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There are various microscopic definitions of the surface tension §~ 't in the
literature, but it is far from obvious (or known), in gcneral, that they are all
equivalent.!~* A proof?® that for the two-dimensional Ising model (on a square
lattice with nearest-neighbor interactions), many different definitions give the same
answer as that obtained explicitly by Onsager is thercfore encouraging, Here, we
use a “grand canonical 2 dcfinition of surface tension that seems natural to us. It
is particularly simple when the two pure phases are rclated to each other by a
symmetry of the Hamiltonian, as is the case for the Ising models we shall consider.
To make things easy, we deal first with the simplest cases and leave all generaliza-
tions to the end.

We consider the d-dimensional (d = 2, 3) Ising model with nearest-neighbor
ferromagnetic interactions on a simple cubic lattice. At each point, i € Z% thereisa
spin variable o; = + 1, and the Hamiltonian in a finite region A = VALY

HFabe = "J( Y o0+ 2055'/). 1
) {5
i JeA feA
J#A

with <ij> = nearest-neighbor pair. Here, J >0, and &, is some fixed value of the
spin outside A, that is, some boundary: condition (b.c.) on A. Let Ay » < Z'bea
parallelepiped of height 2M and base (2L + 1Y, i=(iy, ..., i) € Ay m if
—M<i,<M—1, =L <ij, ..., iy < L. We shall generally write A for A, ». We
introduce three types of b.c.
(a) the + b.c. {respectively, — b.c.):
&j= +1(6’1= —'l);
(b) the + be.id;= +1ifj; 20,
(c) the free b.c. where the second sum in Equation 1 is set equal to zero.
The Gibbs measure in A is, for a given b.c. and inverse temperature j,

Ha, e = exP(—ﬁ-’f’A.b.c.)/zA. b.e. (2)
with
ZA. b.e. = Zt lCXp('—ﬁJi"A’ b.c-)' (3)
o=
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We write { Da.+, { Da. s, { Da for the expectation value with respect to the b.c.
(a) (b}, and {c). As L, M — oo, the Gibbs measures with these b.c. converge to
infinite-volume Gibbs states denoted, respectively, p., (p-). p:. p; the states p..,
p -, p are translation invariant in all directions,®” and p ; is transiation invariant in
the i, ..., iy directions,®

The surface tension f7 !t is now defined* as the suitable thermodynamic limit of
the excess free energy per unit cross section of the system with “mixed ” +b.c. over
the system with “ pure” +b.c.; that is,

. 1 )
t(K;d)= lim W lim 14, “)

AL M-x

where t, = —log(Za, + /Zs. +) and K = BJ. This definition of 7 is based on the
following reasoning:

(a) For A 7 Z¢ the state of the system with +b.c., p.. , always corresponds to a
pure phase (translation-invariant extremal Gibbs state). For T > T, the critical
temperature for the onset of the spontanecous magnetization {(which, as is well
known, equals p*(o,)), this infinite-volume Gibbs state is the same as that obtained
with any b.c. since the system can exist.only in one phase (Gibbs state). For T < T,
however, p, is different from the state obtained with pure —b.c,, p-. Moreover, for
these systems, it is known that there are only two pure phases at low temperatures®
(all T < T, for d = 2, almost all for 4 > 3°).

(b) When M — co, the state of the system in the infinite cylinder B, with base
area (2L + 1)? resembles very closely, as i; - o (or — ), the state of a system in
B, with pure + (or pure —) b.c.'® This can be interpreted to mean that the system
with +b.c. in B, is spatially segregated into a + and — phase (vapor and liquid
phase in the lattice-gas language). T then measures the excess free energy due to the
interface thus created. Although this interface may fluctuate wildly as L — co,
depending on d and T,'°"!2 it is present somewhere (with, presumably, a finite
thickness at all T < T;; this will be discussed elsewhere).

As mentioned earlier, Equation 4 can be shown® tu give, for d = 2, the value,
found by Onsager,'

.av_ PK +logltanh K], for T<T,
T(X;2) | o, for T>T,° ®)

Although there is unfortunately no explicit formula for t in other systems, it will be
shown that Equation 5 is a lower bound to t for d > 3. This is based on the
monotonicity property of t (Theorem 1): when the strength of ferromagnetic inter-
actions is increased, r increases too. The consequent monotonicity of t in the
temperature is certainly what we would expect of the physical surface tension. We
would also expect the surface tension to vanish whenever there is only one phase
present (T = T.). This is the content of Theorem 2.

We remark here that it has been shown that for a large class of ferromagnetic
spin systems:

(a) the limit ¢ in Equation 4 exists® and. for a subset of these spin systems,
{b) © > O for sufficiently low temperatures.*?

These results apply to spin systems in which the different low-temperature
phases (there can be more than two) are related by some symmetry of the Hamil-
tonian (as in our case where Z, . = Z,, -). It is an interesting problem to extend
these lri:suhs to systems without symmetry of the kind considered by Pirogov and
Sinai.
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RESULTS .
Inequalities

‘Theorem 1. t(K: d) is monotone increasing in K and d.

Proof. Consider a general ferromagnetic Ising spin system with (free b.c.)

Hamiltonian
X‘,\= ZJAO'A, 1.420.

AcA
Then, by well-known arguments,’

d [z_\_ .

EY Pl P

The inequality survives in the limit L — o in Equation 4, and so we have monoton-
icity of 7(K; d) in K. The monotonicity in d foilows from the observation that the
d-dimensional system can be obtained from the (d + 1)-dimensional one by
“cutting” the bonds between (hyper-) planes. (In particular, 7(K;3)>0for T< T,
of the d = 2 system.)

Remark. The monotonicity of t is analogous to the well-known monotonicity of
the spontaneous magnetization.

We shall now prove that the surface tension vanishes above T, the critical
temperature for the spontaneous magnetization.

To do this, we introduce a modified Hamiltonian, J} p.c., defined as in Equa-
tion 1 but with a coupling sJ instead of J for those {ij) with iy = O0and j; = —1L
ta(K; d, s) is defined as in Equation 4 but with 47 ., KA . (thus, TA(K d, 1) =
A(K; d)), and DX v £, AL, p%, denote the corresponding expectation value
and Gibbs states. p% and p°. are now translation invariant only in the iz, ..., ig
directions.

For s = 0, there is no coupling between the top and bottom parts of A, and the
system splits into two uncoupled systems with free b.c. on the spins with i; = 0 and
iy = —1. In the thermodynamic limit. we obtain two uncoupled *semi-infinite”
lattices. We use the subscript s.i. for Gibbs states of this semi-infinite system. The
b.c. refer, then, to the b.c. put on the (2d — 1) other sides of A.

Theorem 2. For any K and d,

J = (ogda, + = oa0A, + 2 0.

() <(K: d) = K | [ (o00-1) = pileor- ] ds,

where —=1=(-1,0,...,0)
(i) ©(K; d) < 2K(p +(00))™
(iii) ©(K;d) <2Kp., .i(00)

1
(iv) t(K;d) = 2K L 0% (a0)p% (a0) ds.
Proof. (i) We first remark that to(K; d, 0) = 0. Therefore,

1d
a(K; d, 1) = J‘o p A(K; d, 5) ds

1
K[ T Kawph e - ioph s)ds,
‘0 (ify<A
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where the prime indicates iy = 0, j, = —]. We claim that
. 1 . .
im o lim ¥’ (oio)h 4 = ph(go0_;)

L=o QL+ 171 Lo Gf>eA

and similarly for (g, o), » . Indeed, we know, from monotonicity in A, the exist-
ence of the limit and its translation invariance {inthe i, ..., iy directions) and that,
for any ¢ > 0, there exists A, such that [or every A o Ag + i, i, =0, [<ai0,0%, 4 —
Pi(dec- )| <& j=(~1,i,, <o»s ig). It is clear that
1
li ST (Bl eA i =0Ac+iZA)=0
rne BL D1 (lie AT =0]A, N
for any given A,. To conclude the proof of (i), we may simply use the Dominated
Convergence Theorem.
(ii) From Lebowitz' inequalities on duplicate variables,!® one concludes that

Pu(000-1) = [p%(00)]* < ph(000-1) = PLloo)pt(o-1).
On the other hand, by Griffiths' inequalities,’
* 0% (00) < p%(00) < P (00);

and this, together with (i), shows {ii).
(iif) We use another modification of the Hamiltonian Equation | by putting
s = | but adding an external field & > 0 on all sites with iy =0o0r i, = -1 Then,

by Theorem 1, adz t4(h) = 0, and

++
(K d)=14(K; d, h=0) < lim7,(K: d, h) = log(%é'—;),
b0 A’
where A’ = {ieAli, >0} and the superscript + + refers to +bc. on A’ and
=+ to + b.c. on the line i, = 0 and — everywhere else, Introducing now a factor
4 that multiplies the coupling between the spins {equal to +1) on i; =0 and on
iy = 1, one sees that our last expression equals, after taking the limits of Equation 4,

K [ [pe.slon) = o ior)] di

1=1(1,0,...,0) The subscript A refers here to the coupling. that is, to the strength
of the external field imposed on the spins with iy = 1. By use of the duplicate
variables as in {ii), one sees that the derivative with respect to 4 of p, (o) —
p-.alo1) is negative: that is. the integral is bounded from above by its value at
4 = 0. But for 4 = 0, the integrand is just 2p. (i (ao). and this shows (iii).

(iv) We now use (i) and the inequalities of Lebowitz.” which show that

P4(000-1) = pL(000-1) 2 |p%(00)p% (0-1) = p% (0 -1 )p%(00)].

By symmetry, p% (o) = — p*(a0), which concludes the proof.

Remarks. (1) Although we have used Lebowitz' inequalities to prove (ii) and
(i), we remark that F.N.G. inequalities and (i) give t(K: d) < 2Kp.(0y) for Ising
spins. In fact. we can prove that t{K; d) = 0 above T. for systems with ferromag-
netic two-body interactions and even a priori measure with compact support on the
rcal line. However, the stronger results (ii) and (iii) hold only for some measures,
for example, the uniform mcasure on [—1, +1]orexp(—da? + ha}) do, that satisfy
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Lebowitz’ inequalities. The restriction to nearest-neighbor interactions is not
important. Analogous results hold for general ferromugnetic two-body interactions.

(2) (iii) shows that t(K: d) vanishes if there is no spontancous magnetization in
the semi-infinite system. However, the critical temperatures for the infinite und the
serhi-infinite systems are expected to coincide, as they do in two dimensions.'® On
the other hand. if we could show that, whenever p, ,;.(70) = 0. there exists an s # 0
such that p% (aq) # 0. it would follow from (iii) and (iv) that «(K: d) # 0il, and only
if, p+..i(00) % 0. Indeed, Lebowitz' inequalities in the form used by Messager and
Miracle-Sole® show that p% (o) is monotone decreusing with s and, of course,

P (90) 2 p(d0).
Low Temperatures

Let = = exp(—K).
Theorem 3 (proven by Bricmont et al.,'” Part 111). There exists an r > 0 such
that t(K; 3) — 2K = [(z) is analytic in = for |z| <.

Remark. For d = 2, it lollows from Formula 5 that t(K; 2) — 2K is analyticin z

for |z| <exp(—K.). K.=p.J. and has an analytic continuation for all K.
However, even if we did not have Formula 5, we could prove analyticity of t(X; 2)
for large K by use of the results of Gallavotti.!! This proof is slightly more difficult
than that of Theorem 3 and proceeds in two steps. We define
- . 1 . Zi e Z Zi\. + )
' t=-lim mrry lim l°g( z ’
where Zi_ , is defined with + b.c. but where on one side the separation between +
and — is put at the height i. One shows that 7 is analytic in z and then that for X,
real t = . Both results are contained implicitly in Gallavotti.*!
Let e(i) = —1Ka; ¥ a;, where the sum 3" is over the 2d nearest-neighbor sites,
be the energy of site i (times 8) in a given configuration.
Theorem 4 (proven by Bricmont et al.,'” Part II). There exists 2 K, < oo such
that for K > K,,

A+

+a

kiD= 3 K Upalelin, 0, 0] = p.[efi, 0, OBK)

slai0)) = p(@ia)i(K), i=(i,, 0,0).  (6)

o
[
i
-
<

- Remiarks. (1) Clearly, for fixed A, we always have:
ZA. t) = [<HA. t>A. x = <HA. +>A. +]

d
2L + 1)"¢0 (
( ) g loe

Za, + QL+ 1y"!
1 , [Kai0da, 2 = <A, +] ,
'i,“; (L + 1Y T ’ ®

where in the sum Y the o; for j ¢ A are fixed = +1 by the b.c.

What has to be proven to get Equation 6 is the validity of the interchange in
Equation &' of the limits L — co, M — oo, with the summation. Whereas the first
interchange, M — co, is valid also in two dimensions, the second one, L — o0, is
certainly not; due to the fluctuations of the interface as L — o, the Gibbs state p .
is a superposition of the pure-phase Gibbs states p, and p_;*!"!? that s,

pr(ca)=1lp+(0.4) + p-(a4)l (7)
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In particular, p.(s,0;) = p.(5;0;). so the right-hand side of Equation 6 would be
equal to zero for d = 2. In fact, this happens also presumably in three dimensions
for temperatures above the roughening temperature (see part 2 in the discussion
below).

(2) Adapting Proposition 4.2 of Briemont et al.'” (Part 11) to the [sing model.
one shows that t — 2K is composed of two terms, both exponentially small as
K — c0. The first term is the diflerence in the free energy {per unit interface, in the
limit L — <o) between a system in B, with + b.c. and one in B, with +b.c. and the
additional constraint that all the spins o, = +1 for iy=0and = ~{fori; = -1,
This separates B, into two_ semi-infinite cylinders with all + or all -b.c.
The second term results from the fuctuation of the interface separating the + and
the — phases in 8,, under +b.c,

Duality

Fora large class of ferromagnetic Ising models, it is possible to construct dual
models.!® Writing the Hamiltonian of the system with “[ree” b.c. in the form (see
Equation 1)

~B#r=K T as, )
BcA
where B is a lattice bond and oy = ”[eg a;, the dual model is constructed on a
dual lattice with dual bonds B*, such that
_ﬁt)y't°= K* Z Tge,

B cA*
the coupling K* is given by
K* = ~14log tanh K. ' 9)

In Equation 8 we have free b.c.. but the dual of a model with free b.c. has to be
taken with +b.c. and vice versa. :

Our interest in this duality comes from the observation that by “ flipping the
spins” in the bottom half of A for a system with +b.c., we obtain, with
g = exp(—2Kay),

Z,, +/2Zp 4 = < H #<1j>>
GfyeA A+
14=0,jy=~1

]
= < [1 ‘7<U>-> . _ (10)
Ay cas A

The first product here is over all bonds crossing the plane (¢ = 3) or line (d = 2
iy = —4, whereas the second produet is over the dual bonds. Thus, the surface
tension of an Ising system at reciprocal temperature fi is directly related to the
asymptotic behavior of certain spin correlations in the dual model at 8*. This leads
to useful relations, as we shull now see,

We note first that for Ising ferromagnets with free boundary conditions,

.
~lim Ep(cq,zn):m. © 1)
k-
In Equation 11, 0 and k are the lattice sites [ with fy = -+ = igy=0and iy =0or

iy = k. m is the mass gap, or inverse correlation lengih. The existence of the limit in

GQaet aaas o Ll
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Equation 11 can be shown in the same way as the existence of r in Equation 4.* It
is known!? that, for d = 2, our Ising model is self-dual; the dual square lattice (Z*)*
has its vertices at the centers of the squares of 23, and <ijM* is the bond crossing
ij>. For d =3, the dual of our model is the Ising gauge model, which is con-
structed as follows.?® We tuke as lattice 7, instead of Z°, the sct of centers of the
faces of the unit cubes in Z3. For each i & .¥”, we have a spin a; = + . Instead of
the n.n. pairs, we take as bonds, B*, the four-point sets given by the centers of all
the faces to which a given bond of the nn Z3 Ising model (i.e., an edge of an
elementary cube) belongs,

A distinctive feature of the gauge model is that .# is invariant under symmetry
transformations that involve only the flipping of finitely many spins: for example,
changing the sign of a;, for all i € ¥, which belong to the faces of a,given unit cube,
does not change the energy. However, this symmetry has no role here (see point |
in the discussion). In the gauge model, one introduces the ™ Wilson loop 72021,
0= []icc 0. where ¢ is a square of size L x L in ¢ for and the coeflicient of the
(area-law) decay of this loop is

- lim % log p(a.) = a. (12)
L~ :
This limit exists and is nonnegative,

We now state the result of this section.
Theorem 5. (1) For the two-dimensional Ising model,

(K; 2) = m(K*). (13)
(2) For the three-dimensional Ising model and for the gauge model,
1(K; 3) = o(K*), (14)

with K* given by Equation 9,
Proof. We start with Equation 13. By use of Equations 4, 10, and 11 and the
sell-duality of the model, we see that we have only to show:

. 1 . . 1
Jim LT D) Jim log{a- 101> Jim Ay log p(o-,0.);  (15)
that is, the decay of the long-long range order (o_, o, > equals the decay of the
short-long range order p(s ., a;).2
It is clear that the left-hand side is less than or equal to the right-hand side by
Griffiths’ inequalities:” for fixed 4, (s>, is monotone increasing in A. To show the
converse inequality, we take L = nk, for n, k integers and k fixed (since we know
that the limits exist in Equation 13, we may use subsequences). Then, since g7 = 1,
o0, =[]12L, ouay. 1 and, by Griffiths’ inequalities,’

a—~1
log{o 1200204 2 I_Z log{auwayepda.
We claim that
. l n=1
im == 3 10g{audys uda = p(doay), (16)
L]

M Lo 2N 52

by the same argument as the one used in the proof of Theorem 2. Since
(2nk + 1)/2n — k; we see that the left-hand side of Equation 15 is larger, for any k,
than 1/k log p(so ay). Letting k — oo finishes the proof.
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The proof of Equation 14 is similar. With Equation 9, we obtain

ZA.1_< ” 0_>.

> = i s

ZA.+ i1==1/2 A
fedA

where the expectation is in the dual (gauge) model, and the product runs over all
the spins’in A adjacent to the exterior of A, which are in the plane iy = —4 crossing
the bonds in Equation 10. Thus, this produet is over a square of size L x L, and we
write this square as the union of n® squares of size k x k, and the rest of the proof
goes through.

DiscussioN

(1) Although we have restricted ourselves to isotropic nearest-neighbor Ising
models on Z¢ and their duals, some of our results extend immediately to other
systems. Thus, t(K) for the triangular lattice with n.n. interactions is equal to the
mass gap m(K*) of the honeycomb lattice and viee versa, since these two models are
duals.?® Similarly, our argument, combined with the results of Fontaine and
Gruber,'* shows that some models in three dimensions exhibit the area-law decay
of the Wilson loop (« # 0 in Equation 12). These are all systems obtained through
low-temperature-high-temperature duality from a model for which the surface ten-
sion is nonzero at low temperature. In [fact, the proof in Fontaine and Gruber!?
that £ > 0 at low temperatures for some systems also shows that 2 > 0 at high
temperatures for the dual models. In particular, this area law holds also when there
is no gauge symmetry. For example, we can take a low-temperature-high-
temperature dual of the Ising model where we have * plaquettes.” as in the gauge
model (4-points bonds) only in planes perpendicular to some axis and nn. two-
body bonds between the plaquettes in the different planes. This model has no gauge
symmetry but still has a Wilson loop that decays proportionally to the area at high
temperatures for the same reason as in the gauge model. This last example was
suggested to us by Gruber. Of course, @ = 0 at low temperatures for all these
models because t = 0 at high temperatures,!3:2*

(2) There is some numerical evidence?® that. in the three-dimensional Ising
model, the nontranslation-invariant Gibbs states that exist at low temperatures do
not persist above a roughening temperature Ty strictly less than T.. It has been
questioned*® whether the surface tension exhibits nonanalytic behavior at Tx.

On the other hand, combining Theorem 5 and Theorem 3, one sees that
« + log tanh(fJ) is the restriction to real temperatures of a function of B, analytic
around f=0. One may ask: What is the interpretation of the corresponding,
possibly nonanalytic, behavior of « at T¥ or. rather, how do the nontranslation-
invariant Gibbs states reflect themselves in the gauge model at high temperatures?
We remark first that in two dimensions, taking some fixed n.n. pair (ij, the
difference

Hapda,+ = SHepda, + (17)

goes to z¢ro as A — oo (sce Equation 7)%!!-!® for any temperature (this is équiva-
lent in Lebowitz® to saying that the state { DA, Is translation invariant in the
thermodynamic limit),

By duality, this means, as pointed out to us by D. Merlini,

(0—1./:‘7.'010'1./2).'{
011261208 ENGZ et (18)
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(we denote by (ij) also the pair dual to ij>). At high temperatures, this is a
nontrivial cluster property of the high-temperature state. At Jow temperatures,
"Equation 18 still hoids but is less striking since then both the numerator and
denominator of the first term in Equation 138 tend to a nonzero value,

In three dimensions, duality applied to Equation 17 gives

Kagac)k
TR _ o 19
Koeod (oala ( )
where B is the bond that crosses ¢ijd, and C = {i|i; = —4. i adjacent to the exterior

of A}. Therefore. we know that, as soon as ¢ 2. + is nontranslation invariant in the
thermodynamic limit {and this hoids at least up to T, (two dimensions)*’], Equa-
tion 19 does not go to zero at the dual temperature [i.e., for temperatures higher
than T. (two dimensions) since 7. (two dimensions) = T* (two dimensions) (with
J = 1)]. So. if there is a Ty < T, (three dimensions), Equation 19 does not go to zero
above the dual temperature T# and goes to zero below. This is another kind of
transition in the gauge model.

SUMMARY

We collect here some exact results concerning the surface tension B~ 't of two-
and three-dimensional Ising ferromagnets, Some.of these results are new: the mono-
tonicity of ¢ in the coupling constants, the fact that r =0 above the critical

temperature, the analyticity in z = exp(—fJ) of t ~ 24J at low temperatures for the =

three-dimensional system with nearest-neighbor interaction J, and an expression
for v in terms of correlation functions. Other resuits are already known, for exam-
ple, the equality of r in the two-dimensional square lattice to the mass gap m
(inverse correlation length) at the dual temperature B*; this is proven here simply
by means of inequalities. The proof of 7(8) = m(B*) then extends immediately to
other lattices, for example, the triangular-honeycomb dual lattices.
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