J. Bricmont * †

J.L. Lebowitz

C.E. Pfister ** †

Department of mathematics

Rutgers University

New Brunswick N.J. 08903 USA

- * supported in part by N.S.F. Grant Phys 77-22302
- † present address: Math. Dept. Fine Hall, Princeton University, Princeton N.J. 08544 USA
- ** supported by the Swiss Foundation of scientific research
 - † present address: Département de mathématiques, E.P.F.-Lausanne, CH-1007 Lausanne

We consider the surface tension $\beta^{-1}\tau$ for the d-dim. Ising model with nearest neighbour ferromagnetic coupling J>0. τ is defined in e.g. [1]:

$$0 \leq \tau = -\lim_{L \to \infty} \frac{1}{(2L+1)} d-1 \lim_{M \to \infty} \log \frac{Z_{\Lambda, \pm}}{Z_{\Lambda, \pm}}$$
 (1)

where Λ is a box centered at the origin of height 2M in the i₁-direction with a base of side 2L+1. The indices + and + refer to the usual + and + boundary conditions (b.c.).

We do the following construction: we replace the couplings J by sJ, $0 \le s \le 1$ for all nearest neighbour pairs $\langle ij \rangle$ crossing the plane $i_1 = -\frac{1}{2}$. By symmetry $\tau(s)$ is zero for s=0 and $\tau=\tau(1)$ is equal to

$$\tau = k \int_{0}^{1} ds \, (\rho_{s}^{+} (\sigma_{0}\sigma_{-1}) - \rho_{s}^{+} (\sigma_{0}\sigma_{-1})), \, \beta J = k$$
 (2)

where s_s^+ (s_s^+) is the corresponding infinite volume Gibbs state with s+b.c. (\pm b.c.) (2) is justified by correlation inequalities and using such inequalities we prove that $\tau=0$ whenever there is no spontaneous

magnetization. We can also prove that $\tau=0$ if the spontaneous magnetization is zero for the semi-infinite system defined on {i G \mathbb{Z}' $\overset{d}{:}$ $i_1>0$ } with free b.c. at $i_2=0$ and 4b.c. elsewhere. From (2) and correlation inequalities we obtain the lower bound

$$\tau \ge 2k \int_0^1 \rho_s^+(\sigma_0) \rho_s^+(\sigma_0) ds$$

Using duality and correlation inequalities we prove that for d=2 $\tau(k) = m(k^*)$ where k^* is the dual temperature and m is the inverse correlation length in the state with free b.c. For d=3 $\tau(k) = \alpha(k^*)$ where α is the coefficient of the area law decay of the Wilson loop in the Ising gauge model [2].

For d=3 and k large enough we prove that τ - 2k and the correlation functions in the state ρ^{+} are analytic in $\exp(-2k)$. Furthermore we have the Gibbs formula

$$\frac{d\tau}{dk} = \sum_{\substack{i_1 = -\infty \\ i_2 = i_3 = 0}}^{+\infty} \sum_{\substack{j:\\ |i_j = 1}}^{\infty} (\rho^+(\sigma_i \sigma_j) - \rho^+(\sigma_i \sigma_j))$$

see [2] and [3].

References:

- 1) Gruber C., Hintermann A., Messager A., Miracle Sole S Commun. math. Phys. <u>56</u> 147(1977)
- 2) Bricmont J., Lebowitz J.L., Pfister C.E. On the surface tension for lattice systems. To be published in the Proceedings of the 3rd International Conference on Collective Phenomena Moscow 1978.

 Annals of the New York Academy of Sciences 1979.
- 3) Bricmont J., Lebowitz J.L., Pfister C.E. Commun. math. Phys. 66
 1 and 2 1979 and to appear in Commun. math. Phys. 1979.