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We use an equivalence between the g-state Potts model on a d-dimensional lattice for q=2"n=1,2,.. and aspin 1/2
Ising model on n copies of the lattice with 2 n-spin ferromagnetic interactions to obtain some exact new results for both
systems. In particular we prove the existence of first-order phase transitions for a class of ferromagnetic Ising systems ob-
tained as perturbations of the large g Potts—Ising system and the non-vanishing of the surface tension for the Potts model

(with g = 2"y at all temperatures below their transition temperature.

1. Introduction. The g-state Potts model is defined
as follows: at each site i € 29 there is a variable s; = 0,
1,2, ...,q —1, the hamiltonian in a finite box A C 29
is

SS'+JZ..>8si§}' ‘ (1)

The two sums are over nearest-neighbour pairs,
& is the Kronecker delta, and J is the coupling con-
stant. In the second sum, E/ is fixed outside A, and
represents boundary conditions (bc). We shall con-
sider the g pure be (!) obtained by fixing §; =1 outside
A 1EH0, ..., q — 1}, the free be (f) where the second
sum in (1) is omitted, and the mixed (I, ") be defined,
for a rectangular A, by fixing E} =/ for the top half of
the box and s; =’ for the bottom half. The Gibbs
measures in A are:

dip b = Z 3 b exp(—BHy o), B=1/kT.

We let ( )y, denote the expectation with respect to
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the thermodynamic limit, A 1 29, of the Gibbs mea-
sure with a particular be.

What makes the Potts model (1) interesting is that
its simple structure permits a rather precise analysts
of its phase diagram. Thus, for certain lattices in two
dimensions, Baxter [1] found the exact transition
temperature and, for g > 4, also the jump discontinu-
ity in the energy. For ¢ < 4 he found the transition
to be second order. In three dimensions it is expected
[2] that the transition will be first order even for g
= 4. What can be proven rigorously is that [3] for suf-
ficiently large g the transition is first order in afl di-
mensions d = 2.

For g = 2 the Potts model is identical to a ferro-
magnetic lsing model. Ferromagnetic lsing systems
have been studied very extensively and there are a lot
of exact results available from various inequalities.
E.g. the surface tension 7 is known to be zero for T’
> T, [4] and non-zero for T < T, [5]. A relationship
between the ferromagnetic Ising model and the Potts
model for g > 2 could therefore be useful for our
understanding of both. Such a relation is in fact used
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for g = 4 (d = 2) where Potts <> Ashkin—Teller [6]. In
this note we generalize this relation to allqg = 2", n =
1, 2, ... Potts models and derive additional results
about the existence of first order transitions in modi-
fied Potts models and their [sing analogs.

2. Potts < Ising isomorphism. Consider a g = 2"
state Potts model on a lattice £. The states s5; can then
be put in one-to-one correspondence with a configura-
tion of n spins of =*1,« =1 ...n, which may be
thought of as all being on the same site 7, or as living
on n copies of £, e.g. in d = 2 we imagine n layers of
L. We have that

n
[[§1+a°‘o“) 2 25 11 oo +27,

E o€k (2)

where the sum runs over all non-empty subsets of
{1, ..., n}. Identifying the configuration of =1 (—1)
for all « withs; =q — 1 (0), the be s;=¢q — 1 (0)
become the + (—) be in the Ising model.

We remark that the main point of this representa-
tion (when ¢ = 2%) is that it is ferromagnetnc Indeed
for all ¢ we can use a variety of spin 3 representations,
(e.g. Griffiths’ method [7]) but these are in general
not ferromagnetic.

3. Results on the Ising model derived from the
Potts model. The Potts model undergoes a first-order
transition for some values of ¢. This was shown by
Baxter for all ¢ > 4 in two dimensions [1] and by
Kotecky and Shlosman for g large enough in all di-
mensions [3]. (For d > 3, this presumably holds for
all g > 3).

The phase diagram is as follows: for 8 large, there
are g pure phases distinguished by an order parameter.
(Here, and in similar statements below, we mean at
least that many phases because it has not yet been
shown that there are no other pure translation invari-
ant states but their occurrence is unlikely). There is
then a temperature, 6 I= T, where there is a transi-
tion with g +1 phases q ordered ones{ ) and one
disordered one { XP). Above T, there is presumably
only one state. At By the order parameter jumps to
zero and the mean energy is also discontinuous. Using
our representation for ¢ = 2 this gives the only exam-
ple known to us of a ferromagnetic spin % Ising model
where a first-order transition is rigorously proven.
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Note that the order parameter in the phase with /=
q—1be,8g,4-1~ g1 becomes in the spin variables
Zp e of. In the other phases 1t is obtained by flip-
ping an approprlate number of o}

The Ising model picture suggests the following
question: What happens if we perturb the model by
adding an external field or some other many-body
interactions? The answer in the cases that we can
analyse is that the low temperature phases may change
but the first-order transition persists.

One type of perturbation is as follows: Consider
(n + 1) spins of, define

n

82 G55 87) =(al;11 21+ 0?‘01"1))%(1 + K0§”+1)a]§”+1)) ,

and insert this into the definition of the hamiltonian
(1). This is a special case of the cubic model [8] and,
for A varying between 0 and 1, it interpolates between
the g = 2% and g = 2"*1 Potts models. Then one can
show that for A or (1 — A) small and # large there is a
first-order transition (jump in the energy and magneti-
zation) as f varies. More generally, consider any func-
tion 5 (s, s') and such that |A, (s, s")| <1, define

8,(s,8) = 8(s, ") + Mg (s, 8) (3)

and insert this into (1). Of course the “universality
class” of the system may change discontinuously at
A=07,

These are still nearest-neighbor interactions but the
perturbation is otherwise arbitrary. It may also include
an external field. Then, by a modification of the proof
of ref. [3], one can show:

Proposition 1. There exist g, Ay such that for
each g > q and |A| <A, there exist a §(q, \) where

_there is a first order transition in the model defined

by (1) and (3). That is, the derivative of the free ener-
gy with respect to § is discontinuous at $(g, A). More-
over, at f(q, M), there exist two translation invariant
equ111br1um states, one with (6 ) > 1 and one with
(as,s]> <3 2

Remark: The proposition does not say that there
are g states at low temperature. In fact, as the follow-
ing example will show this is not in general true. Take
the specific case of

he(s,s)=3[8(s,q 1) +8(G",q — D],
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i.e. an external field favoring the g — 1 state. Then we
are not restricted to small A: for every Ay > O there
exists a g, such that the model undergoes a first-order
transition for all ¢ > g and all A, 0 <A <A, Of
course, if we fix ¢ and let A be large, there will be no o
transition. Similarly, if we choose k(g, q") = Z,, o 07 of
a,a' =1, ..., n, there will be only two ground states.

4. Results on the Potts model derived from the
Ising model. The Ising representation (2) allows us to
use various correlation inequalities valid for ferromag-
netic spin systems. In particular one can extend results
of Lebowitz and Pfister [5] on the existence of a non-
zero surface tension between different phases.

We define the surface tension in the Potts model
between phases / and I' by

— lim £=@-D hm log(

lim. 23 E N )
where L, M are the dimensions of a box AL, of
height M and cross sectional area Ld 1 InZbE we
have mixed /, !' bc. By symmetry a (and 7) does
not depend on /, 1" if I #1'. For mot1vat1on of this
definition see ref. [9]. The limits in (4) are not known
to exist in general, but for ¢ = 2" one can prove that
they exist, using our transformation and the results

of [10]. Now we state

Proposition 2: Let g = 21,
(@ Ifg> Bys then 7 # 0. Moreover, dr/dB (which
exists at least a.e.) satisfies:

oo (1S

=27 (85 q-1— 4712

(b) If B < B, for the spin 1 Ising model with nn
interactions and coupling constant J/2, then 7 =0,

Proof: (a) The proof is essentially as in ref, [5]. If

we take /=¢q — 1 and I' = 0 in (4) then we have + and
— bc in the corresponding Ising model. We write

B 1L )
<a1;lE aI;IE J>)
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Using the inequalities of [5] and following the argu-
ment of [5] we end up with the first inequality. The
second is just the Schwartz inequality since

n

=Tl Ya+o9)=qg1+q —1EH0
spa =17 gy 2+ o) =a E ocE

(b) If we add to the hamiltonian (1), expressed in
terms of the off variables a term

7\2200,,

i€EA a=

then, by Griffiths’ inequalities 7 is increasing in A.
When X - oo, the of are either all +] or all —1. There-
fore, we get a two-state Ising model where the energy
difference between parallel and antiparallel spins
equals J/2 [i.e. the same as with coupling (//2)o; o]-].

Remarks:
(i) We expect that, if one defines a different sur-
face tension 7,
— lim L~@-D hm log[ZL M/(ZL MZL M)1/2]

Lo

where in ZLI’,EW we put §; =/ on the top half of the box
and free bc on the bottom half, then 7 will be zero
everywhere except at 6q where it will be strictly posi-
tive; this expectation is based on the fact that at ﬁq
we have

5, re, ),

54,87 5i8j
and only there.

(ii) We note that, for nn Ising models, refs. [4,5]
imply that the physical surface tension K~ 17(K),
K = BJ is monotone increasing in K: by [5] dr/dK
> 2(m*)? and by [4], 7(K) < 2(m*)2K where m*
= spontaneous magnetization; therefore

& [HCOIK) =K1 drjdK - k=230,

(i) It follows from [11] and our spin § represen-
tation (2) that for g = 2 there are at most ¢ transla-
tion invariant equilibrium states except possibly for
a countable set of values of §. An argument due to
Pfister actually shows that it is true for all g.

(iv) For mean field, renormalization group and
computer investigations of Ising spins with two- and
four-body ferromagnetic interactions showing first-
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order transitions we refer the reader to recent works
by Mauritsen et al. [12] and references contained
therein. For relevance to alloys see Connolly and
Williams [13]. An interesting point there is that a
first-order transition can occur even when the system
has only two ground states, g; = +1 or —1, all i. As
already noted this can also be proven rigorously for
our models by choosing # appropriately in (3) and
taking g large enough. 1n fact this includes cases
when there is only one ground state.
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