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We show that the correlation functions of a system of hard ellipsoids
whose axes are constrained to be parallel are simply related to the corres-
ponding functions of a hard sphere fluid with the same packing fraction.
The existence of simple, accurate approximations for the latter system make
the oriented ellipsoid fluid a suitable ‘ reference system ’ for the nematically
ordered phase of liquid crystals and other orientationally ordered molecular
fluids such as polar fluids in an external field. The properties of such
fluids, with a given angular distribution f(w), may then be obtained via
¢ standard ’ perturbation theory. Methods for obtaining f(w) near the
perfectly ordered state are discussed.

1. INTRODUCTION

In this work, we attempt to supplement current mean field theories [1-3]
of nematically ordered fluids by providing non-trivial estimates of the pair

_ distribution function for a simple model of such a fluid. The reader is invited

to imagine a fluid consisting of hard ellipsoids (or more simply, spheroids)
which are disordered with respect to position but which are all constrained
to lie with their long axes along a fixed vector (the director, in liquid crystal
parlance). Although correlations between the particles of such a fluid will be
short ranged, they will depend on the length and relative direction relative to
the director of the intermolecular vector connecting the centres of two particles.

In §2, we show that the pair distribution for this system is very simply
related to the pair distribution function for a system of hard spheres of the same
reduced density. By using the Percus-Yevick equation, which gives a good
representation of the latter [4-6], we are able to calculate the former. As the
pair distribution function depends on the angle between the intermolecular
vector and the director, it proves convenient to represent this angle dependence
by expanding the pair distribution function as a series of even Legendre poly-
nomials of the cosine of this angle, with coefficients which are functions of
distance. We calculate the first three of these coefficients and present them
graphically.
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In §3, we calculate the dependence of the static structure factor S(k) of
the aligned ellipsoids on the components of the wave vector &, as this is also
simply related to the corresponding function for hard spheres. We show that
S(k) for aligned ellipsoids depends on the components of % parallel and per-
pendicular to the director. The curves of constant .S in the -plane are ellipses
with semiaxes whose lengths are inversely proportional to the lengths of minor
and major semiaxes respectively of the ellipsoids. Numerically simulated
curves of the structure factor of this very simple model look very similar to
reported experimental X-ray patterns [7].

In §4, we address the problem of relating the pair correlation of long
molecules no longer perfectly oriented and acting through realistic intermolecular
potentials to that of our simple model. To do this, we adapt modern perturba-
tion theories of isotropic molecular fluids by first relating the properties of the
realistic system to those of an equivalent reference system which acts through
suitably chosen repulsions. It should be stressed, however, that these repulsions
depend on both the real attractions and repulsions at short to moderate separations
in a complicated way. In turn, the properties of this reference system are
related to those of a suitably chosen assembly of hard ellipsoids. Finally,
by using a correlation function y(1, 2), which is known to have a weak depen-
dence on orientations, we are able to relate the (imperfectly) nematically ordered
ellipsoid system to the fully ordered one we have calculated in § 2.

In §5, we discuss the problem of how to compute the one particle angular
distribution function when one has a knowledge of the two particle function.
An immediate consequence of symmetry is that the pair distribution function
reported here is not appropriate for the isotropic phase.

This paper is to be regarded as a preliminary report of our method. Al-
though [8] molecular dynamics simulations of long molecules have been reported,
these focused upon order parameters and contain no structural information
of the type required to test the ideas presented here. To this end, we shall
shortly report extensive Monte Carlo simulations of hard ellipsoids with which
the ideas above can be tested and illustrated.

2. ORIENTED ELLIPSOIDS IN THE PERCUS—YEVICK APPROXIMATIONS

Consider a system of N rigid particles at positions ry, ..., Fy, and with
. orientations w, ..., wy, which interact with each other via a pair potential
function U(1, 2) = U(r; — 1y, w;, ;) and with an external field U(1) = W(ry, w,).
The linear transformation L ' '
r=BR,

where B is a positive matrix with unit determinant then changes the equilibrium
state of this system, i.e. all correlation functions and thermodynamic properties,
into a state of the system with interactions U’(1, 2)= U(B(R,, R,), w;, w,),
U'(1)=W(BR,, w,;). In particular, a system of parallel hard ellipsoids becomes,
with a proper choice of B, a system of hard spheres.

We begin by studying an assembly of NV parallel hard ellipsoids of volume
(m/6)abc, whose principal axes have lengths a, b, ¢. . In what follows, we call, A,
the diagonal matrix with eigenvalues a~2, 5—2, ¢~2, the molecular shape matrix.
If the principal axis frame coincides with the laboratory cartesian frame, then
two such ellipsoids whose centres are separated by the vector r will or will not
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overlap according as to whether the quantity
P2=rTAr (1)

is less than or greater than unity respectively. If 4(r) denote the total correlation
function for this system, then a direct correlation function ¢(r) may be defined
via the Ornstein—Zernike relation

hr)y=c(r)+p § (s)h(r—s) ds, (2)

where p is the number density. The Percus-Yevick [4] equation for this
system is then '

c(r)=0 if P>1 (3)
supplemented by the exact core condition
h(r)=—-1 if P<1, 4)

To solve the set of equations (2-4), we define new coordinates R by means

of the transformation
R=Al2p, 5)

Applying this transformation to (2-4), we have, defining

H(R)=h(r) ‘and C(R)=c(r), (6)
R2=rTAr (7)

that,
H(R)=C(R)+ p(abc) § C(S)H(R—S) dS (8)
e C(R)=0 if R®>1, 9 a)
HR)=1 it Re<l. 9b)

Evidently H(R) depends only on the modulus of R, The solution to the problem
posed by the equations (8), (9) is of course the solution of the Percus—Yevick
integral equation for hard spheres of diameter unity at a reduced density p(abc)
which was first given by Wertheim and Thiele [5-6].

The dependence of these functions on the vector r is most simply illustrated
by studying the solution for the case of oblate spheroids with

a=b<c . , (10)

and changing from the cartesian System r to a system of polar coordinates. .
For this case, k(r) depends only on the distance r and the azimuthal angle 6
since

R%=(r]a)¥(1 — (1 — a?/c?) cos?® 0). (11)

We may then expand A(r) in a series of Legendre polynomials P,(cos 8) of
even order. The projection of A(r) onto the first three harmonics is shown
in figure 1 at a reduced density pa®c=0-85. In this example, the axis ratio
¢/a is 3+0, chosen purely to illustrate the method.
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Figure 1. Showing the projections of the pair correlation function A(1, 2) for parallel
ellipsoids onto the first three Legendre polynomials,

3. STRUCTURE FACTORS

In order to test the practical utility of the ideas described in this note, it is
necessary to have detailed experimental and/or computer simulation data on
the structure of orientationally ordered systems. Such data are lacking at
present. We are cutrently engaged in carrying out such simulations [9]. We
note that the structure factor S(k) of a perfectly ordered nematic phase is a
function of the wave vector k, and not just its magnitude. We have

S(k)=1+p | h(r)exp (ik - r) dr. (12)
Applying the transformation (5) to (21), we find
S(k) =1+ p(abc)H((kTA- k)112) (13)

where H(K) is the Fourier transform of the total correlation function for hard
spheres. If %, and %, are the wave vectors parallel to and perpendicular to
the director, (13) predicts that the X-ray or neutron scattering pattern should

be elliptic.
In fact, if a=b<c, we have that the curves of constant scattering amplitude

in the (k,, k) plane are the family of ellipses
K.* K,*
D/ERS TR
where K, K, are dimensionless wave numbers defined by
K, =k p7'® K, =k p5

The constants 4, B are given by
we \1B ma® \1/3
A =] — B = ——
(&) 7-(E)"

v
=—pa®c
n==p

where

is the packing fraction of the ellipsoids.
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We can get a picture of the scattering amplitude for the model by drawing
a sequence of ellipses, for various values of K. We choose the increments in
K as being inversely proportional to the value of S(K) for hard spheres of unit
diameter in the Percus—Yevick approximation. This is shown in figure 2,
which bears a striking qualitative resemblance to the observed scattering pattern
for real nematics [7]. The ellipses are more eccentric than those observed,
reflecting the greater order present in the model, but the first two peaks are
apparent.

173
Knp

1 i

20

Figure 2. Showing computed contours of the structure factor S(k) of parallel ellipsoids.
The density of ellipses in the plane is proportional to the scattering intensity.

4. (GENERAL SYSTEM AND PERTURBATION THEORY

The above analysis is, of course, not restricted to the Percus—Yevick approxi-
mation, or to the pair correlation, or to pure hard core systems.

We now show how to relate the singlet and pair distribution functions for a
real nematically ordered fluid where the molecules act via an arbitrary pair
potential U(1,2) to the properties of this system of parallel ellipsoids. In
the interests of simplicity we shall suppose that the molecules have spheroidal
symmetry, but make no other restrictions. For such molecules, U(1,2) is a
function of the intermolecular vector rj,=r; —r,, and vectors w; and w,, which
express the orientation of the molecules’ long axes relative to the laboratory
frame. We follow Kohler et al. [10] and study the potential U(1, 2) as a function
of separation R for fixed values of the orientations of the three vectors. The
next step is to split U for each orientation set into a purely repulsive reference
potential Uy and an attractive perturbation potential Uy, as described in [10].
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Using techniques described in [11], the properties of the full system are related
to the properties of the reference system with potential Uy,

The next stage in the calculation is to calculate the properties of the soft
reference system in terms of a system of hard ellipsoids. This is accomplished
using the orientational analogue of the so-called blip function expansion intro-
duced by Andersen et al. [11]. If Uy denotes the potential of interaction
~ of hard ellipsoids, being infinity if the two ellipsoids overlap and zero otherwise,
then we write the identity

exp (— Un(1, 2)/AT) = exp (= Ux(1, 2)/RT) + B(1, 2). (14)

Using standard first order perturbation theory, we expand the free energy
and the one particle distribution function pg ®X(1), to first order in B(1, 2). p®)(1)
is defined as usual for the interaction U, and is a function of the orientation
of particle 1 in the nematic phase, defined in terms of configurational hamil-
tonian H by '

1
= ... § exp(—Hg/kT)d2...dN
oy T 2

i § ... J exp(—Hg/kT)dl ...dN

to first order in B(1, 2).
* The elements of the molecular shape matrix are then found from the con-
ditions that the two systems have the same second virial coefficient,

0= § f B(1,2)dl d2 (16)

and that the first order correction to the free energy be zero,
0= | | B(1, 2)yx(1, 2) d1 d2, (17)

where the function yg(1, 2) for hard ellipsoids is defined by
yr(l, 2) =(1+hx(1, 2)) exp (Ug(1, 2)/kT). (18)

We note that when U(1, 2) is itself a pure hard core potential then Uy = Uy
and B=0.

It now remains to relate yg(1, 2) to the properties of the parallel ellipsoid
system which we have calculated. To do this, we make use of the observation
from the theory of isotropic molecular fluids that the function y is a relatively
weak function of orientations. It is usual [12-15] to replace it by its (orientation
independent) value for a fluid acting through a potential U(1, 2) defined by
the angle average of the Boltzmann factor,

- U(1, 2)= kT log (<exp (— Ug(1, 2)[RT,,), (19)

where { >, , denotes the unweighted average over orientational coordinates.
For nematically ordered fluids we may take advantage of this weak dependence
by observing that only configurations where the molecules are approximately
parallel to the director are likely to be significant. If this is so, we may equate
yr(l, 2) with its value $4(1, 2)=94(ry,) for parallel ellipsoids. Within this
-approximation, we then have the following expression for the pair distribution
function gg(1, 2) for nematically ordered hard ellipsoids

gu(l, 2)=9(1, 2) exp (— Ux(1, 2)/kT). (20)
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5. ORIENTATIONAL DISTRIBUTION

We . may now proceed further and derive an approximate equation for the
one particle angular distribution function defined in (15). Differentiating
p@)(1) = pf(w,) with respect to angular coordinates, we have, after a little mani-
pulation of the BGY hierachy for this system,

0 0
- (1) _
o 108 put(1) =5 log ()

—p § fwaya(l, 2) a—f; (exp (— U1, 2)/KT)
—exp (= Ug(1, 2)kT)) 42 (21)

We may now replace y5(1, 2) by $5(1, 2), which is independent of orientations
and integrate (21) to obtain, ‘ ‘

log (f(w))=log X +p § flwa)fu(r)(exp (= Un(r, wy, wy)/kT)
—exp (= Ug(r)/kT)) dosy dr,  (22)

where we have written out explicitly the arguments of the different quantities.
Equation (22) is an integral equation for the unknown orientational distribution
function f : X is an integration constant which may be found from its normaliza-
tion. Since Pp(r) refers to specified space axes, with the z-axis, say, in the
direction along which the long axes of all the ellipsoids are aligned, (22) can be
expected to be useful (as can the perturbation expansion) only when there is a
fair degree of ordering in the system. In particular, (22) does not have any
isotropic solutions and hence is not expected to show any transition [16].
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