y (@) = p(O|FY < Cyemntih ooy (4.18)
3 1ped@ ), Ol E) = py (@ TE) pre ) < et et (4.19)

where |¢1= Y |0 and Cy. Cyo Cyare constants.
Ted;
Using the following obrious lemma, the proof of the abore lennna is abrained

in the same way as in [13, 14, 17].
Lemma 4.5, There exists a constant C >0 such that
#0e A, 0N contains the origin and [ H=k} < b
By using the cstimates for 2, (7) and Z(+), we can prove the existence of
y b oy l
the following limit (sec [ 17], Proposition 2.3):

Lemma 4.6. For sufficicntly large 1, the limit

Sy = Um Iz,

e
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exists, and satisfies
A FpIS e el (4.20)
where

AWVIE)=InZ(VIF) = S(E)VI, (4.21)

The limit S(E;) can be expressed in the form
S(F)=[ Y F(;) a1 F)du.
1 5

where - is a congruence class of contours and 7Z,(;.0) is the infinite volume
correlation function with respect to the funcllondl F()y=tF(+). From this
formula we have S(F}se™

By using the estimate (4.17), we can obtain (4.21).

Now we introduce the parametric partition function Z(V:F,b) given by

ZWiFy= Y [l Z(rIFye ™ (4.22)

oY= 0cV el

and put A(V|F, by=InZ{1" F,.b)—(S(F) +by|V|.
Then the follm\mu LSlllﬂdlK. follox\s dircctly from the definition,

—A})|l’}4~("'|(‘H§:J(l"|El./7)§(‘"'|fl/|, (4.23)

For cach functional F,(+) defined on A, we define the norm || F i by

Fi=s F 0
=k o e
where 80 is a diameter of I7
Lemma 4.7
D) ISR ) =S(EY e 1 =l (4.24)
i) |A(]/|Fl ) )—A(]/|lq"l) )
<2t —h? ||l/|+(——l~—~+(”"‘) CHWIIE = F2, (4.25)
Cy—1

where Cy is a constant,

For a prool, see [17]. Prepositions 2.4 and 2.5,

5. Proof of Theorem

Proposition 5.1. 1) For sufficiently large z,, some £,>0, and each IEW(z4itg)
there exists a amigne  fumily  F=(Fo, Fi, ... F,_\) of transtation incariant t-
Junctionals with t=cz4. ¢ >0 which satisfies

Z4(N=cxpih, [Intr}y Z(CF) (5.1)
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for cach IFG/III, where
b o=z —S(F))+a (5.2

4 q i
and o is determined by Minbh, =0.
2y Furthermore F satisfies

a2

IFE) = FEN <8I =230 2L e Uz, (5.3

where | Fll=Max (F 1L 1
Proof. For cach Ze#{zyie4) (5.1) is considered to be @ system ol equations for
F.
From (4.9) and {5.1) we obtuin
ZH0 =2 ELD). {3.4)

Substituting {5.1) and (5.4) into (4.10) and taking the logarithm we obtain

b, WU +In ZUN ) = = HAUD + Y In Z(In, £1F,.b,,). (5.3)
We now decompose InZ(71F,) and InZ(Int, I11,0h,) into the Tollowing

forms:
MZ{F)= —F (0 + Sy Indd +Zl,l(lnlm 1)

m

InZ0nt, N E,b)=(S(E)+b,) 1oy, I+ A(n, £7F,.0b,). {5.6}
Then, by substituting (5.6} into (5.5) and using (5.2) and (4.2}, we find that
F,,(ll“)=Z{(S(F,,)+bq)'~(S(l-;,,)+ b, Tint, I
+ Hf;(]l”)+ S tdata, 1 )= AUng, 5, b))
=1z, |C —InZ ()} +Z{A(II\(,,,//"II';I)—.'I(|nl,” e, b (3.7
holds for cach FEA,I and g=0.1.....r—1..
We rewrite (5.7) in the following form
BN =0 (2 4 T (0 FL2) (5.7
where
JC 2=z P =InZ ()
T, H= tdnt, 1 E) = tdng, 478,001 (5.8)
Putting

we have the equivatent Torm of (5.7),

F=I5+T(F, 2. (5.9
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11 follows from (4.20) and (4.23) that

T F.5z 20 Y | A(Ing, Mz =277

"
Then we have the following inequality:

(the rhus. of (37D >:qll']—kl(l +z:0):0\l“l—30"|l‘\
> 41 —k )zl =2e7 L

For sufficiently small 6o >0, this shows that the rhs. of (3.7) is a r-functional
with t=1(1 =k )z, for sufficiently large Zq. We take =4} —k,).

The proof for the existence of the unique sotution of (5.7') follows from the
contraction property of T,

VT, 8 = TEL DI <3 IF = P21 (5.10)
We shall now prove (5.10). From Lemma 4.7 we obtain,

‘T FL 2 =T P2
< T A0y, TTE) = A, T+ 21400, T, by a(lny, T FL byl

" meom m?
m m

<2)f! —le\lnl//“\+2u"‘-\lnllfl-]qu‘ —Fj\l

l —t S N -2
+2 (E‘[fx“ ) iU <

This mcans

VTR 2y = TR £ <218 R P (5.11)

a2

Choosing 3'=2%, we oblain the contraction property (5.10). We therefore have
a unique solution F =F(3) of (5.7') for each Ze ¥ (ry:3,) and sufliciently large =,
Before proving the second assertion of Prop. 5.1, we slate one more lemma.

Lemma 5.2, If =L =1 and =z 1 for oll m, then we hare

UnZ(i: 2 —In ZUr 24 €202 -2, (5.12)
Proof of the Lemma. From the definition of Z(fN) we have

cInZ(r: ) . . .
s —=L[# of particles ol type m in nir.

“m

Here E[ [1I) is the expectation of the function f defined on the conliguration
space in [ under the condition that the contour 7 exists. i.e.

| 4 oo LT
E[fIT =55 o 2 Tals) T )
ZUr-2 =0 W ot
Y t oy . ne . TfgeN B LA e Sk
‘ ‘ ‘I IAz(.\‘.) d kbz(.\'kl'/ (51:.\‘.)""—31’:.\‘;‘.) " ('—\Iisll’ '---Qf(m)-

where {s,.....s. ) =ltellz(0*r].
1 %) { §
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For a given conliguration y ol purticles in {re " a{t)Fm.r} we deline the
probability density p(y) by

it by

P =5 S g VX
- / l ~):/|2l q,zl lll ‘I,y! ;1 l.,,

and deline the conditional expectation E{-v] similarly to E[-[ /7],
Then we obtain

E[3F of particles of type m in 7]
=[dyp) EL# of particle ol type nrin 7y}

Let N(W) denote the number of particles in Hoand #7(y0m) denote the sub-
region of Fm={relz(t}=m} in which we can put m-type particles without
interference from the conliguration y.

Putting ((y)=1 (v :m) Tor cach square re F{m). and using standard prob-
abilistic arguments we have

e
ELN( N y]= 3 e

Lo ,.,,‘Il(\il -
o lomy ¢ !

<210

= III

Hence we have

imfw Al

The prool of Lemma 5.2 follows direetly from this estimate. [

Prool ol Prop. 5.1, part 2
From (5.7) and (5.12) we ohtain

»

B Y = F 2D <42 =2 TR N = 3

Therelore, we obtain the second assertion of Prop. A0,
I = FE <8zt =21 0
Now we are in a position to prove the theorem,

Proof of Theorem. From Prop. S.1 there exists the w-lunctionals {F (9}, with «
=Lz, Tor cach Ze#(ey:2,) sulislymg

ZUny=cexpib, Intdy 200,
b,=—:z, =S N+ (5.1

For a given Ze#(eyizy) b=thy ... b, €O, is determined through F(2),
where
O,={h=(bgb....b, DN Min h =0}

Osksr-1
Let /1, denote the mapping from Ze#(e,:2,) to be Q.. We shall prove that
[ is a onc-to-one continuous mapping and that [ //(z:(,::(,)D;L where

Zu

. BRI
=1heO,: |h| <ty 4}
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1t follows from (424 and (3.3) that

o2 =1 GO <212 =22+ max [SUF N = SUR ]
Osksr-1

1 A e FEY =P

CE LA g A = 2
<3 =2 (515
for sulficiently large =, with ¢y =¢, ¢
The continuity of /. follows from t5.15).
When he 4 is given
RIS —(h, 4 S(F D)+ 2, ¢el0l,....r—1} {5.16)

can be considered as a system of equations for finding £ From (5.16) we have
I:‘,—:Olglhq—bol+|S(F0(:‘))—S(E,(f))l

. - —CZo
Loyt 2e

AN
taro

because S(F,) <™
Hence we have

Z, S0l <Eg I (5.17)
for sufficiently large =,
Furthermore we have
ISUE M) =SR2 £8e P2 =22, (5.18)

This means that the right hand side of (5.16) is a contraction for sufficiently
large z,,.

We have thus proved that I, is & one-lo-one continuous mapping satisfying
I, (g 2y) 2 A for sulficienty large 2,

Put 2 =12 (017 (x,:z,) for sulliciently large =, then we have

-0
290N =2 E) and - Z4(K)=ZV[F) (5.19)
for cach ¢ef{0.1..... 1~ 11 This means that
Py OV =pyp J(CLF). (5.20)

Then from Lemma 4.3 and 4.4 we have the first assertions of the theorem.
In general, by putting 3, =12 "(E )

E,=1he0, h;=0ied" A}, AcH

we can prove the assertion of the theorem.  Q.E.D.

6. Concluding Remarks

| While the model discussed in this paper is certainly very idealized the
structure of its phuse diagram is similar to that ol real multi-component
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systems at [ixed reciprocul temperature o There oo the thermodynamic pa-
rameter space is split into maximally connected sets characterized by the
property that the number ol coexisting pure phases is constant on cach of
them. 1t is this decomposition which is represented by the phase diagram ol a
microscopic system [17].

The simplest such dingram is that of @ one component system where the
thermodynamic space has only two dimensions conveniently labelled by re-
ciprocal temperature ffand Tugacity = For most values of ff and = the system s
in some delinite phase uniquely determined by the parameters. e there is only
one Gibbs state. There are, however, some values of /i and = Iving on smooth

curves, at which the state of the systeny is nor nigue 10 can exist in cither of

two pure states, a gas or a liquid, or a gas or a solid. At the triple point the
system can exist in three diflerent pure states - gas. liguid and solid, These
states have -different particle and encrgy densities, and one of them, the solid,
cven has a dilferent symmetry. There may be other cocxistencee lines where the
symmetry of the crystal changes or where quantum mechanically driven tran-
sitions occur. For o multi-component system the structure of (he phase dia-
gram is still richer. The thermodynamic parameter space now consists ol ff and
all the fugacities =, i=0.1,....r — 1, where r is the number of companents. At
fixed f# the r-dimensional space with coordinates z; split in the way we have
seen it do for the Widom-Rowlinson model.

When the systems parameters move deross o coexistenee line or surfuace
some  properties ol (he system, e density. composition, change  discon-
tinvously from their values in one of the pure phuses to their values in the
other. The system s then said (o undergo o first order phase cansition. The

understanding of such transitions from first principles is the central theme of
cquilibrium: statistical mechanics - o subject whose aim s the derivation of

faws governing the equilibrium behavior of mucroscopic objects from the laws
governing the interaction of their microscopic constituents,

The first recorded theoretical speculations about the microscopic hasis ol

phase transitions go back to ancient times - they are sumnuirized i Locretius
fimaous poctic review article De Rerum Natura [0 The subjeet was taken up
again in more recent times by van der Waals [18] and Gibhs {6]: the lirst
constructing explicit. albeit approximate, formuliae deseribing the liquid-gas
transition and the latter creating a general macroscopic and microscopic for-
malism Tor dealing with this problem.

The key lTeature of the macroscopic or thermodynamic part of Gibbs
formalism is to consider the (appropriate) free energy of @ macroscopic svstem
as a function ol the systems thermodynamic pavameters. This function is
convex and appropriate partial derivatives of it deterntine the density, con-
centration, ete. First order phase transitions then correspond (o discontinuitics
in these derivatives. The microscopic part of Gibbs™ formahism ~ our statistical
mechanics - supplies a preseription for computing the free encrgy ol a system
with a given microscopic Hamiltonian.

Gibbs theory also provides us with ensembles, te. a0 probahility distri-
butions an the microscopic phase spiace of the system. Al properties of a
Microscopic system (not just density, composition, cnergy) can he obtained s
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ensemble averages of suitable functions of the microscopic state of the system.
We are particularly interested in the Gibbs state of the infinite volume, ther-
modynamic, limit of a physical system. As is well known it is this limit which
properly represents bulk propertics of a macroscopic system. Furthermore we
are interested in systems with translation invariant interactions and therefore
define pure phases to be translation invariant or periodic extremal Gibbs states
[17. 15]. The existence of multiple pure phases is therefore connected with the
non-uniqueness of the infinite volume limit which is what we have studied
here.

2. The two component symmetric system of A and B particles with in-
teractions (2.1) was introduced by Widom and Rowlinson [19] primarily for
the purpose of gaining information about the liquid-vapour phase transition in
a onc component fuid. They noted that by integrating out the coordinates of
one of the components. say the B ones, the probability measure on the A’s in V
is a Gibbs measure for a one component system with many body interaction
which could be written down explicitly. The phase transition in the A-B
system when =, =z, is large. whose existence they asstmed on physical grounds,
then translated into a liguid vapour transition in .the A-system. The
symmetry between the A-rich and B-rich pure phascs on the coexistence line
gave information about the corresponding liquid and vapour densitics.

Ruelle [16] proved rigorously the existence of a phase transition in this
model. His mecthod could also treat the case where there were also hard core
interactions between the A-4 and B-B particles, 0SSR, =Ry, <(I/S)IR 1. As
alrcady mentioned in the introduction the A-B symmetry is crucial to Ruclle's
method. This assurcs that the phase transition will occur for z =z, The
method generalizes easily to an r-component system as long as R,,=R'£CR,,
= CR. the same for all % and ff, with C<} a suitable constant which depends
on r. Clearly for this system the phase diagram will be symmetric; when z,=1,

=..=z,_, == sufficiently large there will be r pure phases, when z,=...=5,_,
=c,=..=z,_, >z there will be r—1 phases, ctc. Just how large I has to be
depends on r (for fixed R). The proof requires Z=0(Inr) which also scems

physically right - since the mixing entropy goes like Inr.

The symmetric two component Widom-Rowlinson model is in many ways
analogous 1o the ferromagnetic Ising lattice system. Many inequalitics. such as
FKG can be proven for this system, at least when R, =0 [9]. These can be
used to prove results about the existence and unigueness of corretation func-
tions when the infinite volume Gibbs states obtained as limits of finite volume
states with A or B boundary conditions coincide [3].

In the present note we generalized Ruelle’s result to the case where the R,
are not equal. We did assume however that the R, are all equal to zero. We
do not know at the present time whether we can extend our results to the case
R,,#+0 for at least some z The difficulty here lies in the fact that for the
Pirogov-Sinai argument for the non-symmetric case we need some information
aboul the behavior of the free encrgy and correlations in the one component
svstem. This is trivial for R,,=0 when the one-component systems are free
gases but not otherwise.
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3. The analysis of this paper can be extended ina natural way o a model
system of hard non-spherical motecutes with a (linite number ol orientations,
c.g. cllipsoids. In R* we can consider the simple system consisting ol “necdles™
of length b and zero width. Letting the needles take orientations specilied by
the angles 0y, 0,....,0,_, 0£0, = measured relative to the positive x-axis, we
can identily cach orientation as a dilferent species ), <> 2€ Y. The exclusion
volume w; ;is delined by the geometrical relation r;—r€w, <= overlap between
needles of type i and j whose centers are located at g and r,elR* respectively.
This model dillers Trom the cases considered before in that w,; is no fonger a

disc with radius Ry;. Note however thal w ; is stitl convex and wp;a set ol

measure zero. The changes in the w,; therelore do not really: matter e the
analysis.

An interesting question is what happens when the aricntations are not
diseretized and 0 is a continuous variable, 0e[0.n]. 1t 15 now natural 1o
consider the system as a one component Muid with Tugacity = We expeet that
for =3 1 the system (at teast in three and higher dimensian) will have a long
range oricntational order with a continuum ol extremal Gibbhs states p,. We
are unfortunately unable to prove this with present methods.

Starting with linite n we may consider surrounding cach (1. by an interval
S e we let 0 take values in 8, =(0,—38/2, 0,+0/2). 2e¥,. 1t scems fikely that

our analysis can be carried through Tor the case when S<Min|, =0, Other
foji

extensions are also possible but the full rotational problem QWIS sOme new
ideas.

4. We mention finatly that our results can bhe extended (o prove the
positivity ol the surface tension between (wo coexisting phases of the Widom-
Rowlinson system [1].
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Note Added in Proof

We have further extended our generalizations of Pirogov-Sinai theory and can now answer
affirmatively the question riised at the end of Seet. 6.2,



