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1. INTRODUCTION %6

It has been made clear’}ﬁ th1s meetlng’/pw/ﬁ
study of kinetic phenomena in 2 system undergoing a phase
transition has become/a/§ery popular subjeed during the last
few years. This is not surprising. F&?ﬁ%v—bﬁﬂahéeiﬁﬁth

kinetic theory and phase transitions tireesy are chal enging
oA~ el

areas in physics “Combinati n)ls eﬁeﬁ—m@%e exciting
to the theoretical physic ma y situations
arise in practice where sl@%—aﬁégggg§§£4§ég?{ ded. one of
the 51mplest situations of this kind O?@ﬁ%& when a binary
alloy such as AL-In is quenched from the melt into the
miscibility gap.

The theoretical analysis of ‘this particular process,
variously described as nucleation, spinodal decomposition,
coarsening, and Ostwald ripening, is based mainly on the
classical works of Cahn and HllllaTd(1) and of Lifshitz and
Slyzovgzz The former work, as formulated by Cook( )
describes the evolution of the structure function S(i t) while
the latter considers the grain distribution n(L, t); here t
is the time since quenching, % is a reciprocal wave vector,
and £ is a grain size. This division corresponds directly to
the two pr1nc1pal experlmental methods of study: x-ray (or
neutron) scattering for S(L, t) and electron microscopy for
n(t, t). Those classic works have been the subject of
considerable study, criticism, extension, etc., in recent
years; see e.g. the work of Langer( ), Blnder(s), and others.
These studies have made use of computer simulations of this
process in simple model systems carried out by the authors
and others( ) A particularly striking feature of these
computer experiments, observed by us recently(s), is the
scaling behaviour of the structure function, g(i t)n [h(t)]
F(k/K(t) ). Such scaling was also suggestgd 1ndg§endent1)

» Oy

More recently, a similar scaling behavior

on theoretical grounds by various authoTs

(10)

has



been found in a number of real quenched alloys and simple
binary liquid mixtures; there is also some evidence that
scaling may hold in other materials including glassy mixtures
and 3He-4He. The phenomenon therefore appears to be quite
general, a fact which encourages further theoretical and
experimental work.

The model system we used in our numerical simulation
has been described before in detail(7). At each site of a
simple cubic lattice of N = L% sites (L=30 or L=50) there is
assumed to be either an A atom or a B atom; the occupation
variable of the it! site, n(?i), takes on the values +1 (-1)
when there is an A (B) atom at the lattice position ?i’ In
the initial state a specified number, pN, of randomly chosen
sites are occupied by A atoms and the rest by B atoms. This
corresponds to an infinite temperature state. The relative
concentration of A atoms is p = (n + 1)/2, o < p < 1, vhere
n o= N I (?i, t) is the average '"magnetization" in the
lattice 1(fraction of A atoms less the fraction of B atoms),
which is constant in time, The evolution proceeds by
choosing, at a rate o/3, a pair of nearest neighbor sites,
i, j, in the lattice. If the sites are occupied by different
kinds of atoms there is a probability (which depends on the
change in the energy of the system caused by the interchange:
the so-called Kawasaki dynamics(11))‘that they will be
interchanged. For our model system the energy is assumed to
be given by the usual nearest-neighbor "Ising hamiltonian.
Periodic boundary conditions are assumed.

We have analysed with some details seven points
P., 3 =1, ..., 7, in the phase diagram of the model.
Pi-P¢ correspond to T = 0.59 T. and fractional concentration
of A-atoms p = 0.05, 0.075, 0.10, 0.20 and 0.50 respectively.
At this temperature the value of p at the coexistence line is
p, = 0.015, m = 0.97. The points P, and P, are at p = 0.5
and T :0.78TC and T = 0.89 respectively. At 0.78TC, p;=0.0613

m= 0.877, while at 0.89T_, p  =0.1246, m_= 0.75.
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_ The quantity of primary interest in our observation
was S(i,t), the structure function at time t following
quenching. s(k, t) is the Fourier transform of the spatial
correlation function G(;, t):

s(k, t) = %: exp(ik . T) G(F, t)y , (1)

6, ) =N <@, 0 -w) [n@, 051 (2)
i

where T and ?i run over the N lattice sites and k = (ZH/L)G R
= 0,+1, ..., +L1/2, (a = 1,2,3), specifies the first
Brillouin zone. The <.,..> represents an ensemble average
which could in principle be implemented on the computer by
méking "many" independent runs. Note that S(i, t) is
periodic in each component with period 2I/L, sS(k =0, t) =0
and '

N1 % sk, t) = 1-7n % . (3)

In order to compare with experiments on polycrystalline
materials we define an average structure function depending

only on the wave number k = 20u/L, wu= 0,7,..., /3 L/2,
S(k,t) =_ 1 _ s, /(-9 (4)
[ %]

1
T%]

where[ I is the sum over all values of i‘in the first
k
octant, k

o 1—

>0, a = 1,2,3, such that

(2n/L) (u-1/2)<|K|<(2n/L) (u+1/2)

I1. BEHAVIOR OF S(k, t) ,

Figuré 1 shows plots of §(ﬁ, t) vs. k at different
times for quenches to the point P]. These plots are
qualitatively similar to those obtained at other points
Pj' At t=0, the system is completely disordered and §(i,0)w1
independent of k. The system is then quenched to some low

temperature inside the coexistence curve. Thermal processes



Fig.

Development with time of S(%, t) versus k at
different times in the case of a quench of the

‘model system with N = 125,000 sites to the phase

point P1. Note that, in this case, we only have
S(k, t) at forteen different values of k, k=2Tu/50,

‘w=1-14, which have been connected by straight

lines. Increasing values of the time correspond

to the different graphs from the bottom of the
picture to the top. The graphs at different

values of the time tend to form a common envelope
for k>kmax’ the location of the maximum intensity
(which is shifting with time towards smaller values
cf k). This is in contrast with the cross-overs
characterizing the tail k>k_ of the S(k, t) vs.

kK Curves in the case of quenches to P4(Fig. 2, Ref,



'U\ .

7¢) and to P5 (Fig. 2, Ref, 7a).

lead to the migration of A and B atoms, proceeding (in our
model) via nearest neighbor exhanges given by the

transition probability mentioned above, which now drive the
system towards equilibrium corresponding to segregation into
A-rich and B-rich regions. As these regions grow in size,
S(k, t) develops a peak at k = Kooy (t) = NI/R(t) where R(t)
represents some characteristic length in the system at time
t following the quench. This length will grow in time as
the single phase regions grow to macroscopic sizes so that
kmax(t)+0 as t-e in a macros;opic system. (In the computer
simulations we obviously have R(t) < % L.) For contrast we
also show, in Fig. 2, the qualitatively very different
behavior of S(X, t) when the system is quenched to the point
Pf p= 0.0613, T= 0.78TC, at the coexistence curve.

) *
Fig. 2. Same as Fig. 1 in the case of a quench to P ,



T = 0'78Tc’ p= pV(T)_= 0.0613, i.e. on the
coexistence line at the same temperature as Pes
A comparison with Fig. 1 shows up how the model
system differentiates P* from Pj, say. (Note
that the ordinate scale differs by two orders of
magnitude). Here increasing values of the time
correspond to increasing values of the number
labeling the different graphs.

Comparisons of the graphs for points P1 to Pv5
shows that the speed of the segregation increases, in units
of attemptéd exchanges, with the distance of the quench
from the coexistence line. The same is true for the points
P; to P,. This accounts, in the main, for the widely
different time lengths to which we ran our simulations. It
is clear that close enough to the coexistence line at T20'6TC
the relaxation time would become so long that the system
would appear,. for all practical purposes, to be in a
metastable state while close to T, the system will be in the
region of critical slowing down. In either case the
segregation would not be visible in our simulations.

It should be noted that the relaxation time
increases rapidly as one approaches the coexistence line.
There is no evidence, however, in our simulations of any
abrupt change in the behavior on crossing any of the proposed
theoreticalispinodal lines. There are some differences
however in the way in which S(i, t) evolves with time in
different parts of the coexistence region: for quenches deep
in the coexistence region S(f, t) decreases strongly after
reaching its maximum value while near the coexistence line it .
remains approximately constant for the times observed. This
behavior is also true for other values of k>}<max and results
in "cross-overs'" at large k seen in S(?, t) vs. k curves,
for P4 in Fig. 2a of Ref. 7c¢ and for P5 in Fig. 2 of Ref. 7a
but not in Fig. 1 here. Such <cross-overs have been
conjectured(4) to be the hallmark of quenches inside the

spinodal curve and our simulations give some evidence of



this. The evidence .is however not entirely conclusive since
the differences may be due to not waiting "long enough'" near
the coexistence line and the scatter is relatively large
(see e.g. Figs. S-Q in Ref. 7a corresponding to the quenches
to Pg - P;). let $(X, t) be the linit of sk, t) as Now -,
It is this smooth function about which we would like to
obtain information from our computer simulations. Hence it
is essential that we look for quantitative features in our
computed S(f, t) which will go over smoothly to the '
macroscopic g(k, t). In order to understand the long time
behavior of §(i, t) we note that as t+» we expect that

g(i, t)+§eq(k), the equilibrium structure function of a
macroscopic system fully segregated into two pure phases.
This is given by

2

Seq(K) = (md = 7%) F(K) + 5_(k; T) (5)

where 6(k) is the sphericalized Dirac delta function at

k = 0, gc(k; T) is the equilibrium structure function on
the coexistence line (by the symmetry of our model system
this is the same for both pure phases) and mO(T) is the

. spontanuous magnetization (equal to T on the coexistence
line). As already:noted, the system, after quenching,
will segregate locally into regions (often referred to as
grains, clusters or droplets) of A-rich and B-rich phases
and then will evolve further by the growth of these
segregated regions (coarsening or Ostwald ripening). We
might expect that after some initial time the structure
function "within" the Eegregated regions will be close to
its equilibrium value Sc(k; T). It seems therefore

Teasonable to consider the quantity

o 2

S,k 1) = [S(k, t) - S_(k; Tjj (m? -1

- 7

>

(6)

which approaches ¢(k) with time, as most relevant for the

description of the coarsening process.



We shall therefore consider in our analysis also

the analogous quantity for our finite system

2

s;(k, t) = 5K, ©) - s ] ] &

S IR )
in the hope that it will more clearly reveal the essential
features of the coarsening process. The function Sc(ﬁ; T)
was obtained, for the three different temperatures T
considered here, by quenching to points on the coexistence
like and waiting for the system to reach equilibrium.

A quantifagtive feature of s(k, t) we looked at in

our simulations were the moments

i)

sjci, ty ,n=1,2 ,
0
(8)

where K 0.55m. We found that < k2 > [/ <k >2 was
essentially independent of t. This suggest that our
51(f, t) with discrete argument k having spacings 20I/L might
be relatedafor late times to the macroscopic structure '
function '51(i, t) via a smooth scaled function F such that

K
k (t) = <k® > = 1 x"s. (%, t)/ :
n - 1 k=

k=0

24

s, (%, t) = 8§k, t) = b()F(R/R() ) (9)

where K(t) is some characteristic wave vector in the system
and b(t) is a normalizing factor. Now 3if this is indeed
the case, we have from Eqs. (3) and (6) that

JBkzs1(i,t)dk=b(t)x3 (1) |x%F(x)ax=28% , - (10)

independent of 1. The integration on the left side of Eq.(10)
is over the first Brillouin zone and so the x integration is
over a cube centered at the origin with sides of length
2T/K9t). For large t, K(t)»0, and the integral in Eq. (10)
‘can be taken over all space. Since F(x) can be expected to
decay quite fast for large x very little ergorswill be made

K

even at quite early times if we set b(t)=2I and normalize

F so that

//
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J-;xZF(x)dx =1 . (11)

o
To test this scaling hypothesis and find the smooth F(x)
from our simulations we define a function of two variables,
x = k/kl(t) and t, by the relation

F(x;t)= § k7 () S, (xk,; (1), t>/§ s 00,0, (12)

=0
and then see whether for late times F(x;t)=F(x) is a smooth
function of x independent of t.l

"The values of F(x;t) = F(x) independent of t,
obtained from our simulations for large times are shown in
Figs. 3-5 for ''deep", '"intermediate' and "shallow'" quenches.
While these curves are all similar, the 'experimental" scatter
within each group is significantly smaller than between them.
We believe therefore that there is a real, albeit small,
difference between the scaling function F(x) at different
quenches. The similarity F(x) near TC and near the coexistence
curve for small p would appear to suggest some sort of
"spinodal line" criticality. This is an intriguing question
which is however very difficult to answer at present.
Figs. 3-5 also show the function F(x;t) at some earlier times
as indicated. We have also included in those figures a fit
of the form (a] *oa, X ) to the '"'tail", XPX_ of the
scaling function F(l) The results of our analysis of L (t)
are summarized in Table I where i1t is shown that the data
consistent with the Lifshitz-Slyzov pred1ct10n42’ 78, 9)-

:u~

ITI. COMPARISON WITH EXPERIMENT

The model used in our computations certainly
involves a great over-simplification of the behavior of real
alloys where the processes we are interested in are greatly
influenced by elastic distortions, grain boundaries, .
vacancies and other competing phenomena. The behavior of the
model can thus only be compared with that of real materials

in highly idealized conditions. Despite this, previous



different

fits to k

1 :

TABLE 1
~ phase max. -a 3 3
of run a A B t,
0.59TC ,
P1 14000 0.35 8.8 1.5 6800
5%
O.59TC
P2 10200 0.23 7.5 1.5 4000
7.5%
0.59TC
P3 73000 0.21 3.6 1.5 2500
10%
0.59TC ,
P4 3800 0.19 2.3 1.7 1500
20%
0,597,
Ps 650 0.19 1.2 3.0 350
50%
0.78TC
P6 1700 0.23 1.4 3.9 1000
50% ‘
_ 0.89TC
P 6600 0.25 3.5 3.9 1000
7 50%
Table I. Values of the adjustable parameters for two

first assuming a simple

power law (here all the data except the very
is included in the {fit),

early one

assuming a lineal behavior of k;
(using only data for t>t ) Here t,

approximate time at whlch we obser\ed the onset

and then

3 with time

is the

of the dynamical scaling of the structure

function according to Eq.

(9).




Fig.

The scaling function F(x) in the case of '"deep"
quenches: the triangles correspond to a quench to
P4 and they include times t>1500, the asterisks to
P, and t>350, and the circles to P and t>1000

(see also caption for Fig. 4).

The dashed line represents the shape of the
function F at an earlier time when scaling does not
yet hold: it was drawn connecting the discrete
values of F(x;t) for t=110 in the case P4. The

-1,

dotted line corresponds to a function F aqt

a, x4 trying to fit the experimental data for



Fig.

4.

X>X the location of the maximum of F(x).

max’

The function F(x;t) defined in Eq. (12) is plotted
here versus x = k/kl(t) in the case‘of the
("intermediate'") quench to P.. Every symbol (o, 1,
2,3,...) in the graph corresponds to a different
value of the time: the first one (zero) is for
t=2500, the time increasing up to t=7300 which is
represented by crosses. All the values of F(x;t)
in that time interval seem to lie on a common curve
at different values of x. The dashed line was
drawn connecting the values of F(x,t) at t=228. The
dotted line corresponds to a fit L aqt oa, x4 to

14 3 1) » ,
the tall XPX_ o of F(x).



Fig. 5. Same as Fig. 7 in the case of ("shallow") quenches
to P, (triangles; all the data t>6800 is included
in this case), P, (asterisks, t>4000) and P,
(circles, t>1000). The dashed line is for P, and
= 209.

4

analyﬂgg’ggﬁﬁ shown that our results are frequently very
similar to eXperimental observations(7d). In order to make
comparison with experiments, however, care must be paid to
the relation between the units and other characteristics in
our model and those corresponding to real alloys(g).

We have analysed the data reported by Singhal,
Herman and Kostorz(]z) corresponding to the Au-60 at % Pt
alloy quenched into iced brine; the aging at around 823°K
was observed by neutron scattering during 900 sec. The
composition of the sample lies at the center of the
miscibility gap, and T:0.6TC so that the experiment may be

/5
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compared with our simulations at PS and perhaps-at P4. The
scattering analysis gives a structure function with a shape
quite similar to the one observed in our simulations,
including the characteristic crossovers at that temperature
max" We also find that the
data in Ref. 12 satisfy the scaling hypothesis in the time
range 120 sec < t < 900 sec for all but very large x, say
x>1.8, see Fig. 6. Indeed the experimental function F(x)

and composition in the tail, k>k

is quite similar to the corresponding one in the case of
our simulations at P, and P.. In fact one can make the data
from the actual and computer experiments lie on the same
curve by only re-scaling the vertical axis, as seen in Fig.
6.

Fig. 6. We compare in this figure data from the computer
simulation (empty symbols) with the experimental
data in Fig. 3 from Ref. 12 (full symbols)
corresponding to Au-60 at % Pt alloy quenched to
T 0.6 TC. The full circles are for t = 900 sec
and the stars for t = 360 sec, both lying on the
same curve except perhaps for x > 1.8. The broken

line 1 is for t = 0 (the initial sample was



already decomposed to some extent), and the
broken line 2 is for t=30 sec, in both cases
scaling does not yet hold. The empty circles
correspond to our simulation at Pg while the
empty squares are for.P4 (see Fig. 3). Only the
vertical scale in Fig. 3 needed to be changed in
order to obtain the present fit.

We have found a similar agreement between our

scaling function F(x) at P] and PZ’ and the one reported by

Guyot et al

(13) corresponding to a sample of AL-15 at % In

quenched to T:O.6TC; this is shown in Fig. 7.

Fig.

~1
.

The data in Fig. 5 is compared with experimental
data (Ref. 13) on an A£-15% Zn alloy quenched to
90°C (so0lid 1ine) and to 110°C (dashed line) (both
T O.6TC). The vertical and horizontal scales in
Fig. 5 where changed to obtain the present fit; a
fairly good fit can also be obtained, however, by

changing only the vertical scale in Fig. 5.



Finally, recent observations on binary fluid
mixtures report a behavior which is also qualitatively similar
to the one shown by our model system. In particular, Gold
burg's and Knobler's groups findcg) a scaling behavior of
§(k, t) with a function F(x) which looks quite similar to
our function.
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