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Abetract—We study the structure functions S(k, f) obtained from computer simulations of the time
evolution of a segregating binary alloy (ollowing quenching into the miscibility gap. They are shown to
have a simple scaling behavior, Sk, 1) ~ K~2(¢) Fik/X()}. The shape of the function F(x) depends some-
what on the part of the coexistence region into which the quench is made. Comparison with some recent
experiments on quenched alloys is quite satisfactory. The time evolution of K™t} appears to be lincar
for late times. consistent with the Lifshitz-Slyozov theory.

Résumé—Nous étudions les fonctions de structure S(k, 1) obtenues & partir de simulations sur ordinateur
de I'tvolution en fonction du temps d'un alliage binzirs prescutant uns ségrégation, aprés une trempe
dans la- lacune de miscibilitt, ©On montrs qu'silss  vérifient une loi  d'échells  simple
Stk, £) ~ K™ {OFRK/X()) La forme ds la (onction F{x) dépsad un peu da la parte du domaine diphasé
dnmhqndmﬁhhmumpunhonavecqudqmapéﬁmrémmwdaamn@u
trempés est aseez satisfnisante. L'évolution de X ~3(¢) en fonction du temps est linésire anrés un certzin
tempa, en accord avec [a théorie de Lifshitz et:Slyozov. .

Zzsammenerfsassag—Es werden die Strukturfunktionen S(k, f) untersucht, die mit Rechnersimulation des
Scgregationsveriaufes in ciner in die Mischungsliicke ab ten biniren Leglerung erghalten
wurde, Diese Funktionen weisen ein einfaches maBstdbliches Verhalten auf: S(k, ) ~ K™3(t) Fik/X(0)
Der Verlaof der Funktion F(x) wird ein wenig von dem Koexistenzgebiet ab, in welches abgeschreckt.
Ein Vergleich mit neueren Experimenten ist zufriedensteilend. Der zeitliche Verlauf von X™(t) scheint
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fir groBe Zeiten linear zu sein, welches mit der Theorie von Lifshitz-Slyozov {ibereinstimmt.

1. INTRODUCTICN

The process of segregation which occurs in mmany
alloys, e.g. Al-Zn, following quenching from the meit
into the miscibility gap determines various properties
of the alloy and is, therefore, of great importance, The
theoretical analysis of this process, variously de-
scribed as nucleation, spinodal decompositon, coar-
sening, and Ostwald ripening, is based mainly on the
classical worles of Cahn and Hilliard [1] and of Lif-
shitz and Slyozov {Z]. The former work, as formu-
lated by Cook [3], describes the evolution of structure
‘function S(k, t) while the latter considers the grain dis-
tribution n{/, t); here ¢ is the time since quenching, & is
a reciprocal wave vector, and [ is a grain size. This
division corresponds directly to the two principal ex-
perimental methods of study: x-ray (or neutron) scat-
tering for S(k, t) and elsctron microscopy for ml, ¢).
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Those classic works have been the subject of con-
siderable study, criticism, extension, etc, in recent
years; sce c.g. the work of Langer (4], Binder (5],
Furukawa [6], and others. These studies have made
use of computer simulations of this process in simple
model systems carried out by the authors and
others (7]. A particularly striking feature of thess
computer experiments, observed by us recently, is the
scaling behavior of the structure function,
Stk, 1) ~ (K]~ F(k/K(:). A preliminary report of
this work, for two quenches to low temperatures and
low values of the fractional concentration of the
minority component, was presented in Ref. [¥]. Such
scaling was also suggested independently on theoreti-
cal grounds by varicus authors [5, 6] and discussed in
some detail by Furukawa (9] :

In this gote we refine and extend the scaling analy-
sis of Ref. [8] to some new computer sirulations 22
well as to all of our previous ones, including those at
the center of the miscibility gap. We find that in ali
cases there is a scaling behavior after some initial
transient time: the scaling improves with the progress
of the evolution. We also find that there is a small but
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apparently real and systematic dependence of the
scaling function F(x) on the location of the quenched
state inside the miscibility gap: F(x) becomes more
peaked as we move away from the coexistence line.
Tan hanawine af the characreristic wave number K(¢)
Wit vine simms mecd dhificull to pin down with pre-
msion. Using an asvmptotic power law dependence
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appears to change from a = 0.2 near the center of the
gap to a = 033 at low concentrations of one com-"
ponent. Cn the other hand for late times when scaling
holds, we obtain a gsood fit with K™%(f) ~ A + Bt
(See Fig. 15 and Table 3) as expected on the basis of
the Lifshitz-Slyozov theory. Our guess is that the lat-
ter is indeed the right description of the phenomena
for ‘late times’,

The availavle excerimental data (known to us) on
real allovs is consistent with scaling behavior [10, 117,
Scaling 'was 2'se found o hold in quenches of binary
liquids {12]. The phenomenon therefore appears to be
quite general. More precise experiments are however
needed to establish conclusively this scaling behavior
and clarify its features.

2. DESCRIPTION OF MODEL

The model system we study has been described
before in detail {7]. At each site of a simple -cubic
lattice of N = L3 sites (L =30 or L=50, in our
simulations) there is assumed to be cither an A atom
or 2 B atom; the occupation variable of the ith site,
n(r), takes on the values +1(—1) when there is an
A(B) atom at the lattice position r. (The system is
isomorphic to a lattice gas where each site can be
cither occupied or empty and to a ferromagnetic Ising
spin system where r{r,) = 41 corresponds to ‘up and
down' values of the spin variable). In the initial state a
specified number, pN, of randomly chosen sites are
occupied by A atoms and the rest by B atoms: This
corresponds to an infinits temperature state with uni-
form composition and no correlation between atoms
at different positions. The relative concentration of A
atoms is pm(+1)/2, 0<p<l, where
7 = N™'Zu(r, 1) is the average ‘magnetization’ in the
lattice (fraction of A atoms less the fraction of B
atoms), which is constant in time. The evolution pro-
ceeds by choosing, at a rate af3, a pair of nearest
neighbor sites, i, f, in the lattice, If the sites are occu-
pied by different kinds of atoms there is a probability

Py = exp(—BAU([1 + exp(—pAUI™Y (1)

that -they will be interchanged (Kawasaki dy-
namics (13]). Here 8 =2 1/k;T, kg is Boltzmann'’s con-
stant-and AUy, is the change in the eaergy of the
system caused by the interchange.

For our model system the energy is assumed to be

givea by
Us =3 n@inke) J >0,

@
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1.137ke = 0.78 T, and T = 4J/ke =039 7T, respectively.
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The sum in equation (2) goes over all nearest-neigh=
bor pairs of sites and J is positive 5o that the system
will segregate below a critical temperature T, We use
periodic (toroidal) boundary conditions for identify-
ing nearest neighbors.

The phase diagram of our model A-B alloy is
presented in Figure 1. For temperatures T 2 T¢ the
system is uniform on a macroscopic scale at all values
of p. For T < T there is a range of concentrations p,
inside the coexistence curve, for which the equilibrium
state of the system is onme of coexistence of two
phases: one A-rich, p = p; and one A-poor p = pu:
2p — 1| = 1 = 2p, = my,, the spontancous magnetiz-
ation in spin language. The value of T, is known very
accurately for this system, 4J/kpT, = 0.88686, a3 is the
whole coexistance curve [14]. The phase diagram is
shown in Fig. 1. While the figure corresponds strictly
to a macroscopic, formally infinite, system we expect
that our system is sufficiently large for the quantities
investigated to behave (for the times considered) in 2
manner qualitatively similar to their behavior in a
macroscopic system. The absence of systematic differ-
ences between the L= 30 and L = 50 simulations
appears to confirm this expectation.

2.1 Simulations

The dots in Fig. 1, labeled 1-7, represeat, at each
density, the temperature(s) inside the miscibility gap

“to which our model alloy was quenched from an it-

itially random configuration’ (infinite temperaturc).
They are: for Py—Ps, T =059 T, and fractional con-
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Table §.

1end L
t 151 536 1340 2593 I8vY 5314 6834 8458 10,299 12,576
k, 0897 0.789 0.719 0.613 0496 0413 0378 0.360 0.344 0333 14000 50 |
ky/k} 1.28 1.33 1.32 1.36 1.35 1.39 1.36 1.35 1.34 1.35
Py m 356 525 726 106 207 321 465 539 627 699
! 86 331 595 1159 2401 3870 5431 6633 7861 9266
Py k, 0.9}[ 0.802 0.725 0.590 0414 0.421 0403 0.382 0372 0365 10200 3G
ka/k} 1.23 1.26 129 1.33 1.32 1.29 1.28 1.29 1.30 1.30
m 374 61.9 92.1 164 330 449 531 598 622 648
t 55 20 630 1313 2062 3010 3720 4807 5836 6970
Py k, 0873 0.846 0.706 0.587 0.543 0.501 0.481 0.447 0418 0415 7300 53 |
ka/k} 1.19 1.22 1.23 1.24 1.24 124 1.24 1.26 1.25 1.26
m 39.1 7.6 130 212 2N 330 386 438 490 536
t 28 110 250 574 934 1320 1721 2132 2705 3593
Py k) 1.048 0.908 0.799 0.694 0.634 0601 ° 0.576 0.552 0.528 0.491 3500 30 8
kq/kd 1.15 1.16 117 1.17 1.17 1.17 1.17 117 1.18 1.18
m 26.1 44.2 676 107 133 155 172 187 210 234
t 12 28 41 64 130 , 216 309 406 508 560
Py ky 1.107 1.065 1.038 0983 0.895 - ,. ‘0.831‘2 0.783 0.247 0.717 0.705 650 3L B
ky/k} 114 1.14 1.13 1.13 [ R I &1 113 1.13 1.13 i
m 213 30.6 357 43.6 59.0 .73.0 84.6 956.1 107 112
1 _l6 : 56 190 409 195 955 1117 1281 - 1446 1614
P ky. 1.091 . 0950 0.787 0.685 0.603 0.578 0.555 0.538 0.520 0.504 1760 3L 8
ka/k} 1.13 1.4 1.16 1.17 LI8 1.18 1.19 1.19 1.19 1.19
m 23.2 401 68.6 102 136 149 161 176 195 208
t 117 301 388 1144 17713 2589 3415 -i245 5085 6351
Py k, 0.849 0.690 0.584 0.502 0448 0418 0.391 0.369 0.349 0.327 Eiiy i 8
ky/k} 1.13 1.18 1.23 1.25 1.26 127 1.27 1.29 1.29 1.31
m 478 761 104 149 192 221 250 250 310 343
Au-60% Pt t(scc) o7 30 60 120 - 360 &00 o) - -
T=06T, k, x 10 115 11.93 11.56 11.26 10.49 10.15 9714 - — — )
Ref.[10} ky/k} 1.20 1.12 1.12 .12 1.12 1.12 1.12
p’ x 10'° 18,285 90,887 94,788 99,169 107,567 113,350 119,100
Values of ky, ky/k} (sce cquation (14)) and |
k=033
m)= Y Sk
2L

at selected valucs of the sime (in units of «” 1) for the quenches lo P,-P5. Note that k, and k, refer to the quantity S,th. 0. ¢ ding the values of m{r), the: detinition euitioa (3 3: und the
velues in Table 2, onc can however obtain k, and k; refesring to Stk, 1). 1,nq is the lalest lime (in units of @~ ") monitarc:d Ju in_ 1l.2 corresponding evolution, L zelies to st s

or b the
model system, and NR is the number of indcpendent runs made at that particulur phase point. We have also jucluded f comperison values for L ko/hd wnd pln o Lohoay,
where the saun is restricted to the visible zone of &k, 1), computed from the data in Fig. 3 of Ref. [0} corresponding to 11> L 60 81.% Pt alloy quenshod to T = itt i

003 Ak 4021 A", and the vulucs arc given in c.gs. units.
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centration of A-atoms p = 0.05, n.075, .10, 8.20 and
Q.20 rﬂc*‘ct.vc'v At this temperature the value of g at
= 0.97. The
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)n*c evolution =f *ha tysizz mlowing oucﬂcnina
was observed up to 2
about 10%¢~! and 10*a~! (see Tavle l). a~tis the
average lime interval bDetween two attempts at ex-
changing a specific site and is taken as our time unit.
To make some comparison with sxperiment we nesd
al lzast a rough idea of Sow 'z sompnre time ccales,
We do this by noting that in cur model the diffusion
coeficient of a-single A atom in a crystai of B atoms
is given by D = a/6 since the pmbaomw that a given
bond will be tried in time dt is (1/3} 24t and if tried
the probabxhty of an exchange is 1/2. We therefore
sbink of our tme umnit at temoerames T as compar-
aniz 10 dga 6D(T) whers 2 ¢ S
Do({T) is the diffusion constant af a real micy 2 2m-
perature T in the limit of zerc curiinomigs SR
atoms. The lattice spacing go is our unit of lengt
The relevant parameters for the Al-Zn alloys are csn-
mated [21] to be ag = 3A, Te = 350°C  and
Do ~ 10~ 1% cm?/s at T = 0.59 T..- According to this
rough estimate, the physical time interval in our
studies at P, to P, is many hours. This is however
only an order of magmtudc computanon sincs de-
fecta, vacancies and cther imperfsctions built in dur-
ing quenching may greatly speed up the time in a real
alloy.

3. ey Z2 e

B
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2.2 Structure funcrion

The quantity of primary interest in our obser-
vations was S(k.t), the structure function at time ¢
following quenching. S(k, f) is the Fourier transform
of the spatial correlation function Glr. 1)

HE A

/

= Y exp(ik-r)G(r, 1), (3

Sk, t) = N“<

gcxp(ik-rj)['l(f;. t) = 7]

G(r,t) = N™! };([n(r(. )= fA1ln(r + r.0) = 71,

“

where r and 1, run over the N lattice sites and
k= (ZK/L)&}L. =0, % L.,k L/Z,(d = |,2,3), spe-
cifies the first Brillouin zoune. The { ) represents an
ensemble average which could in principle be imple-
mented on the computer by making many indepen-
dent runs. In practice we used between one and eight
indcpcndent runs and relied on the spatial averaging
given in equation (4) as well as on scme ‘time avsrag-
ing’ for obtaining reliable data; see end of section.

S(k, 1) is periodic in each componcnt with period
2x/L; S(k = Q, 1) = 0 and

N"‘Et:S(k,t)m(l-'-ﬁJ). ()

STrvo 2T STRUCTURE FUNCTION IN ALLOYS

The abovc statements hold exactly for any ‘run’. We
expect also. that apart {rom small fluctuations, each
run started at ¢ = O with a random configuration will

have
st 2l =k =0 (6)
and that ik & will have cubical symmetry for ¢ > 0.
1a occdar 1o raducs our data to a manageable level

as well 2s to compars with experiments on polycrys-
talline materials we define an average structure func-
tion d..pnd.ng only on the wave number k = 2my/L,
u=0l,..., J3L/2

Stt) = ZS(k.t)/Zl %

where

>

21

is the sum over all valuss of k in the first octant
k, 20,2 =1, 13, such that

e lig - L < koS Sa D+ L2 8
Note that the average defined in equation (7) is not
exactly a spherical average since the points on the.
boundary and in the interior of the first octant of the
Brillouin zone are given equal weights, Thus if mk) is’
the actual number of points in the first Brillouin zone
contained in the full spherical shell specified in (8),
then nfk) is less than 8 n.(k);

n.&)=)1
(k)

is 1, 6, 13, 19, 39, 55, 72, 91, 114, 169, 178, 210, 253,
306, 346, ...in successive shells. Using the sum rule
equation (5) we should have

(L =7N~! Z ntk)S(k, 1) = L. &)

Any deviations from this sum rule in our actual runs, -
using n.(k), should be due primarily to fluctuations in
S(k, r) for any run among the different octants of the
Brillouin zone and only secondarily to our choice of
spherical averaging. Both of these effects become neg-
ligible for large N and we expect them to make only a
small difference in our simulations, since all our
results involve some averaging.

Typically, the ‘sphericallized’ structure function
S(k,t) and the other quantities of interest (such as
cluster properties, ctc; see later on) were computed
during the simulation after every 50,000 actual
exchanges (move frequently during the initial regime).
Then, to obtain a smoother behavior with time, and
extract the essential features, 20 different consecutive

* values in time were averaged leaving us with a few

values (between 10 and 25) at different times fror
which our graphs and tables were computed. The
data- corresponding to our simulations at PPy,
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where the vV = 27,000 lattice was used, comes (in ad-
dition) {rom an average over eight independent runs,
i.e. eight evolutions starting with independent, initial
random conligurations. The data at P,—~P, {and at the
oo 9353 noGs mentioned in the text but not in-
sungd in ot comes from one evolution on the

& = 123,CC0 iatiics.

3. DISCUSSICN OF RESULTS

3.1 Qualitative behavior of S{k, t)

In our simulations we were able to monitor Sk, 1)
for 10 shells. u = 1, ..., 1Q, for the L = 30 {attice used
at points P, to P, and for 14 shells in the L = 50
latdes used for Py to P,

Figurs 2 shows plots of Stk, /(1 — %) vs & at dif-
ferent times for quenches to the point P,. These plots
are qualitatively similar to those obtained at other
points P. At ¢ =0, the system is completely dis-

Temperatures 0,59 “7;

FRA15.0
Time
463
1828
3148
4849 Dy
6Qr2 - :
771
1201 9465 X
12309 W
=
I
- .
<~
St
K aor
40
1 o M
Qco aes 1.20

Fig. 2 Development with time of 3(k, 1) = Sk, t)(1-77) vs k
(in units of ag'!, ao being the lattice spacing) at different
tmes in the case of a quench of the model system with
N = 125,000 sites to the phase point P,. Note that, in this
case, we only have S(k,t) at fourteen different values of k,
k = 22j50, pt = 1~14, which have been connected by
straight lines, [ncreasing values of the time, in units of 2~ 1,
. the average time internal between two attempts at ex-
changing a specific site, correspond to the different graphs
- from the bottom of the picture to the top. The graphs at
different values of the time tend to form 2 common eave-
lopg fo; k > Kipu the location of the maximum intensity
(Wf.uc? is shifting with time towards smaller values of k)
This is in contrast with the cross-overs characterizing the
il k> k., of the Sik,t) vs8 k curves in the caea of
quenches to P, (Fig, 2, Ref, 7¢) and to P, (Fig. 2, Ref. [7a)).

SCALING OF STRUCTURE FUNCTION IN ALLOYS 301

Tamperature =+ 0,78 T2

2.98t FRA = 6,1

2.8

.73 \
N e
NN,
Ty oy
\\
138 : l
Q00 0.65 130

Fig. 3. Same as Fig. 2 in tha case of a queach to P<,
Tx078T, p = p{T) = 00613, i, on the coexiztencs line
at the same temperature 33 Po. A comparison with Fig, 2
shows up how the model system differentiates P* from P,,
say. (Note that the ordinate scale differs by two orders of
magnitude). Here increasing values of the time, in units of
a~!, correspond to increasing vaiues of the number labei-
" ing the different graphs,

ordered and S(k, 0)/(1-7") ~ 1 independent of k; see
equation (6). The system is then quenched to some
low ‘temperature inside the coexistence curve, Ther-
mal processes lead to the migration of A and B atoms,
proceeding (in our model) via nearest ncighbor
exchanges given by the transition probability equa-
tion (1), which now drive the system towards equilib-
rium corresponding to segregation into A-rich and
B-rich regions. As these regions grow in size, Sk, ¢)
develops a peak at k = k. (t) = #/R(t) where R(t)
represents some characteristic length in the system at
time ¢ following the quench. This length will grow in
time as the single phase regions grow to macroscopic
sizes so that k., (t)—0 as t— o in a macroscopic
system. (In the computer simulations we obviously
have R(r) < L) For contrast we also show, in Fig. 3,
the qualitatively very different behavior of S(k, ¢) when
the system is quenched to the point P?, p = 0.0613,
T =0.78 T, at the coexistence curve.

One striking difference between the different
quenches is the time, 'in units of «~!, it takes the
system to achieve a certain amount of segregation, as
reflected in the development of S(k,¢). A crude but
simple quantitative measure of this is obtained by
considering the quantity

X
p(t) = ({1 - ﬁ")N]"kZ n(k)S(k, o) (10
g
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e A o X L] 1
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200 50 20 200 a0 78 %0
Qg9 079 Q29 Q%9 A9 a9 09

a . N . L
o 2 - " 128
Tima (21071

Fig. 4. The quantity p{(t) defined in equation (10) is plotted
here vs time (note that the horizontal axis is labeied in
units of 100 a~*) in the case of the quenches to P, j = 1-7.
The corresponding value of j identifies each line which is
also identified by different symbols. Below each symboi the
values of the corresponding percentage of A~atoms and of
the ratio T/T,, respectively, are also shown. Note that the
sums defined in equations (10), (14) and (19¥ actually go
fromk = 2x/L 1o k = " = 0.557; we have precisely " =
8n/15 for L = 30 (so that the sum includes 8 different
vaiues) and & = 147725 foc L = 50 (14 different values).

where X" is some cut-off, less or equal to the largest
value of k studied in our simulations which was 27/3
for L = 30 and 14m/25 for L = 50. At ¢ = 0, p(0) is just
equal to the fraction of points of the first Brillouin
zone which are contained in k| € X", Choosing
X' = 0.557 in both cases (dropping the [ast two shells
for L = 30) this corresponds to p(0) = 0.1, As r in-
creases and the weight of S shifts toward smaller
values of k, p(t) increases by the ‘amount’ of S(k,¢)
which has moved into the ‘observation’ zone defined
by the cut-off . Fig. 4 shows p(t) vs ¢ for different
quenches, Comparisons of the grapas for points 2; to
P, shows that the speed of the segregation increases,
in units of attempted exchanges, with the distance of
the quench from the coexistence line, The same is.true
for the.points P4 to P,. This accounts, in the main, for
the widely different time lengths to which we ran our
simulations (see Table 1). It is clear that close enough
to the coexistence line at T ~ 0.6 T, the relaxation
time would become so long that the system would
appear, for all practical purposes, to be in a meta-
stable state while close to T, the system will be in the
region. of critical slowing down. In cither case the
segregation would not be visible in our simulations.
It should be noted that the relaxation time in-
creases rapidly as one approaches the coexistence line.
There is no evidence, however, in our simulations
of any abrupt change in the behavior on crossing any
+ of the theorctical spinodal lines indicated in Fig. 1.
There are some differences however in the way in
which S(k, t) cvolves with time in different parts of the
coexistence region. This can be seen in Figs 5 and 6
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° a x © X
400 200 Q0 73 30
039 Q.59 459 039 039

Time (203}

Fig. 5. The normalized structure functions S{k.t) =
Sk, /(1—7%) is plotted here vs time in the case of the
quenches to Py j m 1-5(T = 0.6 T), for k = x/5.

where we plot S(k )1 = 7*) vs t for quenches to
different Pj's at T = 0.6 T, for k = n/5 and k = 2a/5.
It is seen there that for quenches deep in the coexis-
tence region S(k, t) decreases strongly after reaching
its maximum value while near the coexistence line it
remains approximately constant for the times ob-
served, This behavior is also true for other values of
k > keu and results in ‘cross-overs’ at large k seen in
Sk, t) vs k curves, for P, in Fig. 2(a) of Ref. [7c] and
for Py in Fig. 2 of Ref [7a] but not in Fig. 2 here.
Such cross-overs have been conjectured [4] to be the
hallmark of quenches inside the spinodal curve and
our simulations give some evidence of this. The evi-
dence is however not entirely conclusive sincs the dif-
ferences may be due to not waiting ‘long enough’ near
the coexistence line and the scatter is relatively large
(see e.g. Figs 34 in Ref. [7a] corresponding to the
quenches to Pg—P,).

12 Scaling bekasior of (K, 1)

An inspection of Fig. 2 shows clearly that the wide

12 132

ut
g

Tima (x10)

Fig. 6. Same a8 Fig. S for k « 2x/5.
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spacings of possible L values coupled with . fluctu-
ations, both due to the small size of our model sys-
tem. make detailed comparisons between the S(k.¢)
obtained from our simulations and the smooth struc-
wre functions seen in experiments (10-12] or
obtained from theory (3-6] very difficuit. The latter
always deal with macroscopic size systems which cor-
responds in our modzl to N — o, k becoming a con-
tinuous variable and S(k ) a continuous function of k.
Let &k, 1) be the limit of Stk,t) as N— 0. It is this
smooth function about which we would like to obtain
information {rom our computer simulations. Hence it
is assendal that we look for quentitative features in
QLY COMDUISH Sik, i} WlCa Wl gu vv& smocikly e
(i TULZOISOPIE LThi I

In order o understand the long tme behavior of
wa axpect that
rarura fipenicn of

A -— -
o Vit ., R O R IR

[y res -
Baktalibei e BRaiites

Q MACTOSCUEIE 20 Iewes e Lo
phases. inis b ziven oy

Lk = (3 — 713K + Sk T) (i1
where (k) is the spnericalized Dirac delta funcdon at
k = Q, $(k:T) is the equiliorium swucture {uncdon
ca the coexistence line (by the symmetry of our mode!
syswmthisisthcsamcforboth pure phases) and
mo(T) is the spontancous magnetization, mo = It —
Zp,nm-l(cqualmﬁonn‘mcocxiatcncalinc‘).m
already noted, the system, after quenching, will segre-
gate locally into regions (often referred to as graizs,
clusters or droplets) of A-rich and B-rich phases and
then will evotve further by the growth of these segre-
gated regions (coarsening or Ostwald ripening). We
might expect that after some initial time the structure
function ‘within’ the segregated regions will be close
to its equilibrum value Zk; T) It seems therefore
reasonable to consider the quantity

Atk 1) = (L 1) = Sk T (d =774 (12)

whid:apwowbaak)withdmumcstrdcvnm for
tbndmcr'rptionoftbccoarscningproms.‘rhis is basi-
MMMM'MWM'mmdmm
third reference of Ref [5].

Weshaﬂthcrdorccomidcrinouranalysisalsothe
analogous quantity for our finite system

Sy(k, 1) = (S0 &) = Sll; T (i = 7)1 (13)

in the hope that it will more clearly reveal the essen-
tial features of the coarsening process. The function
S{k; T) was obtained, for the three different tempera-
tures T considered here, by quenching to points on
the coexistence line and waiting for the system to
reach equilibrium, At low temperatures there is in fact
very little difference between § and S, for small values
ofkaﬁasomcinidaltim&.(c.f.ﬁgg.?.and&sccalso
Table 2). The difference is therefore likely to be unim-
portant also cxperimsntally; but it appears to help
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Table 2.
TiT. [ 14 ky ki m
0.591 0.01456 0.13 0922 1105 17.8
0.780 0.06130 0.17 0.849 0966 21.7
0.887 0.012463 022 0744 0.786 43.5

Equilibrium values of the first and second moments of
Sk} and the quantity
1424

Y Sk

k=iml

m =

and p defined in equation {10) corresponding to quenches
wmccoexismaxveazmcmnperammdthesimuh«
tions reported in this paper.

with the proper normalization of our data at different
poiats Py, It also makes some difference for P, where
T =089 T, and S{k; T) is not so negligible at the
reievant k vaiues; ses table 2.

A quantitative feature of Sik. t) we looked at in our
imulations were the moments

ka(0) = <k™

X X
=y wsl‘(m)/ Y Sykan n=12 (14
k=0

k=0

where X :Mkucmhmcdbdm(seeapdonfor
F13.4).Tweappearedwbehnvequitcsmoothly as
functions of t. We found furthermore that Rk
was essentially independent of f; see Table 1. This
suggests that our Sy(k¢) with discrete argument K
having spacings 2:%/L might be related for late times
to the macroscopic structure function 1k, {) via a
smooth scaled function F such that

Sk, ) = HAlk 1) = HOF(K/K(O) (15)

where K(1) is some characteristic wave vector in the
system and b{) is 2 normalizing factor. Now if this is
indeed the case, then using the fact that for large sys-
tems the number of points in the Brillouin zone con-
ta%mdinasphaimlshcuofthicknmzsk approaches
42 Ak/(2x/L)®, we have from equations (9) and (12)
that

J' K2k, ) dk = bEK) J' 2 F(x)dx
f

= 2% — 1) 16)

independent of t. The integration on the left side of
equation (16) is over the first Brillouin zone and so
the x integration is over a cube centered at the origin
with sides of length 2n/K(¢). For large & K(t)—0, and
the integral in (16) cdn be taken over all space. Since
F(x) can be expected to decay quite fast for large x
va'ylittieetrorvdnbemadccvcnatquitc early times
if we set b{t) = 22K~ (g ~ 7*) and normalize F 50
that

r AF)dx = L. %)
Q
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Fig. 7. The scaling function F{x) in the case of ‘deep’ : the triangies correspomsd to 2 quench to

P, and they include times ¢ > 1500 a"", the asterisks to Py and ¢ 3 350¢"", and the circles to Pg and

¢t 1000a"" (see also caption for Fig 8% The dashed line represents the shape of the function F at an

earlier tirne when szaling does oot yet hold: it was drawn connecting the discrete values of F(x3¢) for

t=110a”" in the case P.. The dotted line corresponds to a function F~* = ay + a; x* rying to fit the
experimental data fof X > Xy the location of the maximum of F(x}.

To test this scaling hypothesis and find the smooth
F(x) from our simulations we define a function of two
variables, x = kfk,(f) and ¢, by the relation

X
F(x;t) = -E k() S1Lxkq (o) !]/kf_:o KSi(ke)  (18)

and then see whether for late times F(x;t) = F(x) 2
smooth function of x independeat of t. The normal-
ization (18) is chosen so that

X

)y (8P F(jé;1)d = 1 19)

e

independent of ¢ for 5 = 2x/ky(r)L. This means that if
scaling is really valid then for large N, when equation
(19) approximates the corresponding integral, it will
satisfy equation (17). (Note that equation (18) is
defined slightly differently, using Sy rather than S and
multiplying by L/z, than the corresponding function
for P, and Py in Rell [£:])

The values of F(x:i1) = F(x) independent of ¢,
obtained from our siraulations for large times are
shown in Figs 7-9 for ‘deep’, ‘ntermediate’ and ‘shal-

‘low’ quenches. While these curves are all similar, the

‘experimental’ scatter within each group is signifi-
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Fig. 8. The function F(x:¢) defined in equation (18) is plotted here versus x = k/k((f) in the case of the
(‘intermediate’) quench to Pj. Every symbol (0, 1, 2 3,...) in the graph corresponds to a different value

of the time: the first one (zero) is for ¢ = 2500a”

i the time increasing up to ¢ = 7300a™! which is

represented by crosses. All the values of F{x;t) in that time interval seem to lic on a common curve at
different values of x (see, however, Fig. 12). The dashed line was drawn connecting the values of F(x, 1) at
{ = 228a~ !, The dotted line corresponds to a fit F~! = @y + a7 x* to the Mail’ X > Xy of F(x)

cantly smaller than between them. We belicve there-
fore that there is a real, albeit small, difference
between the scaling function F(x) at different
quenches,

The change in the scaling function may perhaps te
explained by the difference in the boundaries of the
single phase regions changing from smooth to corru-
gated as we get closer to the critical point. The simi-
larity of F(x) near T, and near the coexistence curve
for small p would appear to suggest some sort of
‘spinodal line' criticality, This is an intriguing ques-
tion which is however very difficult to answer at
present. .

Figures 7-9 also show the function F(x;t) at some
earlier times as indicated. We have also included in

s, -t

those figures a fit of the form (a; + @;x*)~! to the
“tail’, X > Xpew Of the scaling function F(x) which
scems to be suggested by Ref [9]. While this is ap-
proximately the behavior of our data for X X Xe.. the
location of the maximum of F(x), the data clearly
deviates from the x~* behavior at larger x values
This is shown in Fig. 10 where we have plotted F™!,
X > Xpup Versus x* in the case of the quench to P
The graphs in Fig. 10 also show that F(x;t) has not
yet reached the assymptotic function F(x) at large
values of x in our simulations so this may be a part of
the reason for the observed deviations from the x™*
behavior.

As already mentioned it is a difficult task to extract
from our simulations precise and reliable information
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Fig. 9. Same as Fig. 7 in the case o{'(‘shaﬂow') quenches to P, (triangles; all the data ¢ 3 6800« ™" is
included in this case), P; (asterisks, ¢ > 40002™!) and P, (circles, ¢ > 1000« ~"). The dashed line is for
P, and ¢ = 209a"",
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Fig. 10. The inverse of the function F{x;) defined in equa-
tion (18) is plotted here, for x > X, v3 x* in the case of
the quench to P, The full ovals correspond to
t = 1519a"!, the empty ovals to ¢ = 19262, the full
circles to ¢=2344q~!, and the empty circles to
t = 3146 a~", The dashed straight line corresponds to the
dotted line in Fig 7. It is seen here that
F(x:1) = F(x) ~ x~* describes approximately our data at
values of x ¥ X, while at larger values of x, where scaling
does not yet hold in our simulatons, F(x;¢) is time
dependent.

about the analytic form of the behavior of k(t) for
late times. This we have in common with real experi-
ments—almost any assumed form with some adjust-
able parameters, can be made to fit the data. The
results of our analysis are summarized in Table 3 and
in Fig. 15, See also discussion in next section about
the growth of clusters,

3.3 Qualitative properties of the cluster distribution

We define a cluster in our model system as a group
of A atoms linked together by nearest-acighbor
bonds. This is expected to correspond, approximately,
at low concentrations of the minority component, to
the grains observed by microscopy in real materials;
it is the latter which the conventional nucleation
theories have in mind and about which we would like
to obtain information from our simulations {2, 71, 16].
The computer was programmed to record period-
ically the ‘sizes’ and ‘energies’ (i.c. the surface areas
defined as the total number of A-B bonds incident on
the cluster) of all the clusters in the current configur-
ation. The size of a cluster, /, is defined as the number
of A atoms in the cluster.

A qualitative description of the (early) time evolu-
tion of the cluster distribution »{l, ), the total number
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Table 3.
Maximum kid = A + Bt/10% ¢ > tg
_ Phase duradon ky ~¢=*
point of run a A B o
p, O¥T 14000 0.35 23 LS 6800
1 5% (e
p, %907 10200 0.3 7.5 L5 4000
7.5%,
059 T .
Py Ot T0 021 36 1.5 256
P %I 3500 0.19 23 17 1500
9T,
Py °§0% « 650 0.19 12 30 150
0T o . )
E AL T 023 14 19 1000
Py °?§./T‘ 6600 0.25 15 19 1600

Yalueg cf ¢ .cmstablc parameters for two different fits to k, : frst asxmmng a simple
rAT AW (o il B data $xc2pt e very r::.riy one is ingivded in he _.x.. and tu-'n

asSSUTMIBYE a Lnsw oenavior of &y ?

approxumate ame at wiich we observed the onsat of

witid time {usiag only s...... 0T 3 igh 1Sy D ils

. PN
e u,?.......‘"‘ ool '--uu.-., el

structure functon according to equation (15)

of clusters of size [, has been reported elsewhere (7e]
for the case T = 0.6 T.. For values of p very close to
Pe the corresponding saturated vapor density, m( ¢)
rapidly setties down to a stationary value character-
istic of a metastable state. At p = 0.05 — 0.075 ‘the
distribution of ‘small’ clusters-still approaches rapxdly
a quasi-stationary distribution characteristic of meta-
stable states, but there is now a measurable rate at
which larger clusters develop (Le., a finite nucleation
rate). A detailed quantitative analysis of this behavior,
at p = 0.075, using ideas from the Becker-Doring and
Lifshitz-Slyozov nucleation theory is given in

Refs, [71] and [16]. As the density (and the supersatu- -

ration) is increased further, p 2 0.1 at 0.6 T, we ob-
serve the early appearance of reladvely large loose
clusters (I > 50) coexisting with very small clusters of
size one to ten or so. The aumber of A atoms and
their relative distribution in the small clusters is close
to what is observed in the A-poor (gas) phase equilib~
rium state. The system then shows a slow process of
aggregation of the larger clusters into sl larger com-
pact clusters which will finaily lead to a fully scgre-
gated A-rich (liquid) phase (5, 16]. When the density
of A atoms in the model system is. increased further,
the system undergoes percolation, ie, the appearance
of ‘infinite’ size clusters. This happens in our model
system (simple cubic lattice) at approximately (17]
p = 031 for atoms placed eatirely randomly on the
lattice (e, T = o), and was also observed [7a, 7c] at
P, — P,. To our knowledge this phenomena has not
been investigated so far in real alloys.

A detailed analysis of the cluster distribution n(, t)
at low densitics will be reported elsewhere [16] on the
basis of a kinetic theoretical model of the Becker—
Dédring typa. We shall only report here some gross
features of n{l, t) as one varies p at T =~ 0.6 T, namely

on the time evolution of the cluster mean size defined
as

L) = 3 t‘n(l,r)"/z- Etalls), (=12 (20)
i>l 1>y .

The cut-off . is intended as a (somewhat arbitrary)

ion betwesn ‘small’ and large clusters. The
second of these definitions (note that the notation
differs from that for k, and k; in equation (14)) gives
more weight to large | and diminishes to some extent
the relevance of the choice /. We present in Fig. 11 a
plot of l3(r) vs time for I, = 20 (similar results are
obtained for [, = 50) for quenches to P,—P;. There is
clearly a difficulty in analysing these data on the
assumption of a simple power law [5] behavior with
time as suggested by the Lifshiz-Slyozov theory (2]
This may however be duc to the fluctuations in our
singie run,

Q

i
#3500

Fig. 1L The mean size [,(t), as defined in equation (20) with
[, = 20, is plotted here vs time (in units of ¢~!) for the
caszsd Py (crosses), Py (trizngles) and Py (circles).
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We find that the ratio {I*>/{1)* = ly/l,, which gives
information about the shape of the cluster distribu-
tion n(l, ¢}, is far from constant even for late times—
unlike the corresponding quantity (k*)/Ck)?
obtained from the structure function S,(k ). More-
over even when the cluster distribution of the system
changes dramatically as a consequence of the percola-
tion phenomena mentioned carlier we do not observe
a clear evidence of this change on the behavior of
S(k, t); e.g. the same scaling properties seem to hold
for p < 0.1 and for p > 0.2, This is perhaps not so
surprising since it is known that when the system
undergoes percolation at high temperatures (T » To)
there is no corresponding change in the equiiiorium
structure function {7, 17]. Thus it sezms that attention
must be paid not only to the size but also to the
‘shapes’, composition and distribution of the clusters
and other properties of the system. Note, however,
that it is possible to make other definition of ‘clusters’
to avoid the trouble with the percolation of clus-
ters [5].

We finally mention that the theoretical ideas about
scaling with ume of S(k. ¢) {section 2.2) are based on
the assumption (5. 6] that for late times after quench-
ing (to temperatures far enough from T,) the mean
‘diameter’ R of the grains is much larger than the

(thermal) correlation length. Thus R is the only rele- *

vant length scale for fluctuations. in these drcum-
stances and the structure function should be scaled
- accordingly. Moreover when p is small and the tem-
perature is low one may assume nearly pure grains of

the minority (A) phase so that R*(r) is approximately

proportional to /,(t) and one is lead to the prediction
k() ~ [1,()]~ "2, This is confirmed by Fig. 12 where
we have plotted k7 3(1) versus [(r).

3.4 Comparison with experiment

3.4.1. Preliminary remarks. The model used in our
computations certainly involves a great over-simplifi-

Id
£
7/
7/
/
4
/'/ o
0r 7/
P
’ -
7. S A
“g /(
VAU
v// v
W= 4 /(
// ”
7
el
v
(v e e e e 0
v o--o——'"""?"—— < )

] . 20Q 4QQ

Fig. 12, Plot of ki 3(¢) [see equation (14)] vs I,(1) see equa-

tion (21) in the case of quenches to Py (full civcles), P,

(stars), and P, (triangles). A part of the case corresponding

10 Py (cmpty circles), where percolation effects were

present, is also shown, The cut-off is [, == 20 for the data at
P"‘P; a.ndlc- 10 for P..
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cation of the behavior of real alloys where the pro-
cesses we are interested in are greatly influenced by:
elastic distortions, grain boundaries, vacancies and
other competing phenomena. The behavior of the
model can thus only be compared with that of real
materials in highly idealized conditions. Despite this,
previous analysis have shown that our results are {re-
quently very similar to experimental observa-
tions [7d]. In order to make comparison with experi-
ments, however, care must be paid to the relation
between the units and other characteristics in our
mode]l and those corresponding to real alloys. For
instance, as described before, the basic uait of time
«” ! jor the meds! svolitca may correspend im real
alloys to times which vary between very broad limits:
eg froma™ ~ 505 a10.6 T, to 10~*s at 0.8 T, in the
case of alluminum alloys. Thus our simulations at
0.6 T. can be compared with experimental obser-
vations on real alloys {where the system rzlaxation is
typically followed fer come hours) while cne has to ha
cautious at higher tempsratures, say 0.8 T..

We note further that the typical resolution of
X-ray cameras is in the range (217 of 101000 A and
that the innomogeneitiss measured by experimenta-
lists, e.g. the so-called ‘Guinier—Preston zones', have
typically linear dimensions in the range 15-200A.
Thus, assuming ao = 3A the smallest grains
“measured in typical experiments contain between 30
and 150 atoms, and the largest onss about 3 x 10°
atoms. This may influence the comparison between
experiments and simulations given the cut-off I, in
equation (20) and given that the largest clusters ob-
served in our simulations at P,—-P; contain typically
no more than 800 A.atoms [23].

Other causes of differences between the behavior of
our mode! and experimental observations can be
found in the quenching rate which is finite in real
experiments but infinite in our model system. We
have checked that the quenching process sesms to
influence considerably the subsequent evolution. For
instance we have been able to reproduce qualitatively
the “‘untypical’ observations by Allen et al. [19], corre-
sponding to room temperature aging of Al-Zn,
p = 0.12, quenched into iced water (T = 0.44 T;) from
T = 093 T, by simulating a similar double quenching
of our model system. The influence of the quenching
process has also been reported in the case of some
liquid mixtures [20].

342 Comparisons, We have analysed the daza
reported by Singhal, Herman and Kostorz [10] corre-
sponding to the Au-60at?% Pt alloy, in partcular
their Fig. 3 coming from an experiment in which the
sample was solutionized at around 1543 K and then
quenched into iced brine; the aging at around 823 K
was observed by neutron scattering during 900s. The
composition of the sample lies at the center of the
miscibility gap, and T = 0.6 T, so that the experiment
may be compared with our simulations at Ps and
perhaps at P, Moreover, those authors estimate {10]
the interdiffusion coefficient as being of order
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Fig. 13. We compare in this figure data from the computer
simulation (empty symbols) with the experimental dara in
Fig 3 from Ref.[10] (full symbols) corresponding to

" Au=60 at.%, Pt alloy quenched to T = 0.6 T The full circles

are for ¢ = 900 3 and the stars for ¢ = 3603, both lying on
the same curve except perhaps foc x 2 1.8, The broken.line
lisfcxt-O(thainiﬁalmphmakudydmmpold
10 soms extent), and the broken line 2 is for ¢ = 308, in.

both cases scaling does not yet hold. The empty circles

_to our simulation at P; while the cmpty

squuumforP‘(mFiahOnlymevaﬁcalsa‘hin

Fig 7 needed to be changed in order to obtain the present
fit.

Fig. 14. The data in Fig. 9 is compared with experimental

data (Ref. [11]) on an Al-15% Zn alloy quenched to 90°C

(solid line) and to 110°C {dashed line) (both T = 0.6 T).

The vertical and horizontal scales in Fig. 9 where changed
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10~16 cm?/s at 823 K: choosing (arbitrarily) aq = 3 A
we have -1 ~ 0.75 s so that the duration of our evo-
lution at Py is equivalent to about 500s in terms of
‘real’ time (and to about 3000s at P,). The scattering
analysis gives a structure function with a shape quite
similar to the one cbscrved in our simulations, inciud-
ing the characteristic crossovers at that temperature
and composition in the tail, k > K-

We have also computed the function F(x, ¢} defined
in equation (18) taking as S(k 1) the experimental
daminﬁg.Sochﬁ[lO].Weﬁndthmthodua
satisfy the scaling hypothesis in the time range
120s <t < 900 s for all but very large x. say x > 1.8,
see Fig. 13, Indeed the experimental {unction Fix) is
quite similar to the corresponding one in the case of
our simulations at P, and Py, In fact one can make
the data from the actual and computer experiments
lie on the same curve by only re-scaling the vertcal
axis, as seen in Fig. 13. Additional data takea from
this experiment is given at the end of Table 1. The
area under (k, ¢), for 0.03 < k < 021 A%, is seen to
gmvlwithtimcasisfoundinoutsimulaﬁons.Ontbe
other hand the shifting of the location and increase in
lmgthofthepeakof.?(k.t)iss!owu‘thaninthcm
of our simulations. This might be due to the slow
cooling process followed in Ref, [10] (as compared to
our instantaneous quenching); in fact those authors
report that the sample decomposed to some extent
during the quenching process; and we may note that
their .&(k,f) at t=0 is about twice as high for
k=01A"! than for k =~ 02A""! (instead of being
approximately constant),

We have found a similar agreement between our
scaling function F(x) at P, and P; and the one
reported by Guyot et al (11] corresponding to a
sample of Al-15 at.% Zn quenched to 7 = 0.6 T; this
is shown in Fig. 14. '

Finally, recent observations on binary fluid miz-
tures [12, 20,22] report a behavior which is also
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qualitatively similar to the one shown by our model
system (note, however, when making compacisons
that the diffusion coefficient is much larger for fluids,
10~*-107% cm?/s, than for alloys).

In-particular Chou and Goldburg {12] find a scal-
ing behavior of &(k, ) with a function F(x) which
looks quite similar to our function.
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