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0. PREFACE

We discuss some of the aspects of stationary Markov chains which

. we have found to be useful in some physical problems. We review and
somewhat extend those properties connected with the asymptotic behavior
of the chain and the ergodic properties of the associated dynamical system.

We place special emphasis on the relationship between the determin-
istic and the stochastic aspect of the motion. In particular we emphasize
stationary Markov chains which arise from a certain kind of stochastic
perturbation of a deterministic motion, namely the (B, u, T, m) scheme,
which will be discussed in Section 1. There we also describe in greater
detail the problems we will be concerned with.

* Supported in parl by NSF Grant No. PHY 78-03816.
**Supported in part by NSF Grant No. PHY 78-15920.

- 421 -




I. INTRODUCTION

Given an abstract dynamical system [ (B,u,T) and a measurable
partition [2] 7 of B, we define a Markov chain (B, u, T,m) as follows:
a point x €8 movesto Tx and then is randomly scattered with “uni-
form density” with respect to u in the fiber #(7x) of 7 in which it is
situated. The transition probability of the Markov chain B,u, T, m is
thus

(1.1 Plx,dy) = p(dy | n(Tx))

where u(dy | m(Tx)) is the conditional probability of u with respect to
7 evaluated at Tx, i.e. the conditional probability given w(Tx). P leads
to "local equilibrium” in the sense that any initial probability measure v
is carried by our Markov chain to

(1.2)  wPdy):= [v(dx)P(x, dy)
B

which agrees with the ”équilibrium measure” u in each fiber of =: the
conditional probabilities with respect to = of # and pP are the same.

From the fact that 7 preserves i it follows immediately that
uP = w; u is stationary for the Markov chain as well. We wish to investigate
the relationship between the ergodic properties of (8, u, T) and those of
B,u, T,m.

(In order to insure that P(x, dy) iseverywhere well defined, we make
the following assumptions:

(i) u isdefined on the completion of a Standard Borel space (B, %)
a measurable space isomorphic to the unit interval with Borel sets.

(i) T and 77! areeverywhere defined and E-mesurable.

(iif) u(dy | m(x)) is a version of the conditional probability given =
for which u(- [ 7(x)) is a probability measure on supported on m(x)
foreach x € B; and u(A | 7(*)) is =-measurable for each A € z,

If these assumptions are not originally satisfied, they will be after
removal of an appropriate set of measure zero. We also remark that if we
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had chosen different versions of 7T,w, £ and u(-|m(x)), the transition
probability obtained would be identical mod 0 with P(x,dy) [2]).

The language used above and the motivation for the introduction of
(B, u, T,m) are derived from the following

Example 1.1. Consider a system of n interacting particles moving
in a region A according to Newton’s equations of motion. The specifica-
tion of the deterministic motion is completed by imposing elastic reflec-
tions on 3A [3], the boundary of A. Interactions with an external ther-
mal reservoir are represented by random reflections from the walls such
that the outgoing (after collisions with 3dA) velocities have "Maxwellian™
distributions at the temperature of the reservoir. By representing the de-
terministic motion as a special flow [5] over a basis B, the phase points
for which a particle is at dA, we obtain a (discrete) dynamical system
(B,u,T): T is the return mapping on B and u is the projection onto
B of the canonical ensemble at the temperature of the reservoir. Let @
be the partition into sets of phase points which differ only by the velocities
of the particles at dA. Then the conditional probability with respect to
7 gives the Maxwellian law for reflections from the walls. A detailed study
of this system is given in [6] in which we also examine the case of non
constant boundary temperature, so that heat transport properties can be
studied. (In the latter case we do not however have any a priori stationary
i, and the problem is therefore more difficult.)

Another class of examples of (B, u, T,m) schemes is provided by
“random walk’ type processes:

Example 1.2. We may associate witlt the dynamical system (B.u, T)
the “random walk” x - Tx or T~ 'x with probabilities —;% This

Markov chain is a factor of the chain (B, u, T, w) (see the definition given
after this example), where

B:=BX{~1,1} wi=uxX\ N=D=«l= 1

1ol

T(x,0):=(T°x,0), o=¢t1]

and 7 isthe partition of B according to the lirst component:
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m(x,0)={(x, 1), (x,— 1)}, x€B, o=%1.

In particular, if (B, u, T) isa Bernoulli shift, then (B, u, T,m) is essential-
ly the 7T, T-1 process”, a K-system which fails to be Bernoulli [18].

Example 1.2 suggests that many interesting processes arise as factors
of (B,u,T,m) Markov chains. By a factor of a Markov chain B,u, P)
with state space B, transition probability P and stationary probability
measure 4, we mean the following: Let o be any measurable partition

of B. Then the factor space g— is the set of all fibers a(x), x € B, of a.
Let H_ be the natural homomorphism B~ g: Ha(x)= a(x). The

natural o-algebra ¥ on —g— consists of sets A with Ha‘l(A)E Z. Let

the sequence X;, i€ Z, of B-valued random variables be a realization
of our Markov chain with stationary one dimensional distribution u:

Prob {Xi € dx} = u(dx)
Prob {X.

i+ 1

€dy| X, =x}=P(x,dy).

We say that the stochastic process Y;, i€ Z, isa factor of our stationary
process if there exists a measurable partition « of B such that the process
Y, is isomorphic to the process XI.(“) =H_(X). (Y, is the factor with
respect to « of X,). Note that the factor Xl.(") has stationary one di-

mensional distribution u = po H;l on Z_.

(B, u, T,m) Markov chains are closely connected with Markov ap-
proximations:

Example [.3. Suppose the sequence Y, i€ Z, of B-valued random
variables forms a stationary stochastic process. By the Markov approxima-
tion X, of Y, we mean the B-valued Markov chain with the same one
dimensional distribution and one-step transition probability:

Prob {X; € dx} = Prob {Y, € dx} = p(dx)

Prob{Xl.HEdy|X1.=x}=Prob{Y €dyl|Y,=x}

i+1

Let u be the probability measure on B = BZ% induced by Y, i€ Z.
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For x€B, x=(£), §€B, let T be the shift on 5: Tx = x'= (),
E; =E, Let m be the partition of B according to o the time zero
partition. Then the Markov approximation of Y, is the factor with respect
to = ofthe (B,u,T,m) Markov chain.

Example 1.3 shows that the problem of the relationship between the
ergodic properties of a process and those of its Markov approximation is
equivalent to the corresponding problem concerning the relationship be-
tween (B,u,T) and (B,u, T,m). The example also-shows that all Markov
chains are in fact factors of some (B, u, T, 7) Markov chain; just let Y,

be a Markov chain.

Example 1.4 (master equation) [7]. If we treat the reservoir in Ex-
ample 1.1 honestly we obtain a dynamical system (B,u,T) where B =
= §X R (system X reservoir), g is the equilibrium measure at the tem-
perature of the reservoir, and T is the unit time mapping induced by the
equations of motion. Let be the partition according to the system co-

ordinates (so that -z—z S). If we observe only the system we obtain an

S-valued process; the master equation describes the Markov approximation
of this process. 1t corresponds to putting the reservoir into equilibrium
relative to the system at every “instant”. It is thus the factor relative to
n of the (B,u,T,w) Markov chain. (Note that the choice of time unit
is important. Different units would lead to essentially different master

equations.)

A word about notation. We will frequently denote a measurable
partition and its corresponding o-algebra by the same symbol. To the
extent that the distinction matters, it should be clear from the context
what is intended. We will also frequently use operator notation. We will,
e.g., write. Pf and () for [P(x,dy)f(y) and S u(dx)f(x) respectively.
The n-step transition probability P"(x,A) isgiven by (P"[,)(x), where
I, is the indicator function of the set A € . Fora (B, 4, T, w) Markov
chain P= UK, where (Uf)(x):= f(Tx) and K(x,dy):= u(dy | 7(x)).
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Asymptotic behavior

The asymptotic behavior of a Markov chain (B; i, P) may be studied
from several points of view. One may, for example, study the ergodic
properties of the dynamical system (BZ,P#,S) corresponding to the
Markov chain. Here P“ is the Markov probability measure on B?
(equipped with the product o-algebra ) with stationary distribution
u and one step transition probability P. Namely, let us write x = (x)),
x,€B, i€Z, for x€B%, and let X,(x)=x, be the state at time 1.
Then P”{Xl. € dx} = u(dx)

PAXp  EdviXy=x, X =x_ |, X, ,=x_,...}=

= P(x, dy).

S is the shift on B%. We will say that (B, u, P) is ergodic, mixing, ..
according to whether (BZ, P# ,9) is ergodic, mixing, . .

Another approach is to investigate directly the action of P on B,
i.e., to study the asymptotic behavior of P"(f), n - o, This is the ap
proach of eg. Foguel [9]. Note that the operator adjoint P* of P

(f dug(Pf) = [ duf(P*g) for feL™(B,u), g€L B, uw), ie., for
v << U, P*(Z—Z) = dgi))

versed Markov chain, since

is the transition probability for the time re.

[ dugpry="I dP,g(X_)fiXy)

and

Fdufpte) = [ dP X)) (P*e)(X,).

(P and P* acton LB, 1), and in particular take nu!l functions to null
functions, because u is stationary.) Thus if (B, u,P) isthe (B, u, T, 7)
Markov chain, then (B, pu,P%) is the (B,u, T~ ',m_) Markov chain,
where 7 =Tl

Needless to say, the two approaches are closely related. For example,
various types of convergence properties for P7 can be formulated iy
terms of conditions on certain o-algebrason BZ%:
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Let J;= a(X ). the o-algebra generated by X,. Let

’ = U s,
4 <m i<sm !
(=m) (i=m)

the o-algebra of\events observable prior to (after) time m. Then the tail
fields # _ and J#_ aregiven by

‘joe :D f;sm'

J__ (F,) isthe o-algebra of events observable in the arbitrarily dis-
tant past (future). We will also consider the o¢-algebra

)= SN

and the o-algebra # of invariant events: A€ s = SA=A. Note that
ICH ) #_ and 4 __ areclosely connectea with the convergence
of P™" to equilibrium u:

! (1) #_. s trivial = P"f>u() in L' forall f€L*(B,u.

(2) S s trivial = pP" - u in variation norm for all probability
measures v << u “(the variation norm of a-signed measure v is

; ivll=sup 1vNHD.
i 1l <}

(1) follows from the martingale convergence theorem and the stationarity
of . (2) follows from (1) upon taking adjoints. A condition, stability ",
providing information about . _ will be investigated in Section 0.

If we strengthen the convergence in (2) by requiring that it hold for

all probability measures v, i.e., by requiring that
P (x,dv)~ u(dv) in variation norm

d we obtain an ergodic, aperiodic Harris process, various formulation of
which will be studied in Section 5. There it will be explained that when
the (B.u,T,m) processisHarrisand (B, u, T) is mixing then (B, u, T.7)
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is Bernoulli. #., #_. and 4, _, will also be identified for Harris
processes, they are in fact the same. This is an important case since many
chains arising in physical applications are Harris, e.g. Example 1.1, [6].

If on the other hand we weaken the convergence in (2) and require
only that vP" >y weakly, ie. that vP"(f) > u() for all f€ L>(8,u
we obtain a condition equivalent to mixing. A sufficient condition for
mixing is that ¢, be trivial (see Section 4).

It turns out that ¢, may be identified with a measurable partition
w of B which defines the largest deterministic factor of (B, u,P). We
call this factor the deterministic part of (B, u,P). If w istrivial, we say
that the Markov chain is purely stochastic. That purely stochastic chains
are mixing is a well known result in the theory of Markov chains [8], [9].
More generally, a stationary Markov chain is mixing (ergodic) if and only if
its deterministic part is mixing (ergodic). These matters are discussed in
Sections 2, 3 and 4 where various characterizations of w and # are given,
some in terms of o-algebras on BZ, some directly in terms of P, and
some, for (B, u, T, m) schemes, in termsof 7 and 7.

If a stationary Markov chain is not purely stochastic, i.e. if w is not
trivial, the convergence to equilibrium as in (1) or (2) cannot hold since
P"(x,dy) will be supported by w(T"x). (Note also that in this case
F N F__  is not trivial.) However one can still ask the following:
Do points in the same fiber of w have the same asymptotic behavior
(local approach to equilibrium)? Equivalently, does J' __ = w, i.e. does
knowledge of the distant past only tell us which fiber of w the system
is presently in? In Section 6 we give examples showing that this is not
always true,

However, for Harris chains it is true (Section 5), and a similar but
weaker result holds for stable chains (Section 6). In fact if the chain is
Harris w has countably many atoms and
(1.2) lim || P"(x, dy) — u(dy | w(T"x)|l = 0.

n— oo

(1.2) remains true if the Harris condition is “relativized” to w,
though now w may have uncountably many fibers. Relativized Harris
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chains are investigated in Section 7 where it is also shown that w in
(BZ,P#,S) splits off: (BZ,P#,S) can be written as a direct product of
: the deterministic part of (B, u, P) and a Bernoulli shift. Thus relativized
ﬁ Harris chains (8, u,T,w) are Bernoulli provided (B, u, 7) is Bernoulli,
since the deterministic part of (B, u, T, w) isa factor of (B,u,7) and
factors of Bernoulli systems are Bernoulli [4].

2. ERGODICITY

We first give various characterizations of the o¢-algebra # of the in-
variant sets of (BZ,P#,S), a stationary Markov chain which may or may
not be a (B,u,7,m scheme. As the proof is classical [8], [16] we just
sketch it.

Lemma 2.1, 11 © Iy andtherefore FC J"O.

Proof. Let g be a bounded . measurable function. Then
ge £, g€ 5 __ and by the Markov property

2 = ;
PUglPl sg)="P, (gl s>
proving the lemma.

Thus g€ & is of the form g=§(X0), g measurable on B. More-
over

Lemma 2.2. Let g€ S and g€ L 1(BZ,P#). Then
P@) =P (@) =g
where g = ;,;(XO).

J Proof. (P&)(Xy) =P, (6(X)| #3)=P,(&(Xy)| J¢) = g(X,)  and
similarly for P,

The converse of Lemma 2.2 is also true:

Lemma 2.3. Let g€ L'(B,un) and let either g=Pg or g= Ptg:
then g(XO) € 5.

Proof. Suppose g= Pg. Then g, = g(Xn) is a uniformly integrable
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martingale [17] with respect to ¥ . Therefore g = lim g, is P‘1 a.e.

Hn— = i
defined, g_ € L‘(BZ,P#) N, and P(g,|X,)=g, Therefore by!
Lemma 2.1, ' i

8o =Pu(g.,° I j"0)=g(X0)EJ/, i
Incase g=P*g, the proof is similar.

We collect these results and others in the

Theorem 2.1. j

() f=Pfef=P*f, feLY(B,u) (f is then called harmonic).f'

(i) F C E Thus % may be regarded as coming from apartilr'ou;
of B, which we denote by 7.

(iii) T={AEE|P1A =1A}.
. (iv) For fe LY(B,n), f€ 1= f isharmonic. ;
(v) Let v be stationary for P, vP =y, and absolutely continuous.

. dv ., , , . i
with respect to u. Then == is harmonic, the invariant measure P, << P;

du
dPu dV :
and (X ). Conversely, if Q s an invariant measure under S
dP T du |
dQ. aQ .o o dQ |
and Q<< Pu then a’P € 4, —&E W is stationary for P, where a’Pu 2|

~_;d_Q_(X)

(v1) For a B, u, T,m) Markoy chain 1 Is the o-algebra of T m
variant w measurable sets.

(vii) The following "definitions” of ergodicity are equivalent:
(a) £ s trivial.
(b) 7 s trivial.

(c) Other than constant multiples of ®, no measures stationary
for P and absolutely continuous with respect to u exist.

— 430 —



Proof. All but (vi) are straightforward consequences of Lemmas 2.1,
2.2, 2.3. (vi) follows easily from (iii).

Ply:=UKl, =1, = KIl, =1, and Ul, =1, <
e=Aden and TA=4,

since U is unitary and K is an orthogonal projection on LY(B, ).

3. THE DETERMINISTIC PART OF A PROCESS

We wish to investigate the extent to which stochasticity improves
convergence to equilibrium” over that which occurs in deterministic
processes, for which 8§ measures evolve into & measures. To study the
effect of stochasticity we isolate the deterministic pairt of a process and
study convergence to equilibrium within the fibers of the deterministic

factor.

We say that a stationary process Y, i€Z, is deterministic if it is
isomorphic to )7l.(x) =Tix, i€Z, x€B, (B,u,T) an (invertible) dy-
namical system. If the factor with respect to « is deterministic we say that

« is deterministic.

By the deterministic part of a stationary process X, or of the station-
ary Markov chain (B, u, P) with realization X;, we mean the largest de-
terministic factor of X,. This is the factor with respect to w = sup «
(mod 0), where o runs over all deterministic measusable partitions of B.
(1t foltows from Theorem 3.1 that sup « is deterministic.)

Any sub-g-algebra on B, in particufar w, may be regarded as a sub-
o-algebra of J , and hence a o-algebra on BZ . Theorem 3.1 should be
read with this in mind.

w has many different characterizations:

Theorem 3.1. For a stationary Markov chain (B, u, P), the followiug
are identical (mod 0)

(i)  the partition giving rise to the deterministic part of (B, u, P),
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i
;
i
;
:

(i) the o-algebra {(AeZ|\P"] = ]Bn’ P, = ]Cn’ nz= 1)
(iii) the o-algebra {A€Z [Py I, = Werri,ll, = W, Iy} whefi
|+l denotes the norm of L*(B, 1), 2

(iv) the g-algebra W such that f€ L2(B,u) is w-masurableé

e PrfL, = P AL = Al (> D, |
W S =0

+w H
oy NSy ;
j=—o ;
For (B, i, T,m) Markov chains:

(vii) the finest measurable partition W satisfying
(@) w<m,
b)) Tw=w (the finest T-invariant measurable partition coa
than ), .

+ oo
(ii) N T"m,

n=-—o»

(ix) the o-algebra w such that fELl(B,u) is w-measurable':
= Pf=U"f, ptif=U""f, n= 1.

Proof. Most of the proof is straightforward, and we omit de

(ii), (iii) and (iv) are studied by Foguel [(9]. To see that (i) and
are equivalent, note that the o-algebra w  described in (ii) is inv

under P and P*, ie.

Acvi e PI, =1y, DEW and PTl, = ., DYew |
A D A D lE

(using PI, =1Ip = I, = P¥IL )
Note also that for A4 and D €W, (PL)(PIp) = P(I41p). 1t fol

that the mapping 2~ S induced by P comes from an automorp,
on (B, ). That this automorphism is maximal is obvious.
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i
|

Let Ef= u(flw). Note that for a (B,u,T,m) Markov chzf
EU=UE and EK= KE= L. More generally EP=PE=U E, whi

l

U, actson w-measurable functions by ¢
H

U, fiw(x)) = (T, (w(x))).

W

Set

f, )= | duflx)g(x).

Theorem 4.1. Let f€ L= (B, n), g€ L (B, p) and let f*=f-|
gt =g— Eg. Then

(4.1) lim (g, P"fY = lim (g4, P'H=0.

n—o n-—» oo
(4.1) can be restricted as.

weak lim (P" — Ul E) = 0.

n— oo

Corollary. (BZ,P“,S) is mixing (ergodic) if and only if the

terministic factor (—i, K, s TW] is mixing (ergodic).

Proof. The mixing statement follows from the theorem and {
ergodicity statement from the observation 7< w.

Note that it follows from Theorem 4.1 (or from the Corollary sif
the trivial dynamical system is mixing) that purely stochastic chains{
mixing. We would like to know how strong the ergodic properties‘_
purely stochastic chains must be. More generally, we would like to knzn
the extent to which we have convergence to “equilibrium” in the fit
of w, namely i

P (x,dy) — pldy | w(T"x)) = 0.
Some questions:

(1) Are purely stochastic chains Bernoulli (K-systems)?

@ 1t (Z,u,,7,) isBernoulli (K) is (8%,7,,5) Bernoulli (|
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With regard to (iii) note that (n>1) ~
NPrr N, =1, ||'é =P, X1 Xo) =1, (X,) =
= 1, (X,) = Iy (Xg) mod 0= P"[, =1I,.
For (vi), note that
AEO ]i<==°lA(an=[D(X0), neZzZ.

+ oo
As far as (v) is concerned, it is clear that N f,.C /|w‘. On the

= — o

other hand, it follows from Lemma 2.1 that . , C S, for all i, i.e.
+ oo

that #,,, C N 5,
(:-v—on

For (vii) note that from (iv) we have that for f€ LY, few, Kf=
= f= fex sothat w<m. Since for m measurable A, PIA = UIA, it
follows from the invariance of w under P and Pt that Tw=w,

(viii) and (ix) are easily seen to be equivalent to (vii).

We denote by T, the automorphism of [—f—’, uw] giving rise to the

deterministic part of our process. We will also say that (-‘%,uw, TW] is
the deterministic part of our process. Note that for a (B, i, T, w) Markov
chain, T, is induced by T: Tw(w(x)) = w(Tx). Note also that 7<w.

The ergodic properties of  (8,u,P) are limited by those of
T M s T“_). We will say that our process (B,u,P) is purely stochastic

if it has no deterministic part, i.e., if w is trivial. Since 7<w, purely
stochastic chains are ergodic. It follows from the theorem of the next
section that purely stochastic processes are mixing.

4. MIXING

The following theorem is proven in the literature, see e.g. [9]. In Ap-
pendix A we will prove a stronger version, see Lemma A.S, which will be
needed in Section 7. '
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i e

ample of a purely stochastic chain with nontrivial #_

¥

i

¢

]
{
i
3

~(3) Note that ‘w=g¢__ N Jg_ C S, 4 .. Must w= s =
f;—;o? R o

We note that if _fﬁe answer to (2) were “yes”’, then the (B, u, T, )
process would be Bernoulli (K) provided (B, u, T) were, because factors

df Bernoulli systems are Bernoulli. However, as far as Bernoulliness is con-
cerned in general the answer is not “’yes”

We conclude this section with an example of a purely stochastic chain
which is not Bernoulli (see also Example 1.2). In Section 6 we give an ex-

o0

Example 4.1. Let (8,4, T) bean ergodic system which is not loose-
ly Bernoulli [10]. Consider the Markov chain (B,p, P) arising from

(B, u, T) through the transitions:

xk—Tx or xl—x

1

‘with probabilities —,1,—, 5 (As in Example 1.2 this is a factor of a (B, u,

Ly

T, m) chain, where B = B x{0,1})

~ Using the ergodic theorem, one may show that J#__ s trivial for

this Markov chain. Thus w s trivial. Since 7T 1is a factor of a system
induced from T, T is not loosely Bernoulli, hence not Bernoulli (see
Feldman [10]).

5. HARRIS CHAINS

The answers to the questions (1), (2) and (3) of Section 4 are affirma-
tive for Harris chains.

Definition 5.1. A stationary Markov chain (8,u,P) is called a
Harris chain if for p-a.e.x € B there exists an »n = n(x) such that
P"(x,dy) has a component absolutely continuous with respect to .

- (A stationary Markov chain is a conservative Markov process. If
(Q‘,‘u,P) is not stationary but otherwise satisfies the conditions of De-
fjnition 5.1, it is calted a Harris chain provided it is conservative as well,
see Foguel [9])




RIS

Let P"=Q,+R, be the decomposition of P" into its absolutely
continuous part (@) and its singular part. Q, and R, are measurable,
ie. @,/ and R, [ are measurable for f€ L~ (B, ).

To see this note that @, (x,dy) =4, (x,y)u(dy) lor p-a.c.x, where
du X P), ..

4,0 = "GrX w Here
(u X P)(dxdy) = u(dx)P(x,dy) on BX B,

and (uX P)u.c_ is the component absolutely continuous with respect to
LX .

A key observation is the following:
5.0 P"Q < Q.
(5.2) 0, P"<Q iy
(5.3) R,R, =R, .

Some basic preliminary facts about Harris chains are collected in the
following

Theorem 5.1.

() (B, P is Harris = 2 0,f#0 Jor all 0<S#0, fe
n=
e L”(8B,uw.

(i) If (B,u,P) isHarris, then R, (x,B)\ 0 for p-a.e. x.
(ili) (B, u,P) is Harris = (B, u, P*) is Harris.

(iv) Suppose (B, u, P) is ergodic. Then it is Harris = there isa M
full set B' C B such thatif u(A)> 0 then

P (&)= Py (o)) =1 for x€B!
where

o ={X, €A, n= 0, iufinitely often}

(Orey's condition).
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Proof. See e.g.[8],[9]. For ease of reference we give a sketch.-

(i) Without loss of generality we may assume that (B, u, P) iser-
godic. By the ergodic theorem,

oo

(2P =P, (2 )=

n=

for p-a.e.x. Thus using (5.2)

Z Q f> Z an> QIH Z P”f} in l

h n=70

oo

(=]
11

n

~Since Definition 5.1, says that 20 le > (0, for p-a.e.x, V= fol-
n=

lows < follows by ergodicity, from the observation that the set

{

2 Q,1= 0} is invariant (use (5.1)).

n=1

(i1) R“(X\B) =R, is decreasing by (5.3). Let g= lim R, 1.

n- e

By (5.3), R,gZ& Thus Pl'g>g. 1t follows that Plg=g, since
u(Ptg — g) = g — u(g) = 0. Thus 0,8 0 for all n, ie. by R
g= 0.

(iii) follows from (i) by noticing that Q,j', the absolutely continuous
part of P:, has the kernel q: (x,y)= q”(y,x). (See the proof of Theo-
rem 7.3 (iii).)

(iv)

The “«= part. Assume that for x€B', uBHY=1, Px(uc/)z 1
whenever u(A4)> 0. Suppose P"(x,dy) is singular for all n= 1. Then
there exists a set C(x), p(C()) = 0, such that P"(x,C(x)) =1 for all
n=1. Let A=8- C(x). Then wA) =1 and I’x(‘cf)z 0, so that
x¢B'.

The =" part. Suppose (B, u, P) is Harris. By the ergodic theo-
rem P“(N): I, and P (&) =1 for p a.e.y. Let

B'={x€BI R"(x,B) v 0},
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Then for x € B’

Il

P ()= [P"(x,dp)P () > [ Q,(x,dy)P (&)=

0,(x,B)=1—-R,(x,B)~ |

by (ii).

The condition in Definition 5.1 seems quite natural physically, and in
particular is satisfied in Example 1.1.

Harris chains have very strong ergodic properties [8], [9].

Theorem 5.2. Let (B, u,P) be Harris. Then

(i) w isatomic, ie. it has countably many fibers, each of positive
measure (mod 0). If (B,u,P) isergodic w is finite (mod 0).

(i) For p-ae x€a, anatomof w:

(5.4)  lim 18, P" —u(- | T"a)ll = 0.

n— oo

(iii) J__ =w=J_ (P“ mod 0). In particular, if the Harris chain
(B, i, P) is purely stochastic, 5 __ and ¥ are trivial and for p-a.e. x,

(5.5 5 PT=P(x,)>u
in variation norm. Therefore (BZ,Pu,S) is Bernoulli {4] in this case.

Remark. It follows from (5.4) that there exists a set B C B, u(8) =
= 1, such that if v is a probability measure supported by an &, then
(5.6) Hm [Jv P — u(- | Thall= 0.

h— oo

Proof. The proof of (i) is straightforward. (ii) is proven by first ap-
plying Theorem 4.1 and Theorem 5.1 (ii) to P* to obtain (5.6) for
v<<pu and then using Theorem 5.1 (ii) again to obtain (5.4). For details,
see Foguel [9], or Section 7. (iii) follows from (ii), see e.g. Section 6.

(BZ,P“,S) is Bernoulli because every finite measurable partition
< S, is a weak Bernoulli partition, which easily follows from (5.5)
[11],[4].
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6. THE ENDOMORPHIC PART OF A PROCESS;
STABLE PROCESSES

In Theorem 3.1 it is shown that # ___ = w for Harris chains. That
7 - = W isnot true generally follows from the following

NG

Example 6.1. Let B={-1,1}? and let (B,u,T) be the %,

Bernoulli shift, For x€ B we write x= &), ieZ, E,=x1. Let

S am = 0 1= m).

Let 7= j> o and consider the (B, u, T, w) process. Note that T~ " g =

= }':‘m. Therefore w=NT"g= J is trivial. However, though
n

m
4 4. isalso trivial, ¢ __ > (Recall that the ’srefer to o-algebras

on BZ while . ’sreferto o-algebrason B). In fact, it follows from the

»m

fact Tm>m that T acts as an endomorphism T on —5 and the factor

with respect to w in the purely stochastic (B, g, T, m) chain is an endo-
morphic process, i.e. it is induced by the (non-invertible) measure preserv-

f (T, on B_ isjust the one sided shift). It
follows that 7 __  may be identified with the doubly infinite trajectories
of this endomorphic process, i.e.

ing transformation T" on

/‘_w = U 7(1', 7(1 = O(H"(.\‘l))

and
PUXD TS _ )= p(f | (X)),

Example 6.1 suggests that we study the relationship between s _
and the endomorphic part of a stationary Markov chain (B, u, P). Analo-
gously to the deterministic part of a process, the endomorphic part of
(B, u, P) is defined to be its largest endomorphic factor.

We will say that a measurable partition o of B is endonbrphic if
the factor with respect to « of the (B, u, P) process is endomorphic. For
any measurable partition, let

o, = o(H, (X))

!
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be the partition according to « at time

i”". Note that o isendomorphic
iff o, , <q, i€Z. Note alsothatfora (B,u,T,n) process « isendo-
morphic iff o< 7, a < Ta,

The proof of the following theorem is similar to that of Theorem
3.1.

. Theorem 6.1. For a stationary Markov chain (B, u, P) the following
are identical (mod 0)

(i) the partition giving rise to the endomorphic part of (B, u, P),
i.e. the largest endomorphic partition of B,
(ii)

the o-algebra

{AGE]P"IA :IBn’ nzl},

(iii)

the o-algebra

(Aes P, N, =1, 1,

(iv) ._the o-algebra w* such that fe€ L*(B,u) is w* measurable
yrneifity = sl,, n=1,
(v)

n<0 jn.

Fora (B,u,T,n) Markoy chain:
(vi)  the finest measurable partition w?* satisfying
(a) wr<ar

(b)) Twt > wt,

(viiy N T"n,
n>0

(viii) the o-algebra w* such that fe LYB,p) is w* measurable
iff Pif=U", n> 1.

e

We denote by w*

6.1. We write T

+

e

the measurable partition described in Theorem
for the endomorphism of ——

which induces the
wt
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endomorphic part of (B,u,P). Note that for.a (B,u,T,m) scheme
T, (w*(x))‘= wt(Tx).

Notice that the counterpart of Theorem 3.1 (v), which would say that
F_= U wi+ is missing. At the end of this section we give an example
{

(Example 6.3) in which w* and hence U w,.” is trivial, though # _ is
{
not trivial, i.e. a stationary Markov process in which the tail #__ con-

tains more than merely what is required by its endomorphic part. (Note
that w<w* <Uw? < #__ isalways true, and that for Harris chains,
1

S __=w=wt)

- We first give a condition under which the counterpart of Theorem
4.1 (v) is true.

Let 0 C T be a countable algebra which o-generates 2, and define
the family @ of functions 0< f<1 on B by

O={flfx)=P(X,€4,,...,X, €4, n20,

Ags.. . A, € ).

0>

We say that an endomorphic partition o of B isstable if (mod 0)

x2ye lim (P"(y,A) =0 forall A€ 0.

1 — oo

(x 2 y means that x and yp are in the same fiber of 0.) We say that
(B, u, P) is stable if w* s stable. Note that it (B, u, P) has any stable
partition ¢ then w' isstable,since o< w?,

We will discuss the structure of the tail field #_ _ in stable systems.
First we give an argument showing that any (B, u, T, ) chain is “almost
stable. However, at the end of this section, in Example 6.3, we describe a
stationary Markov chain which is not stable (and the canonical (B, u, T, )
chain in which this chain is the factor with respect to 7 (see Example 1.3)

is therefore not stable either).

»

Let A denote the partition of B defined by

X '}Ly = lim [P"(x,4) - P"(y,A)]=0 tlorall A€ 0.

N — oo
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In Appendix A we prove

Theorem 6.2. For a (B,p, T,m) process N< T"m (mod Q) for all
neZz.

Note that it seems to follow from A< T"w, n=20,1,2,... that

and hence that every (B, u,T,m) process is stable. The catch is that A
need not be measurable. (Recall that

N 7rx

n=20

is the finest mieasurable partition < T"w, n>0. See in this regard
Rohlin [2], No. 3.)

We give a characterization of ¢ __ for stable systems in Theorem
6.3 below. The following lemma follows from the Lebesgue dominated
convergence theorem.

Lemma 6.1. Let o be a stable partition of (B,u,P). Thea for
y-e.e. x

lim (P"(x,A)—xpn(x,A))=O Jorall A€

n— o

where

¢, (x, A) = | u(dy | s(:))P"(p, A).

Theorem 6.3. Let o be a stable partition for (B,u,P). Then

- —0 —— 0o

(6.1 /_m=.U0 o= N Uo.
=
Proof. The last equality in (6.1) is a consequence to the fact that

Oip1 S 0p Applying Doob’s martingale convergence theorem to o_, 7

— o0

7 iyo og;and to J __ 'V F _ . 'we obtain for I’”-a.e.x and every i€ Z
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P (X,}l(‘-gjo;"o;)(x)]'= -rlli_)n:f@m(x,) bo_ G =
(6.2) p nlini i u(dylo(x_n))P"“(y,A); R
= lim «PHHU?;,,’#), AE€0,
and
PUAX) | F () = lim PAXD] S o, ()=
(6.3) e

= lim P (A(X)] s _, &)= lim pr¥ix_,A).

n— o n— oo

To complete the proof it will suffice fo show that (6.2) and (6.3) agree |
P“-a.é. Let g, (x) = I«an(x,A) — prtigx, Al By Lemma 6.1 \
g,(x) = 0 and by (6.2) and (6.3) the limit gn(X_n)—’:-: gx)y=0 !

exists. But

[P (d)gex) = tim [ P,(dx)g, (X ;)=

n-—s oo

= lim [ u(dx)g(x)=0.. |

n— oo

Thus g(x)= 0 and the proof is complete. i

If a condition stronger than stability is satisfied, a more explicit b
formula for the conditional probabilities P“ (dx| #__) canbe obtained. 333“:;

For any partition ¢ < wt and any fiber ¢ € wt, let o(a) denote 5o
the fiber of o containing a. Let us write o(T"x) for o(Tiw*(x)). '
Note that for a (B, u, T, #) process this notation is consistent. i

We say that a stable partition x is uniformly stable if for every AE O

y there exists a o-measurable function p(x, A) (p(x,4)= p(a(x), A)) ¥
,? such that ‘ V x
. . ,ji

6.4) lim (p(a(T"x), A) — P"(x,A4)) = 0, pu-a.e. ‘ ‘ i

n-—soo

I g




Note that if (B,u,P) has a uniformly stable partition then w?* is uni-
formly stable. We say that (B, u,P) is uniformly stable if w* is uni-
formly stable.

Theorem 6.4. Let o be uniformly stable. Let f€ L~ (B,u). Then
(6.5) PURXD F_ () =u(floX), P -ae

u

and
(6.6) wPflo(x)) = u(f] o(Tx)), p-ae.
Le.
(- 1oONP = (- 10o(Tx)), pae.
- Proof. Note first that o(T"*'X_, )= o(X)), P,-a.e. Thusfor A€ 0
lim (o(T"*7X_,),A) = lim «p(o(X,.),A)=<p(:7(X,.),A).

n-—s oo H-—> o0

Therefore by the same argument as at the end of the proof of Theorem 6.3

gx):=P (AX)| F__(x)= lim P"+!(X

n— o

n’A) =
(6.7) .
| = lim w(o(T"*IX_,),4) = p(o(X), 4), P, e

N o

Thus g(x) is 0; measurable, and, since ol.< 5 we have that

— e ?

PLAMD] S _ (N =P (AX) 1 0,(x)) = w4 | o(X ), P -ae.

This proves (6.5).

(6.9) P“(f(Xl)l/_;)=P“(PﬂX0)lf_w), P -ac.

by the Markov property. By (6.5) the left hand side of (6.9) equals
uf1o(X ) = u(fl o(TX,)), P ae.

and the‘right hand side of (6.9) equals u(Pflo(XO)), PM--a.e., which
proves (6.6).

- Let fe L™(B,u). Since F oz F
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From Theorem 6.4"(and its proof) we have the following

Corollary. ‘Suppose 0 isuniformly stable. Then (mbd 0)

() For Aeo |
0, (%, A) = p(a(T"x), A) = (A4 | o(T"x)),

(i) o=wt,

There exist stable systems which are not uniformly stable:

Example 6.2. Let B, 1, P) be the stationary process (B, u, T, 1)
described in Example 6.1. Let € = (¢;), 0< <1, i€Z, andlet

+ =
[eG,)= X (8, + (1 —€)8,),  x=(g).

1= ~— oo

I_ represents an independent spin flip &~ — & ateach “site i, with

probability €, I€Z,

Let p = 1 (Tx, ). P_ represents a shift followed by independent
spin flips. Let

—é i<0
€ = ZL i=0.
0 i>0

Then b, e= (€;), is P tollowed by an independent flip at i= 0 with

probability er For the process (B, p, PE) wt = /> ; (see Example 6.1

for the notation). This process is clearly stable but not uniformly stable.

For a different choice of € in the above example we obtain a process
which is not stable.

Example 6.3. Let (B, u, PG) be as in Example 6.2, now with € = (e,.)

b oo

satisfying €;,>0 forall jeZ and . 2 €; <. (This process may be

= —~o0

found in Rosenblatt [12] Ch. 1V, Sec. 4.) (’B.u,PG) is not stable.
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In fact w* is trivial and F _ . is nontrivial, # _ . isnontrivial because,
e.g., the functions

&)= ¢, (-n),
where
X = (xi), x/- = (Ek(j))’

(g(x) is the value of the spin at site i/ + n at time — n) are independent
of n for n sufficiently large. Thus their limits gx)e »__ are non-
trivial. w* s trivial because, in fact, FoN F_ ; Is trivial. This is so
because for fe L=(B, ), fiX)e #on ¥ | =fe j<_m U j>m
for all m>0, so by the -0 — 1 law for independent random variables,
/ is constant p-a.e.

7. RELATIVIZED HARRIS CHAINS

In this section we study relativized Harris chains, which are defined
by the condition that H-a.e. P"(x,dy) hasa component absolutely con-
tinuous with respect to u(dy | w(T"x)) for some n. (We will frequently
write T instead of T, and we will write w(T"x) for T (w(x)), even
if (B,u,P) is not a (B,u, T, m) chain.) This condition is quite a bit
weaker than the Harris condition (see Section 5) and, in particular w may
have uncountably many fibers. However the results for Harris chains,
Theorem 5.2 (ii) and (iii), essentially extend and (BZ, PM,S), if ergodic,

can be factored into a direct product of (%,pw, Tw) and a Bernoulli

scheme.
. , B
From now on we will write Bw for e

We say (B, u, P) factors if there’ve&ists a Lebesgue space (Bp/ﬂ)
and an isomorphism (mod 0) from (B,pu):= (Bw,uw) X (Bl,ul) onto
(B, 1) which carries the partition according to the first component of B
(vertical” fibers) to w,

Theorem 7.1. (B, K, T, m) factors if it is ergodic,

~ 446 —




(7.4) fdulan(a)f= fdulfP,f(T"a)g, K, -a.e.

from the fact that P" and P*" are adjoint. Note that for f€ L= (8, w,}

P . (&=P (P, (T"a)

n+m

Pt  (a)=P; (@P (T "a).

n+m

The basic properties of P, and P! and the relationship between them -

is given by
Theorem 7.2. For p,-ae a€w,

p(s [a)P" = p(- | T"a)

(7.2)
pC- 1a)P*" = p(- | T "a).

Suppose (B, u, P) factors. Then for p -ae a€w,
u P (a)=p

(7.3) i°n 1
wPr(a)=u,

so that P, (a) and P](a) are contractionson LP, | <p < e, leaving ul""‘, .
invariant. Moreover P, and P} areadjoint: :

for fe L=(B,, 1) and g_ELl(Bl,/Jl), ie.,
(P, (@)* = P (T"a).

Proof. (7.2) follows easily from the stationary of u. (7.4) follows

f=1Aa,§, P"=P U", where
P,Na, §) := (P, (a)fla, -))(§)
(U N(a, ) = AT"a, §).

Similarly
P =PrU_",

where

(PyNla, &) = (P (a)fa, -))(E).
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Proof. It follows from Rohlin- [2] Sec. 4, No. 1, that if each of
the Lebesgue spaces (w(x), u(- | w(x))), x € B, has (mod 0) the same
isomorphism class, then (B, u,P) factors. There Rohlin also shows
that the isomorphism class of (w(x), u(- wv(x))) depends measurably on
x. Fora (B,u, 1 n scheme, T induces an isomorphism between
(wx), u(- | w(x))) and  (w(Tx), u(- | w(Tx))), so that in this case the
isomorphism class is @ constant of the motion. Thus if (B,u, T,7) is
ergodic, the isomorphism class is the same for all x and so the theorem
is proven.

Suppose (B, u,P) tactors. Then we may identify (B, u) with (§, E)
and drop the "~”. Thus in this case 'x € B is of the form x = (4, &)
(ae B, te B), w(x)= (q, B), -and we may set u(- [w(x)) = 8§, X K,
Moreover the system (B, u, P) may now be factored into a ”skew product”
whose first component is (8,,, K> T,,). The transition probabiiity P(x, )

defined for E—a.e. X, induces a family of transition probabilities P (% -5 a)
on (8, u,) defined, for p-ae. x = (q, £), by

P,y =6 X P 1a), pae.

Similarly we define PY(¢,-;a) by

PHi(x, )= ST._ ", X PHE, ia), pae.

We may assume, by removing, if necessary, an appropriate set of K,
measure zero from B, that forall «€ B, P (% +,a) and P,T(E, . a)
are defined for M -a.e. £, as measures on Z . (Here Z, is the "Borel”
o-algebra on B,. We may assume that T = Z, X Z, where (Bw, z,)
and (31’21) are standard Borel spaces). Moreover, for A € Z,  and
ae Bw ’

70 Py, A= [P dnia)P, (0, A T"0),  pace.,

(7.2 Pl Ay = [ PN dnia) Pl (0, A; T "), e,

For fe L=(B,u) we write (P (a))(E) for P (¢, fia) and similarly
for P/. Thus(7.1) may be written as
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Moreover, the convergence in (7.7) and (7.8) is extendable.

Proof. (7.5) and (7.6) are proven in Appendix A. Suppose f(§) and
g(¥) are as in the thcorem. Then from the L' convergence of (7.5), one
can conclude that there exists a subsequence {n,ﬁ”} for which (7.7) holds,
and is extendable. Moreover, given Ay) and g(§) there exists a sub-
sequence {n,&z)} of {n,&”} for which (7.7) also holds for f and g and is
still extendable. By a diagonalization argument one may obtain a sub-
sequence {n,} for which (7.7) holds, extendably, for all f and g chosen
from a countable subset of L=(B, p,) dense in L'(Bl, p,). Bya density
argument the convergence can be extended, first to all gE-L""(Bl,ui),
then to all f& L(B,,u,). The proof of (7.8) is similar.

Definition 7.1. We say that the stationary Markov chain (B, u, P) is
a relativized Harris chain if for p-a.e. x € B there exists an #» = n(x) such
that P"(x,-) has a component absolutely continuous with respect to
u(- [ w(T"x)).

Note that if (B,u,P) factors, it forms a relativized Harris chain if
and only if for p-ae. x= (a, t) there exists an n= n(x) such that
Pn(é, .;a) has a component absolutely continuous with respect to u,.

Until we indicate otherwise we will assume that (B, u,P) factors,
We will follow as far as convenient the development in Section 5.

Let P, (0)= Q, (@ + R, (a) be the decomposition of Pn(a) into
its absolutely continuous part, Q,(a), (with respect to u,) and its singu-
lar part. We write - P"(x,-), Q,x, ) and R, (x, ) for P&, i d)
Q& a) and 13“(2,';51) Arespectively, x=(a 8. ©Q, and R, are
measurable, i.e., @,f and R,f are measurablein B for f€ L""(Bl,ul).
To see this note that

0, (x,dy) = q,(x, p)u (dr),
where

ol (I(IJ X pn )‘d.C.
) = TG )

We write ¢, (£,m;4) for q,0x,»), x=1(a,8), so that
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Thus ‘ - o ,

H)+ _ U‘;N(P")‘f- =

w

P);‘U“—' n_. pra (Pll)+ — (PnU

= W)U UL,

and

Pr;r = U\; "(Pn ) ! U":, ’
i.e.

PHa)=P (T "a)*,
since

1Y

WL P)TURNa, 8 = (P (T~ ") * fla, )) (§).

In the next lemma we strengthen the convergence given by Theo-
rem 4.1, which will later be further strengthened using the relativized
Harris condition”. Suppose {an} is a sequence of numbers and suppose

ank o We say the convergence a, T is extendable if
{ ~— 00 I3 \ -» 00

amk o where {m } is obtained from {n,} by inserting the next

k integers before and after cach n.

Lemma 7.1. Let felL'(B,u), ge LB, u) uand g° =g - Eg
where E s the conditional expectation with respect to w. Then

(7.5) lim [ u@dx) | [ du(- | wie)fP"g® | = 0

n-» oo
(7.6) lim [ pCdx) | [ du(- | wx)fPH7g?t = 0.
H -0

Furthermore if (B, u, P)  factors, there exists a subsequence {m. } such
that for every f€ L '(Bl. k), g€ LB, u), &8 =g~ Lg,

(7.7) ,,l‘if]m ! dulfl’”l“(u)gO =0, u,-ac
and
(7.8) im [ c/ule"*k(a)g” =0, u -

" v
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(i) If (B,u,P) is rHarris, then R, 1 v 0, pae.
(i) (B, u, P) is r-Harris = (B, u, P*) is r-Harris.

Proof. We will use the following notation for (B, u, PT). We write
P;(a) =0y + R (a) for the decomposition of P,f (a) into its absolute-
ly continuous and singular parts;

QX dn;a) = qu (&, nia)p, (dn).
Cbrresponding to (7.12) we have the decomposition
pHit = o+ R;;.

The proofs of (i) and (ii) are identical to the proofs of Theorem 5.1 (i) and

(ii). The proof of (iii) is similar to that of Theorem 5.1 (iii); Note that it

follows from

(P (@)* =P (T"a)
that
(7.16)  (Q,(@)* = QX (T"a).

In fact if P and PP are transition probabilities on (Bl,yl), and if
0 and Q) are the absolutely continuous parts of P and P re-|.
spectively, then ‘

P = PO+ 5 Q(2) - Q(l)+:
PU(E, dn) = ¢ Vg, mp (dn) + RUD(E, dn) =
= PO (g, dn) = ¢ (n, O (dn) + R (E, dn),

Thus ¢, )= ¢V, & ie 0= QM. Similarly, 01V > QP
Thus QD+ = Q2. It follows from (7.16) that

71 Q) =0
(see e.g. the proof of Theorem 7.2).

Thusfor f€ L=(B,u), 0<f#0,
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Q¢ dns @) = ¢, (E,m; a)u, (dn).
Just as in Section 5.

79  P,@Q,(T"a)<Q,,, (@
(7.10)  Q, @P(T"a)<Q,,, . (a)
(7.01) R, (@R, (T"a)> R, ,  (a).

We find it convenient to use the operators Q" (x,dy) and R, (x,dy):

for f€ L=, 1), f=fa,8),
(Q,N@ £ = (Q,@AT"a, (),
(R, N, £) = (R, (@)f(T"a, ))(E).

Q, and R, provide a natural decomposition of P" (recall that
(P"f)(a, &) = (P, (@ f(T"a, ))(£)

(7.12)  P"=Q, +R,.

Note that (B, u, P) isa relativized Harris chain iff u-a.e.

2 0, 1>0.

n=1

From (7.9), (7.10) and (7.11) we obtain:
(713 - P"Q, <0, .,
(7.14)  Q,P" <0, .,
(7.15y  R,R, =R, , .-

Some basic preliminary facts about relativized Harris chains are col-
lected in the following: (we will say r-Harris for relativized Harris)

Theorem 7.3. Suppose (B, u, P) factors.

) (B, P) s r-Harris = 2 0,/#0 forall 0<[#0, [€
. "=
€ L7(B,n).
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Lemma 7.3. Suppose (B, u, P) factors and is r-Harris. Let g€ L
€ L“(Bl,pl). Then there exists a subsequence {nk} of {n,\} such that
(mod 0)

lim P+ (T a)g° =
k — o0

Proof. Let [, (x)= (PH@g®) &), x= (a, ). By Lemma 7124
f,,k(x) ~'0, p-a.e. Thus

NULES, =11, 1 =0
Therefore there exists a subsequence {n,’\,} of {nk} for which ij
=/ (T""a 5= ka)g®)(5)~» 0, wae.

Lemma 7.4. Suppose (B, u, P)  factors and is r-Harris. Let ge
e L'(B,,u) andlet dpge = 8 °du,. Then for p,-a.c d,

Hyo Py (@) = 0 in variation norn

(i.e. lim sup lfdulgOP”(a)fl—;
n—o o<l

Proof. Using Lemma 7.3,
1Py (T"*a)g”ly =

for g bounded. Since the P*(a)sare contractions on L! (B, “1)’ thist
convergence can be extended to all g€ L} (B, 1y y with the restriction{
to the subsequence {n,\} removed, i.e., ||P (T"a)g iy, - 0 for all g€}
elL! (B, 1)) Since P“ (T"a) = P (a)Jr this is the same as the conclusionf
of the lemma.

Theorem 7.4. Suppose (B, u, P) factors and is r-Harris. Then for
pea.e. x = (a, %) :

P (k) p 12 w)  in variation norm.

Proof. It follows from Lemma 7.4 that for ge L'(B,,n,), fon
P, -a.e.d
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2 0,/#0= 2 uQ)(N#0=

n=1

(£ 2 0x1)#0

n=1 . n=1

4
Y
S
QS

3 %

i

from which (iii) follows easily. ;

Corollary 7.1. Suppose (B, u, P) factors and is r-Harris. Then

(7.18) lim R, (§,B,;a)=0, modQ,

n— oo
and
(7.19) lim R:(E,Bl;a) =0, modO.
n-—» oo

Our goal now is to use Lemma 7.1 and the above corollary to prove
the counterpart of Theorem 5.2 for r-Harris chains. The basic idea is very

similar to that of Theorem 5.2.

Lemma 7.2. Suppose (B, u, P) factors and is r-Harris. Let {n,} be
the subsequence described in Lemma 7.1. Let g€ L=(B,,u). Then

(mod 0)
(7.20) lim P,:rk (@)g® = 0.

H— oo

Proof. Using (7.1) we have

PHa)g® = P} ()P} (T "Ma)g” =

= :) (a)P;_ m (r=m a)go + R::l (a)l)l;r»— m (r=" a)go.
Thus
721 IPY@g° 1< | [u g} ¢ onya) P}, (T~ "a)g® ) ()| +

+ 20lgll R (-, B ; a).

m

Using Corollary 7.1 we can fix s so large that the second term on the

right hand side of (7.21) is smaller than €. Then, by Lemma 7.1, the first
term on the right hand side, with n = s will also be smaller than e for

k sufficiently large,

.




A

]

rise to a partition Z, of BZ (the time O partition) which is very weak
Bernoulli relative to w [13] and hence [13], [14] is relatively finitely de-
termined with respect to w. Thus the Thouvenot ’s relative theory
(15], [14] the factor of (B%,P,,S) induced by ZUw, ie. the dy-

+ oo

namical system (BZ wu U S"Z,, P S) is a direct product of
n=-—o0

(BW,uW,T ) with a Bernoulli shift. Choosing Z finer and finer, we

W
see that (BZ, P ,S) is the increasing limit of factors which are direct

products of (Bw,uw,T ) with Bernoulli shifts and hence is itself a

W

direct product of (B, ,H,, , T ) with a generahzed Bernoulli shift [14].

W
(iv) follows immediately from (iii).
Corollary.
(i) Suppose (B,u,T) is Bernoulli. Then (B, u, T, ) is Bernoulli
ifitis r-Harris.

(ii) Suppose the stationary stochastic process {Y,.} is Bernoulli.
Then its Markov approximation is Bernoulli if it is r-Harris.
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APPENDIX A
We consider a (B, u, T, w) scheme. Recall that:
Uf= (Tx),  K(x,dy)= u(dy|n(x)), P=UK.

Let Iel=1M-1l5, Suppose f€ L2(B,u), g€ L1(B,p).

Lemma A.l.

(iy P"fIl is non-increasing.

(ii) Z (1 = KYPfII? < oo

n=90
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(_7‘~2l‘) P (a) (/gdu,)u, invariationnorm.. -,
Since | |

P (ks a)="[u (dn)q, En P, @ 3 T"a)+

+ R, (£, dn;a)P,_, (1, T"a) : |
the theorem follows from (7.21) and (7.18).
. The assumption that (B, u, P) factors can be removed. ,

Theorem 7.5. Suppose (B, u,P) is r-Harris. Then
w(T"x )l = 0

() lim [P Cx, ) —u(

n-— oo

where -l is the variation norn. A

i

(i) (B, u, P) is uniformly stable and w* = w (sec Section 6). Thus

(722) w=g__=J_. |

(iii) 1f (B, u,P) is also ergodic, (BZ,P“,S) is isomorphic to the
direct product of (B ,n,,T,) with a (generalized) Bernoulli shift [4]
(and under this isomorphism the first component (B, 1, T,) of the
product corresponds to itself).

(iv) If the deterministic part (B, 1., T.,) of (B, u, P) is Bernoulli,
‘ then so is (B?, P,,S).

Proof.

(i) By Theofems 7.1 and 7.4, (i) will hold for any ergodic
(B, u, T, m) chain. By decomposition into ergodic components (i) holds for
any (B,u,T,m) chain (w>7). Since any stationary Markov chain
(B, u, P) is a factor of a (B,u, T,m) chain (see Example 1.3) such that
w for (B, u, T, m) agrees with w for (B, u, P), (i) follows.

(i) follows easily from (i). ((7.22) follows e.g. from Theorem 7.3 and
Theorem 6.4.) !

(iii) It follows from (i) that every finite partition Z of B gives
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Lemma A.3. For pae X € B

A dlim [Preen- u(dy | 7, GNP, N] =0

n— o

where @, = TMqg meZ.

f Case m=0. The function in the square bracket on the left

Proo
K)P'f. By (ii) of Lemma Al (1 — KYP"f con-

hand side of (A.1)is (1 —
verges p-a.c.to O.
Case m # 0. The operator ymKU~™ isthe conditional expectation

with respect to T, . Use of Lemma A.2 (iii) gives then the result.

Proof of Theorem 6.2. It is obtained from Lemma A.3 by letting

vary in 0.
We put
s, = {re LXBw UL = (UKFTL p>0

P = A >
H Jﬁ‘pﬂ /’_p, 7} 0

a = N A",
nz0

g s p =0, is the subspace of functions f such that Uif is m mea

surable for 0<i<p—1, i.e. of functions f which are

measurable. J/’_p , p= 0 hasan analogous interpretation. Let

n- 1
M= N Ta n>0

f=—n+1

Then s = LiB,n",p), L= L2(B,w,w); E,, the orthogonal pro.i

2" s the conditional expectation with respect to @"; an}‘

jection on
w, is the orthogon

E, the conditional expectation with respeet to

projection on J, and is therefore the strong limit of the £, .

Let 1% p=0, be the orthogonal complement of .VZip. Not

o
that
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Proof. Statements (i) and (ii) are consequence of the following
WP = LKP AN + ()= K)PrAI? = .
| UKP LI + 110 = K)PP 11 =

=[PP+ (0 = KPS

il

~ ; because U is a unitary operator in L* and K is an orthogonal projec-

tion.

Lemma A.2. Forany g=1,2,...

o0

(i) | ((UK)YT — UH)P || < oo,

H=

oo

SR f () 2N KT U PR <

§

!

(U KU — )P ]2 < o,

N

(iii)

i
[

1

Proof. The proof makes repeated use of (ii) of Lemma A.l. For in-
stance when we have a term like U9P"f we can write it as follows:

uiptf= U101l - K)+ K)P'f =
= [Jq- |])II+ If-l- Uq(l _ K)])Hf:

il

q -1
Z' Uq-—i(l _K)Pn+i+ prraf.
=0

Therefore

q--1
(UK = UDPIIS 2 I = KPS

1=

' 1 q-! 1
<q? (2 10 = KPE)
':
o0 w q-1
2 UK = UDP'I? < g 2 E{) (= KPR,
n= n= =

which proves (i). The other statements are proven similarly.
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R

Ry :

#L. = the closure of {g'e Lig=[U*Pf—(KU* [,

tp ‘
feL*(B,w}

va’nci that
: AP = (J/'; + .//'fp)l.
Lemma A4. Let Y€ L™ (B,w,u). Then
E(YS) = VES
KW/ = VKf
Uy ) = (UP)UN.

Proof. Since £ and K are conditional expectations and EK =
= KE = K the first two equalities follow. The third one is a consequence
of the fact that U is generated by the point transformation 7.

Lemma A5,
(A.2) lim  sup  [((1 - E)gy,P'f)| = 0.

noeo Yl <t
Y ew

Proof. Fix e€> 0. Then thereis p» such th‘a‘t‘

(e —-L,)¢ll, <e
Then for every #> 0 we have by Lemma A 4:
(A.3) (= E)gd, PINI< T (WA~ E g, PPN+ el [l
because || y]l_ < 1. Since ‘

(1 —E)g=(U"P = (KU~ 1)P)g + (UP - (KU)P)g_, + ¢
where ||g~|I < e, from (A.3) we get

WA~ E)gy, PUNI< 2ell /I + Hlg, 11 UP = (UKYP)PUSI +

+ g MU P (U LKW P < 2ellf)l + €

for :n large enough, because of Lemma A.2 (i) and (ii).
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(1]

{2

(3]

[3]

(6]

{71

(8]

(9]

[10]

Proof of (7.5) and (7.6). Fora (B,u, T, 7) scheme (7.5) is obtained
from Lemma A.S because of the arbitrariness of Y. Because every station-
ary Markov chain (B, u, P) isa factorof a (B, p, T, m) chain, see Example
1.3, such that w for (B, g, T, ) agrees with w for (B,u, P), we obtain,
(7.5) and (7.6) for any (B, u, P).
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