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Résumé. — Nous décrivons les résultats des calculs de Monte-Carlo sur des chaines polymériques caractérisées
par une interaction de volume exclu confinées dans une plaque de largeur D. Nous avons étudié spécifiquement
R3(N, D), le carré moyen de la longueur d’une chaine 4 N liens. Pour N grand et D constant, R (N, D)y ~ R3(N),
la longueur carrée d’une chaine confinée sur un plan. Nous trouvons R} (N) = R?*(N,0) < N*ou 2y = 32 en
accord avec une prédiction de Flory. Avec RZ(N) = R%(N, ), la longueur d’une chaine non confinée 4 trois
dimensions, nous examinons la loi d’échelle de crossover de R2(N, D)/R3(N) en fonction f(x) de x = D/Rs(N).
Quand x < 0,45, f(x) cc x*? ce qui s’accorde avec les prévisions de Daoud et de Gennes. Nous discutons aussi
les propriétés d’une chaine sans volume exclu dans la méme géométrie de confinement.

Abstract. — We describe the results of Monte-Carlo calculations of polymer chains with excluded volume inter-
actions which are confined within a slab of width D. We studied, in particular, R*(, D), the mean square of the
end-to-end distance of a chain with N links. For large N and fixed D, R*(N, D) ~ R}(N), the squared end-to-end
distance of a chain constrained to a plane. We find RZ(N) = R*(N, 0) o< N?" with 2v = 3/2 in agreement with
the prediction of Flory. Letting R¥(N) = R%(N, ), the end-to-end distance for an unconstrained three dimen-
sional chain, we examine the crossover scaling of R*(N, D)/RZ(N) as a function f(x) of x = D/R5(N). For
x < 0.45, f(x) ¢ x~ /2, in agreement with predictions of Daoud and de Gennes. The behaviour of a chain without

excluded volume interactions in the same constraining geometry is also discussed.

1. Introduction. — The change in the properties of
a polymer molecule when confined to a restricted
spatial region is an interesting theoretical and practical
question, relevant for the behaviour of biological
macromolecules in cell membranes and in other fields
such as gel permeation chromatography and in oil
recuperation. Some aspects of this problem such as
thermodynamic properties have been studied analy-
tically for random walk models (with no excluded
volume interactions) [1-3]. Monte-Carlo simulation
of walks on lattices several layers deep were carried
out by Wall ez al. [4, 5] and conformational properties
reported. In this note we describe results on Monte-
Carlo simulations for a continuum beads-on-a-string
model with excluded volume interactions in which

(*) Supported in part by AFOSR Grant No. 78-3522 and by
U.S. DOE Contract EY-76-C-02-3077.

the chains are confined to a slab of width D. We study
in particular the variation of the size of the polymer as
a function of D and of N the number of links.

Many current theoretical studies exploit the analogy
between a very long polymer chain and a thermody-
namic system close to its critical temperature [6, 7] —
both systems exhibit long range correlations. Conse-
quently the variation of chain properties with D may
be considered as an example of a crossover of a critical
system between two dimensionalities., As D varies
from D > R4(N), the size of an unconstrained chain
in three dimensions, to D < R;(N) the effective
dimensionality of the system changes from-three to
two. The critical behaviour of a magnetic system with
a finite width was studied by Fisher et ai. (8, 9] using
scaling arguments. Recently Daoud and de Gennes [10]
have applied similar arguments to the polymer chain
in a slab : the chain of N monomers is viewed as made
up of n blobs or subchains of size D each containing
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(N/n) monomers. Each blob is considered to be three
dimensional with D ~ a(N/n)*° where a is the dis-
tance between monomers, while the chain as a whole
behaves asymptotically, i.e. when there are many
blobs, as if it were two dimensional. This leads to a
scaling relation, for the end-to-end distance of the
chain in the slab,

5/4
R(N, D) ~ Dn¥* ~ DN¥* <%> (.1

where we have used the Flory expression [11]
R,(N) ~ aN**, (Ry(N) ~ aN?¥?) for the asymptotic
size of an unconfined two (three) dimensional chain
of N monomers. Formula (1.1) is a limiting case of
the scaling relation R%(N, D) = R3(N) f(D[Ry), c.f.
eq. (3.3). A similar result has been obtained recently
by Kosmas and Freed [12] by an alternative scaling
approach.

The main results of our computation are : the first
numerical confirmation of which we are aware of the
Flory formula for R(N) for a continuum chain, and
good agreement with (1.1) for D/R;(N ) <045 and
D = a. We also discuss, in an appendix, the behaviour
of R'9(N, D) in a chain without excluded volume
when there is no change in the critical exponents :
R{Y(N) ~ N3 for all dimensionalities.

2. The Monte-Carlo model. — The model chain is
made up of N + | beads located at positions {r; },
i=0,.., N separated by links of fixed length and
direction. Any two beads in the chain interact via a
short range repulsive potential which represents the
excluded volume interactions between different parts
of a polymer chain in a good solvent. This model is
similar to the beads-on-a-string model which has been
widely used in the theories of polymer statistics {13, 14].
The short range interaction we use is a truncated
Lennard-Jones potential of the form :

o \'? c\® 1
(e e}
o(r;) = . rij Tij 2.1

3 I‘,-j > 'm
where F = 2 o, r; = |1, = 17|

The confinement is represented by infinite step
potentials at z = 0 and z = D. The total interaction

energy for a chain configuration X is thus given by :

Zv(rij), 0< Z;<D9 1.=03'--3N
UX) = {i>] 2.2
0 , otherwise.

An ensemble of configurations distributed according
to the canonical distribution

P(X) x e~ FUX (2.3)

was generated by a reptation Monte-Carlo (MC)
dynamics, as follows. A configuration X' = {r/}is

Neo 6

generated from the configuration X by the following
transformation

l‘lf=l',-+1, fOI' i=03--‘sN—l

(2.4)

rh=1y+s, |s{=a,
and the direction of s is chosen at random from a
uniform distribution. With equal probability, this
transformation is carried backwards, i.e., with
r, = r;-; and r} in a random direction at a distance a
fromry.

A new configuration X, of a Markov sequence is
taken as either X or X' according to the Metropolis
criterion [15] :

Xm={X' if exp.ﬂ[U(X)—U(X’)]>n 2.5
X  otherwise

where # is a random number uniform on (0, 1). The
procedure described above obeys the detailed balance
condition

e~ AU » (probability to go from X' to X) 2.6
= ¢~ BUX) x (probability to go from X to X') . .

This leads asymptotically to the equilibrium distri-
bution given in eq. (2.3) within any region of the phase
space accessible from 'the starting configuration.
In our case this is everywhere. _

[t is important to note that applying the backwards
transformation with probability 1/2 is essential for the
validity of the detailed balance condition, eq. (2.6).

This method is an extension of the slithering snake
idea of Mandel and Wall [16, 17] for generating self
avoiding walks on lattices.

The relaxation time of the reptation dynamics
described above is of the order of ~ N? Monte-Carlo

steps. Equilibrium averages are obtained by dividing

the total sequence of MC steps into 15-20 blocks,
cach block > N2, and obtaining the final average
and the standard deviation by averaging over the
block averages, excluding the first couple of blocks
during which the system is still in the process of equi-
libration. It is clear that the relaxation time is the
dominant factor determining the computer running
time for an experiment. Reptation MC dynamics,
while not appropriate for the simulations of real
dynamics [18), is a relatively fast procedure for the
generation of equilibrium configurations of chains as
compared with full molecular dynamics or even with
the standard Metropolis method with one bead moved
at random in a box.

3. Results. — We have studied the squared end-
to-end distance and the squared radius of gyration
of chains of lengths N = 5-80 confined between two
infinite walls, as well as purely two dimensional
chains. The parameters in v(r;;), the bead-bead inter-
action potential, were chosen as fe = 0.1 and
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o/a = 0.65 (where a is the link length). An important
parameter of the beads on a string model is Bla®;
where

B = 41:[(1 — e Py 24, 3.1

For a very steep repulsive potential of range o,
B ~ (4 7/3) ®. With our choice of parameters B/a’
is of the order of unity. This assures that the large N
behaviour for chains with excluded volume, expected
for N > N,, will occur even for fairly short chains
since N, ~ (a¢*/B)* in three dimensions and
N, ~ (@*/B) in two dimensions. The effects on the
chain properties of varying B/a® will be described
elsewhere [19].

3.1 UNCONFINED CHAINS. — For ‘the unconfined
3D case and for the unconfined 2D case we find that
both the squared end-to-end distance and the radius
of gyration follow a power law for N 2 10. For the
squared end-to-end distance '

R? = 4a* N¥ 3.2)
where
A=095+005 and v = 1.19 + 0.02 in 3D
A=075+005 and v =148 +0.03 in 2D.

The ratio S?/R* = 7.1 £ 02 in 2D and 6.4 + 0.15
in 3D in agreement with results for lattice walks [21],
and is weakly N dependent. The results for the expo-
nents are consistent with Flory’s predictions
y = 3/(2 + d) and with recent & expansion calcu-
lations [22). The two dimensional result is, we believe,
the first one reported for a continuum chain. Within
the accuracy of the present results there is no difference
between the values of v for continuum chains and these
for self avoiding walks on lattices in both three and
two dimensions.

3.2 CONFINED CHAINs. — For large N, the end-to-
end distance R(N, D) (or the radius of gyration) may
be expected a priori to have the form

RZ(NSD) = R32 f(D/R39 D/a) >

R4(N) = R(N, ©) ~ N6 (3.3)

The scaling arguments mentioned earlier [10, 11]
suggest however that there should be a regime for D
somewhat larger than a, in which the dependence on
D/a should be very weak. Furthermore, for R; > D,
f should behave as a power f ~ (D/Ry(N))y which
when combined with the Flory relations (3.2) leads to

N¥2 ~ NSS(DIN3¥%F, RyN)>» D. (3.4)

Thatis,s = — 1/2 which leads to RXN, D) ~ D™/,
as given in eq. (1.1).

Figure | presents the values for R?and S? for chains
of 20-80 beads (with values D/a between about 1 and
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Fig. |.— R?/R} and S%/S} vs. x = D[R, for beads on a string chains
of N = 20-80 confined between two planes separated by a distance
D. R, and S; are the averaged end-to-end distance and radius of
gyration of the unconfined chains.

10) plotted against D/R;. In both cases the results for
various values of N (and D/a) fall on a single curve
within the statistical fluctuations. The error bars are
typically about 0.03-0.05 for R? and approximately
0.02-0.03 for S2. The smaller errors for S 2 are reflected
in the better fit to a single curve.

The fact that f(x, y) defined in (3.3) depends only
weakly on y for y 2 | and depends on N and D only
through x = D/R;(N) indicates that the scaling ideas
of Daoud and de Gennes [10] are valid for our model
in the range of parameter values considered.

To check on the validity of the power law, eq. (1.1),
we show in figure 2, a log-log plot of

f = R*(N, D)/R}(N)vs. x = D[R3(N) .

There appears to be a good fit (within our statistical
errors) to the power law f(x) = cx™%, ¢ = 0.63,
s = 0.5 for x < 0.25. The curve then gradually
flattens with f(x) = | at x close to 0.45 (instead of
the value 0.94 the power law would give). Forx 2 0.45,
f(x) is smaller than one, its value when x > 1,
D » R4(N). This is similar to the behaviour of an
ideal polymer having no excluded volume when
confined in a slab, as discussed in the appendix.

The ratio of R?/S? for different values of D appears
within our statistical errors to be a function of x only.
For x < 0.2 the ratio is close to its two dimensional
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Fig. 2. — Log-log plot of R?/R? vs. x for 0.1 < x < 0.6. The solid
line has a slope of 0.5.

value of 7.1 £ 0.2 changing over gradually to the
three dimensional value of 6.4 + 0.1 for x = 0.5.
One would need better statistics to learn still more
about the crossover region from this quantity.

The dependence of R(N, D) on N for fixed D is
given in figure 3. It is seen there that for any fixed D
the asymptotic behaviour for large N is very close to
the Flory prediction in two dimensions, R,(N) oc N %4,
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Fig. 3. — Log-log plot of the N dependence of R? for various
values D of the confinement width. The solid lines are all of slope 1.5
consistent with a two-dimensional power law dependence. The
dashed line represents the results for nonconfined two dimensional
chains.

It is interesting that the scaling and power law
behaviour is obtained in our simulations even for quite
small chains, N ~ 20. This is due, we believe, to the
fact that B/fa® ~ | 'in our calculations as discussed
at the beginning of this section. There is general belief
that, as far as excluded volume effects are concerned,
the large N regime is obtained for N > N, ~ (a®/B)?
in 3D. This gives some confidence in the application
of ‘results obtained from computer simulations of
small chains to the prediction of properties of mole-
cules with N about 10°.

To summarize then, we find that the conformational
properties of model polymers confined in a region of
finite width follows scaling laws analogous to those
which occur in the theory of critical phenomena.
This scaling behaviour obtains even for rather short
chains. Finally we have further confirmation of the
result that in infinite media, the scaling behaviour of
the size of continuum models and that of chains
restricted to lattices are very similar.
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Appendix, — CONFINED IDEAL CHAINS. — Consider
a chain of N links, each of fixed length 4, in which there
are no correlations between successive links. This is
the polymer model described in section 2, having
N + 1 monomers, when the excluded volume inter-
action u(r) is set to zero. It can be accomplished by
setting ¢ = 0 or ¢ = 0 in (2.1), and is essentially the
Rouse chain with fixed link length. Letr;, j = 0,1, ...,
N be the positions of the monomers and s; = r;—r;_,
i =1, ..., N be the directions of the links.

For the unconfined polymer in 4 dimensions
each s, is an independent uniformly distributed vector
on a sphere of radius a in ddimensions, s; = (s}, ..., s9).
The expected value of the end-to-end distance squared
is then clearly

L3N = (g = 1)) = T {508

for any d since ¢ s;.s; > = 0 for i # j. The links are
just the steps in a random walk model and r; is the
position of the walker after j steps. (L,(N) corresponds
to R(N) with ¢ = 0.)

We now ask what happens to L when this ideal
chain is confined to a slab of width D,

-4D<rf<iD.
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For fixed rg, — 3 D < ri < 4 D, the joint probability
distribution of the s; is now given by

N
P = Cyplsy, ..., sy) [ p(dsy)

i=1

where p(ds;) is the uniform distribution on the sphere
of radius a, yp is the characteristic function of the set
{(-4D<rt<iD},j=1,...,N and C is a nor-
malization constant. Let L2(N, D, a) be the expectation
value of (ry — Fo)? with respect to P where we also
average over rg between — 3D and 1D,

Lz(Ns Ds a) = Z < sl"sj>

iJ

=Na*+ Y [(stsy)+ ¢ sls! D]

i#j

=Na2Fl: D ,2]
\/I_\"a a

where s/ is the component of s; parallel to the wall.
Clearly by the symmetry sl .s} > = 0 (since for any
fixed sy, ..., s it is possible to rotate the vector
S;41 + '+ + sy around the 1 -axis). It is furthermore
clear intuitively (and can be verified easily for a
variation of the model in which a walker starts from ro
and moves randomly until he hits the wall when the
walk is suitably modified) that (sfsy> <0 for
i #j. We therefore expect that 0 < F(x,y) < 1,
(F(x, y) is_of course defined precisely only for
xly = 1/J/N, N =1, 2,...). We expect further that
as N — oo, F(x, y) = FO0, y) = o(y), such that
¢(y) = 1 asy— 0. The behaviour of ¢(y) as y — ©
is less clear but it can be argued (proven for the modi-
fied random walk described earlier) that for a/D < 1
the problem should be similar to the case when

(A.2)

p(ds) = [d'[ v(ds,) Wwith J x2 v(dx) = a*/d,

a=1

i.e. each component of s is independent. It is clear that
in this case (Na®)"'L*N, D, @)—=— d - 1)/d
for any fixed D < co.

Finally keeping | <y = Dfa, N> 1 we would
expect to be in the scaling limit where F(x, y) should
depend only weakly on y as in the excluded volume
case. This is confirmed by a plot F(x, y) vs. x for
different y > 1 in figure 4. It is seen that all the points

T T T ¥ T T T ¥ T
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Fig. 4. — The ratio of the squared end-to-end distance of a confined
random flight chain to the unconfined chain value for chains of
N = 20-80 vs. the normalized separation between the lanes.
The extrapolated lines to L*Na=1 or 2/3 for D/\/Na = 0
correspond to letting D — 0 for fixed N or N — oo forfixed D/\/Na.

fall on a single line within statistical error. It is interest-
ing to note there the slow rise L(N, D, a?) towards
its unconfined value \/N a. Even for D = 1.6 /N a,
L?/Na? is only about 0.9. This would seem to explain
the decrease in R(N, D)/R3(N) below unity in the
excluded volume case (Fig. 1).
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