B

Kinetics of Phase Segregation: A Review of Some
Racent Results* '

_ INTRODUCTION R
The terins nucleation, spinodal decomposition, coarsening, Ostwald
ripening and Smoluchowski coagulation have all been used to refer to
phase segregation processzs occuring when alloys, liquid and glassy
mixtures, protein solutions, etc., are very rapidly cooled, i.e., quenched,
from a high temperature homogeneous state to a temperature where the
equilibrium state is one of coexistence of two phases with different
compositions. Since there is no time during the quench for the slow
diffusion controlled process of spatial segregation to take place, the
system finds itself after the quench in a homogeneous nonequilibrium
state. It will then undergo an evolution towards the phase segregated
equilibri Specified by the temperature of the bath with which

“other parameters of the system, e.g., the kinetic energy of the atoms,
have come to equilibrium “instantaneously” during the quench. (Other
clever methods, e.g., a sudden pressure change, have been used to bring
about a similar homogeneous nonequilibrium state in some binary fluid
mixtures.) In this Comment we review some findings on these processes
obtained from computer simulations on simplified models of AB alloys,

" e.g., Al-Zn, and relate them to experimental observations.
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THEORY

The theoretical analysis of the phase segregation processes in alloys
generally deals either with (a), the evolution of the structure function
S(k,r) or (b), the grain distribution c(/,#); ¢ is the time after quenching,
k is a reciprocal wave vector, and ! is the grain size. This division
comresponds to the two principal experimental methods of study: x-ray
or neutron scattering and electron microscopy. We shall refer broadly
to these as Cahn—Hilliard and Becker—Doring types of theories, re-
spectively.

(a) The Cahn—Hilliard type of theory'-? assumes that although the
system is undergoing an irreversible process during coarsening, it may
be described by a free energy of the form -

F = f [f(n) + -;-K(Vn)z] dr. @.1)

Here n = n(r,r) is the local composition variable (fractional concen-
tration of A atoms less that of B atoms) at position r at time ¢ and f{in)
is a local free energy density which, for temperatures belcw T, has
two distinct minima at values of n in the two coexisting equilibrium
phases. The term 3K(Vn)? with K > 0 is the contribution to the free
encrgy density from the nonuniformity of the system. The (variational)
derivative of F with respect to n(r,r) gives rise to a local chemical
potential whose gradient is the driving force for phase segregation.

These ingredients lead to a nonlinear kinetic equation for n(r,) whose
linearization around n, the average composition of the system, gives a
simple expression for the early time evolution of S(k,f) (when deviations
from uniformity arc small):

S(k,n) = S(k,0) cxp [2R(k)1], 2.2)
R(k) = — MK f (n)lon* + Kk?],

where M > 0.

Using (2.2) we may distinguish two regions inside the coexistence
curve: a spinodal region where #fn)/an* < 0 and a metastable region
" where *flan* > 0 (see Figure 1). If the quench is to the spinodal region
the system is unstable with respect to weak long-wavelength fluctuations
[R(k) > 0] and the growth of these fluctuations into zones of the co-
existing phase is then known as spinodal decomposition. In the meta-
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FIGURE | Temperature-density section of the phase diagram corresponding to the
infinite three-dimensional binary alloy (or Ising) model. The cocxistence curve (full finc)
is drawn according to a low-temperature serics expansion and 2 (5/16) law near T, = 4J/
0.88686 kg. The broken lines are classical (mean-field theory) spinodals, supposed bound-
ary between metastable and unstable states, according to different assumptions about the
focal free energy density. The text refers to data corresponding to the quench of the
{finite) model system described in Section 3 from an infinite temperature state to the
phase points P;, j = 1-10. The phase points Py—Ps are characterized by T = 8J//3kg =
0.59 T. and p = 0.05, 0.075, 0.1, 0.2 and 0.5 respectively. P, and Py (both at p =
0.5) correspond to T = 4J/1.137 ky = 0.78 T_ and T = 4J/kp = 0.89 7, respectively.
Py—Po are at the coexistence curve at 7 == 0.59 T, 0.78 7. and 0.89 T, (where p =
0.01456, 0.0613 and 0.12463, respectively).

stable region the system is stable with respect to small fluctuations, but
will still be unstable with respect to strong localized fluctuations (i.e.,
nuclens formation). Phase separation then requires some extra activation
energy and is said to be a consequence of the nucleation mechanism.
While the above simple picture provides good insight into the phe-
nomena of interest, it is inadequate to describe the experimental data.

- 203



The latter gencrally show a less clear distinction (if any) between un-
stable and metastable regions, a slower than exponential growth of S(k,r)
and a decrease in the location of the peak of S(k,?), kp.(f), with time
(corresponding to an increase in the dimensions of the phase separated
regions). Further analysis® has shown that nonlinear effects account for
some but not all of the discrepancies with experiment.

One of the conceptual problems of the Cahn—Hilliard type of theory
concerns the meaning of the local free energy functional fin) (first
introduced by van der Waals and Gibbs) with its regions of negative
curvature. As is well known, such a form cannot be derived from
equilibrium theory without the addition of extra constraints. The correct
formulation of such constraints and the derivation of an appropriate free
energy based on them still requires more work.

(b) The Becker-Déring types of theories*> are simplest to consider
when the composition 7 is close to the coexistence curve with a low
concentration of A atoms. They then describe the state of the system
as a collection of well separated, more or less spherical, grains of the
minority A-rich phase. The coarsening is then expected to proceed
predominantly by single atom processes where larger grains grow at
the expense of smaller ones, which tend to be dissolved. Tais is the
mechanism known as Ostwald ripening. Using macroscopic concepts,
this theory predicts that the mean volume of the grains will grow linearly
in time: A3(¢) = AJ + const X ¢ where A(f) is the mean radius at time
t after quenching. In situations where the grains are not so well separated
the coarsening may proceed by effective diffusion and coagulation of
clusters of solute atoms, the so-called Smoluchowski coagulaiion. Sim-
ple dimensional arguments then lead to the prediction A ~ 15,

These considerations are also relevant for analyzing the structure
function from scattering experiments. Assuming that the location of the
peak of S(k,?) is a measure of the characteristic length \ gives ko, ~
VA(7). Again it is difficult to assess-the validity of the assumptions in
the grain dynamics approaches or to make more quantitative predictions,
and a more complete theory is highly desirable.

COMPUTER SIMULATIONS

The model used in our simulations consists of a simple cubic lattice
with periodic boundary conditions whose N sites (N = 27 000 or
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125 000) are occupied by either A or B particles; at each site i, n; =
+ 1, respectively. The two possibilities can also be interpreted as being
an occupied or an empty site, or as being an “up” or “down” Ising spin.
There is a “ferromagnetic” interaction between nearest-neighbor sites:

E=-IXnny J>0, (3.1

B,

favoring segregation into an"A-rich and a B-rich phase. This gives rise
in the infinite system to a symmetric coexistence curve whose shape is
numerically well known.

In the simulations the kinetics of the system is represented by “Ka-
wasaki dynamics,” a Markov process whose basic step is the interchange
of an A and a B atom on nearest neighbor sites with a probability
exp(—BAE)/([1 + exp(—BAE)], where B = 1/ksT, T is the temper-
ature of quenching and AEj is the change in energy resulting from the
interchange. This procedure assures that the system will reach asymp-
totically a canonical equilibrium state with the average fraction of solute,
A, atoms, p = (@ + 1)/2, 0 < p =< | remaining constant in time. The
rate at which a given bond is picked for a possible exchange is (1/3)e;
a~! is our unit of time.

RESULTS FROM COMPUTER SIMULATIONS

The dots in Figure 1, labeled 1 to 10, represent density-temperature
points P, to which the mode! alloy was quenched from an initial random

. configuration corresponding to an infinite temperature; thcyarcdcﬁmd

in the caption for Figure 1 and in Table 1.

Structure Function
A quantity of primary interest in the simulation was the structure func-
tion S(k,?) which is defined here

Skp) =N"'F ety <[n(n.t) = A] [a(r; + 1)) — ﬁ]>, “.n
r I
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TABLE ]
Values of the adjustable parameters assuming a linear behavior of ki * with time using
the data for t = ¢,

ki3 = A + Bv10®,

Maximum =1 h~r*

Phase duration

point of run L NR A B L a

P %P7 1400 0 1 88 15 680 03
P ONT o0 s 1 75 15 40 03
P 0-15(;’%7'*' 730 50 1 36 LS 2500 021
po O 390 30 8 23 17 150 0.9
P 0T 650 30 8 12 30 35 019
pe O8I 170 30 8 14 39 1000 023
P 0BT 6600 30 8 35 39 1000  .0.25

1, is the approximate time at which we observed the onset of the dynamic scaling of
the structure function according to Eq. (4.6). The values of the exponent obtained as-
suming a simple power law behavior are also shown (here all the data except the very
carly onc are included in the i), L refers to the size of the system, and NR is Tic number
of independent runs made at that particular phase point.

where n(r) = n;, r and r; run over the N lattice sites and k¥ = (2n/
L, pe =0, =1, ..., £L2(ax = 1,2,3), L = N* s in the first
Brillouin zonc. The < > represents an ensemble average which could
in principle be implemented on the computer by making many inde-
pendent runs. (In practice we used between one and eight independent
runs—sce Table I—and relied on the spatial averaging given in (4.1)
as well as on an average over various time intervals.) According to the
definition (4.1), Sk = 0,1) = 0, N-' . S(k,f) = (1 — 7%, and S(k,0)
= (1 — ), k #0, corresponding to the initial random configuration.

We consider a “spherically” averaged structure function S(k,r) de-
pending only on the wave number k = 2wp/L, p = 0,1, N3L
2, obtained by averaging S(k,?) over all values of k in the ﬁrs‘ octant,
ke =0, a = 1,2,3, such that ’

@uiL) (i — Y < k| < @mL) (0 + b,
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In our simulations we were able to monitor S(k.z) for 10 shells, p =
.,10, for the L = 30 lattice used at points P, to P; and for 14
shells in the L = 50 lattice used for P, to P5 and for Ps to Py,.
Figure 2 shows plots of S(k,7)/(1 — #°) versus k at different times
for a quench to Ps. The plots for other points inside the miscibility gap

S (K)

10.73

~
@
0.00 .65 1.30 1.95

’ K

FIGURE 2 3(k.t) = S(k.e¥Q — #°) vs k (in units of the lattice spacing) for the quench
to the phase point Ps (decp quench). Increasing values of time, in units of attempted

interchanges per site, correspond to the different graphs from the bottom of the picture
to the top.
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are qualitatively similar.® A different behavior of S(k,f) occurs when
the system is quenched to the points Pg—P,q at or outside the coexistence
curve. In those cases, S(k,t) rapidly approaches a common envelope
which has the Omstein—Zemike form S(k) ~ (8 + Ky,

A comparison of the behavior for points P, to Ps shows’ that the
speed of the segregation increases rapidly, in units of a™?, with the
distance of the quench from the coexistence line. The same is true for
the points Ps to P,. This accounts, in the main, for the widely different
time lengths to which we ran our simulations (Table I). It is clear that
close enough to the coexistence line at T = 0.6 T, the relaxation time
would become so long that the system would appear, for all practical
purposes, to be in a metastable state, while close to T, the system will
be in the region of critical slowing down. In either case the segregation
would not be visible in the simulations. :

While there is no evidence in the simulations of any abrupt change
in the kinetics on crossing any spinodal line, there are some differences
in the way in which S(k,z) evolves with time in different parts of the
coexistence region. For quenches deep in the coexistence region S(k,t),
for fixed k, decreases strongly after reaching its maximum value while
near the coexistence line it remains approximately constant for the times
observed. This behavior results in the crossovers at large & seen in S(k,¢)
‘versus k curves in Figure 2 which do not occur, say for P,. Such
crossovers have been conjectured to be the hallmark of quenches inside
the spinodal curve.

Scaling

Experiments and theory always deal with macroscopic size systems
which correspond in the model to N — =, k becoming a continuous
variable and S(k,z) a continuous function of k. Let ¥(k,t) be the limit
of S(k,t) as N — o and F (k) be the equilibrium structure function of
a macroscopic system fully segregated into two pure phases, i.e., the
expected limit of F(k,t) as r — . This has the form

Feglk) = (7@ — BHXE) + Fooelk:T), 4.2
where 8(k) is the sphericalized Dirac delta function at k = 0, ﬁo(T)' is

equal to 7 on the coexistence line and P (k,;T) is the equilibrium
structure function on that line. This suggests that a useful quantity for
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analysis in our small system, i.e., one that will more clearly reveal the
essential features of the coarsening process in macroscopic systems, is

Sik.t) = [S(k,) — Scoux(k;T)] (B — 7). “4.3)

The function Sco.(k;T) (which is the same for both pure phases by
the symmetry of the model) was obtained for the three different tem-
peratures T considered here by quenching to the points Pg , Py and Py
on the coexistence line and waiting for the system to reach equilibrium.
It was then conjectured that the function &y(k,1) may be related at late
times to a scaled function & such that

Fi(k,1) = b(1) F(K/K(1)), 4.4
where K(f) is some characteristic wave vector in the system. Remem-

bering that the sum over k in (4.1) is time independent, we set b(f) =
272 K3 so that

J; wxz@(x)dr =1L “.5)

To test the extent of scaling and find %F(x) from our simulations we
defined a function of two variables, x = k/k,(f) and ¢, by the relation

Lim) K 0810k (1),0)
S ESik.)

k=0

F(x;) =

(4.6)

where k = 0.55% (i.e., we dropped the last two shells for L = 30),
and then looked whether for late times F(x;t) = F(x), a smooth function
of x independent of ¢. This was in fact what we found.

The values of F(x;t) = F(x) independent of ¢, obtdined from the
simulations for large times are shown (along with real experimental
data; see figure caption) in Figure 3 in the case of the quenches to Py,
Ps and Ps. While the curves obtained in this way for “deep” (P,—Ps),
“intermediate” (P;) and “shallow” (P, P, and P;) quenches are all
similar, the scatter of the data within each group is significantly smaller
than between them.” We believe therefore that there is a real, albeit
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FIGURE 3 The scaling function F(x;t) defined in Eq. (4.6) is plotied here vs x m
kky(r). This figure compares dala from the computer simulation (symbols) with the
experimental data in Figure 3 of Ref. 14 (full line) comresponding (0 Au-60 at.% Pt alloy
quenched to T = 0.6 T.. Only the vertical scale was adjusted to obtain the present fit.
The asterisks correspond to the simulation at Ps (they represent all the data for ¢t = 350
a!), the triangles are for P4 (representing all the data for ¢ 3 1500 a™'), and the circles
correspond to the quench to Ps (t = 1000 a™).
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small, difference between the scaling function F(x) at different quenches.
This change in the scaling function may perhaps be explained by the
difference in the boundaries of the single phase regions changing from
smooth to corrugated as we get closer to the critical point. The similarity
of F(x) near T, and near the coexistence curve for small p would appear
to suggest some sort of “spinodal line” criticality. This is an intriguing
question which is very difficult to answer at present.

We have also performed a fit to F of the form («; + ax*)! for x
> Xmax, the location of the maximum of F(x), which seems to be
suggested by Ref. 8. While this is approximately the behavior of the
data for 1 < x = 2, it clearly deviates from the x™* behavior at larger
x values. This may be due to the fact that the F(x) for x > 2, where
F(x) < 1, can be determined only poorly and it does appear that it may
converge slowly to x* for2 < x < 3.

Moments

A quantitative feature S(k,t). which can go over smoothly to the mac-
roscopic F(k,), is the moments

ki) = <> = 3 ESyks)/ 3 Siky). m=12 4D

k=0 k=0

where x = 0.55w as before. The analysis of k(1) ~ kn.(f) according
to the predictions ky(1) ~ r° shows a slow time dependence of the
exponent a which tends to increase with time. Table I lists the g values
obtained from a log-log fit to the data excluding only the “very early”
times (typically for r > 200). Those values, interpretcd according to
the grain dynamics approaches described in Section 2, suggest that the
effective diffusion and coagulation of the grains is the predominant
mechanism in the case of deep quenches (e.g., at P, and Ps), (and also
during the early stages of the evolution at almost any location inside
the coexistence line) while single atom processes tend to dominate when
the quench is close to the coexistence line (e.g., at P, and P,) late
in the evolution. As a matter of fact, the k; values corresponding to all
the phase points studied seem to follow, after a time #, (which marks
the onset of the dynamic scaling of the structure function), the Lif-
shitz-Slyozov prediction that k;3 ~ A3 evolves linearly in time (Table
D. )
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Cluster Distribution

A cluster is defined in our lattice model system as a group of A atoms
linked together by nearest-neighbor bonds. At low concentrations of
the minority component, large clusters in our model are expected to
correspond approximately to the grains observed by microscopy in real
materials.

The cluster distribution c(l,) specifies the total number of ciusters of
size [ at time ¢ after quenching. At P; to Ps the time evolution of c(1,¢)
seems to follow the general predictions of the Becker—Doring and Lif-
shitz—Slyozov theory, but detailed comparision with theory is hampered
(among other reasons) by: (i) imprecision in the separation between
“small” and “large” clusters, the former being part of the vapor phase,
(ii) the scarcity and corresponding large fluctuations in the number of
large clusters and (iii) lack of knowledge of appropriate rate constants.
We shall therefore only describe here some gross features of the cluster
distribution as observed in quenches to T = 0.6 T; see Refs. 9 for
other details.

For values of p very close to p, (== 0.015), the corresponding saturated
vapor density, ¢(/,z) rapidly settles to a stationary metastable value on
the time scale of the computer experiment. At p = 0.05 the distribution
of “small” clusters (say, 1 = [ =< 10 or so) still approaches rapidly a
quasistationary distribution characteristic of metastable states but the
size of the large clusters now increases. 1t does so very slowly up to ¢
= 2000 ! but afterwards it increases at a rate comparable to quenches
deeper in the coexistence line. It thus seems that it takes some time for
the system to find its way out of metastability, a situation which might
be related to what experimentalists have described as a “cloud point”.16-1%
At p = 0.075 there is from the beginning a measurable rate at which
larger clusters develop, i.e., a finite nucleation rate. As the density is
increased further, & = 0.1, we observe the early appearance of relatively
large loose clusters (I = 50) coexistirig with very small clusters of size
one to ten or so. The number of A atoms and their relative distribution
in the small clusters is close to that observed in the A-poor (gas) phase
equilibrium state. The system then undergoes a slower process in which
the larger clusters grow and become more compact. When the density
of A atoms is increased further, the system undergoes percolation, i.e.,
the appearance of “infinite” size clusters. Our definition of clusters is
then useless and if the concept is to remain meaningful a new definition
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which considers not only the size but also the shapes, composition and
distribution of the clusters is required. Just how well this can be done
in a microscopic lattice theory is still an open question.

COMPARISON WITH EXPERIMENTS

The model used in the simulations certainly involves a great oversim-
plification of the behavior of real materials. Despite this, the simulation
results are frequently very similar to experimental observations. For
example, the location and height of the peak of the scattered intensity
in the classical experiment by Rundman and Hilliard'® on an alumi-
num-zinc alloy at 423°K (= 0.7 T.) can be roughly characterized by
the simple power laws k...(1) ~ 1 and S(kou(f),0) ~ £¢ respectively
with a ~ 0.2-0.23, values roughly consistent with those found for the
model system quenched to P,.

In comparisons with real experiments, attention must be paid to the
relation between the units and other characteristics of the model and
those corresponding to actual materials. To get at least a crude idea of
bow to compare time scales, we note that the diffusion coefficient of a
single A atom in the model system filled with B atoms is D = o/6,
since the probability that a given bond will be tricd in time dr is
(1/3)adr and if tried, the probability of an exchange is . We therefore
think of «~(T) as roughly comparable to aj/6 Dy(T) wherc a, is the
lattice spacing and Dy(T) is the diffusion constant of a real alloy at
temperature T in the limit of zero concentration of A atoms. The lattice
spacing g, is the unit of length in the model. The relevant parameters
for the Al-Zn alloys are estimated to be a; = 3 A, 7, = 350°C and
Dy ~ 107"® cm?™! at T = 0.6 T.. According to this estimate, o' ~
50 s at 0.6 T, and the physical time interval in our studies at P, to Ps
is many hours. A similar estimate at 0.8 T, gives a~! ~ 10~* s. While
these are at best only order of magnitude computations, it seems that
our simulations at 0.6 T, can be compared with experimental obser-
vations on real alloys (where the system relaxation is typically followed
for some hours) while one has to be cantious at higher temperatures.
We also note that the smallest grains measured in typical experiments
contain between 30 and 150 atoms, and the largest ones about 3 x 10°
atoms, while the largest clusters observed in our simulations at P,—P,
contain no more than 800 A atoms.
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Other possible causes of differences between the behavior of the
model and experimental observations can be found in the quenching
rate, which is finite in real experiments but infinite in the simulations.
We have checked that the quenching process may influence the sub-
sequent evolution. For instance, we have been able to reproduce qual-
itatively the “untypical” (with an initial increase of kq..(f) corresponding
to an initial decrease of the mean clusters radius) observations by Allen
et al.,** corresponding to room temperature aging of Al-Zn quenched
into ice water from T = 0.93 T, by simulating a similar double quench-
ing of our model system. The influence of the quenching process has
also been reported in the case of some liquid mixtures'? and other
systems. '? ,

Encouraged by this agreement we have done a more quantitative
analysis of the data reported by Singhal er al." corresponding to the
Au-60 at.% Pt alloy. The experiment gives a structure funciion with a
shape quite similar to the one observed in our simulations or in the
Rundman-Hilliard experiment on aluminum-zinc, including the char-
acteristic crossovers at that temperature and composition on the tail, k
> k... We have also computed the function F(x,t) defined in Eq. (4.6)
taking as S,(k.7) the experimental data in Figure 3 of Ref. 14. We find
that the data satisfy the scaling hypothesis in the time range 120 s < ¢
=< 900 s for x < 1.8; see Figure 3. The experimental function F(x) is
quite similar to the corresponding one in the case of our simulations at
P,, Ps and Pg. In fact, one can make the data from the actual and
computer experiments lie on the same curve merely by rescaling the
vertical axis, as seen in Figure 3.

We find” a similar agreement between our scaling function F(x) at
P, and P, and the one reported by Guyot er. al.'® correspending to a
samplc of Al-15 at.% Zn quenched to T = 0.6 T.. Dynamic scaling
also appears to hold for other aluminum-zinc samples studied except,
in some cascs,'® for those at very high temperatures where the scattered
intensity is far from saturation and a very large incubation time is
observed. Guyot and co-workers have also reanalyzed the temporal
evolution of the mean grain radius in their experiments by electron
microscopy and find!® that their data are consistent with a Lif-
shitz—Slyozov behavior, in agreement with the data from cur simula-
tions. Thus, it seems that the behavior of real binary alloys and the
behavior of the model alloy described in Section 3 are very close to
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each other, and that the dynamic scaling of the structure function and
the linear increase with time of the mean clusters size are two basic
features of the phase segregation phenomena at late times.

Recent observations on binary fluid mixtures'?-*’-!* report a behavior
which is also qualitatively similar to the one shown by our model system
(note, however, when making comparisons that the diffusion coefficient
is much larger for fluids, 10*-10"% cm?s~!, than for alloys). In partic-
ular, Goldburg ef al.'? have found a scaling behavior of $(k,1) with a
function F(x) which looks quite similar to our function. Dynamic scaling
with all the above characteristics has also been reported in a quasibinary
glass,'® He—*He mixtures and some features occur also in other ma-
terials. -2 Further experimental and theoretical work is nceded to es-
tablish the actual range of this kind of universal behavior and develop
a more complete theory of the kinetics of phase transitions.

OTHER SYSTEMS

The dynamic scaling of the structure function has also been observed®!

" in computer simulations of an ordering model binary alloy described

by a Hamiltonian like (3.1) with J < 0. This models the kinctics of
quenched alloys like Au—Cu which tend to form ordered superlattices
atlow temperatures. Simulations at a compositionn = 0.5 give evidence
that the “staggered” structure function scales as kr'2. This can be under-
stood by assuming that the radius of the ordered domains increases as
12, The corresponding two-dimensional system behaves in a qualita-
tively similar way.

Other computer experiments®? have been carricd out on a model
system (“mctamagnet”) with energy

E= -J En,nj +aod D o+ X 2 m, J<0. (6.1

n.n.n,

This may model alloys such as Fe—Al which are known to have tricritical
points, mixtures of *He—*He, or chemisorption systems of adatoms on
a substrate. Simulations on a two-dimensional system indicate that the
sublattice magnetization structure function exhibits early time scaling
Sy(k,1) = r°F(kr*), with characteristic exponent @ = 0.35.
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