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ABSTRACT

An exact formula for the contact value of the density of a system of charged hard spheres
near a charged hard wall is obtained by means of a general statistical mechanical argument.
In addition, a formula for the contact value of the charge profile in the limit of large field is
obtained. Comparison with the corresponding expressions in’ the Poisson-Boltzmann theory
of Gouy and Chapman shows that these latter expressions become exact for large fields, inde-
pendent of the density of the hard spheres.

INTRODUCTION

It is well-known that the contact value of the density, p(x), of a fluid in con-
tact with a flat hard wall at x = 0 is equal to the momentum transfer to the wall
divided by kT. Hence the pressure p of the fluid is given by

p=kT p(0) (1)

where T is the temperature of the fluid and % is Boltzmann’s constant.

The extension of eqn. (1) to the case where the interaction of the fluid with
the wall is not hard is used here to obtain an expression for p(0) for charged
hard spheres, in a medium whose dielectric constant is €, in contact with a
charged hard wall. This charged hard sphere/charged hard wall system is a simple
but useful model of an electrolyte solution near an electrode. Our analysis shows
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that the Poisson-Boltzmann theory results for the contact values of the density
and charge profiles are exact for high fields, independent of the density of the
charged hard spheres (i.e., the electrolyte concentration).

BASIC EQUATION

To derive the extension of eqn. (1) we consider a fluid bounded by two semi-
infinite smooth walls separated by a distance L. Let us obtain the force balance
on a slab of fluid of thickness / adjacent to the wall at x = —a/2. Provided that
there is no longer range force acting on this slab from the right (this includes
the wall at x = L and any fluid layer near it) we have

Panll) = f V) p(x) dx (2)

where U(x) is the potential due to the wall at x = —0/2 and p,,(!) is the x-x
component of the stress tensor at x = I, If the integral on the right is indepen-
dent of | as would certainly be the case when the range of U is less than ! then
letting p,,(I) = p, the bulk pressure, and ! and L - e, we obtain

f 2UG) pix) dx | (3)

We believe that, due to shielding, eqn. (8) (or its analogue eqn. 6) remains valid
also for the charged fluid-charged wall system. It is the basic equation used in
this paper.

.If the wall is hard, it is convenient to write eqn. (3) in the form

=pT fR Mexp(—ﬁU)dx (4)

where R(x) = p(x) exp(BU) is continuous and § = 1/kT. For a hard wall, the
derivative in eqn. (4) can and should be interpreted as a delta function and,
using p(0) = R(0), eqn. (1) follows. Hence eqn. (3) is the desired extension of
eqn. (1). If the wall is hard but also has an additional “soft’’ interaction with
the system particles,

x<0
Ux) = W(x) >0 (5)
then eqn. (3) becomes
p=kT p(0) — f W) (6)

ELECTRIFIED INTERFACE

Consider a system of charged hard spheres near a charged wall at x = —0/2,
That is, the origin of the coordinate system is a plane through the centers of the
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spheres in contact with the wall. The dielectric constant of the medium is con-
stant throughout the whole system. No solvent or image forces are considered.
For simplicity, we assume that there are equal numbers of hard spheres of charge

tze. For this system, egn. (6) becomes
~ oW
p=kT 2 p(0) =2 [ o) dx (7)
0

If €eE/4m is the surface charge density on the wall at x = —0/2 then E/2 is the
unscreened electric field due to this wall and dW,/ox = zeE/2 and aW,/ox =

—=zeE /2. Hence

E oo
p=kTp(0)—% [ qx)dx . (8)
0
where p(x) = pi(x) + pa(x) is the particle density and q(x) = —ze[p,(x) — p.(x)]
is the charge density. We note that g(x) - 0 as x - o so that we need not worry
about the upper limit in the integral or about the other wall even though aW/ox

is constant.
The integral of g(x) must be equal in magnitude, but opposite in sign, to the

charge on the wall (screening). Thus

oo

[ ax) = —eE/4n (9)
0 .

Substitution of egn. (9) into (8) yields

kT p(0) = p + eE*/87 (10)

Equation (10) has been obtained earlier by Henderson and Blum [1] by adding

the Maxwell stress to eqn. (1).

There is no corresponding exact expression for q(0). However, when E is
large the hard spheres whose charge has the same sign as the charge on the wall
will have zero density near the wall. Thus, for large E,

B T1q(0)1 = e/ (11)

It is instructive to compare eqns. (10) and (11) with the corresponding results in
the Poisson-Boltzmann (PB) theory of Gouy [2] and Chapman [3]. In this theory

p(0) = p cosh(Bzedo) (12)
£1(0) — p,(0) = p sinh(Bzedo) (13)
Here ¢, is the potential drop across the diffuse double layer, given by

=2 —1(529E)
do Bee sinh O (14)

where « is the Debye screening parameter, given by «? = 4mBz%?p/e, and p is the
density of the bulk hard sphere fluid. For comparison with eqns. (10) and (11)
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TABLE 1

Values of N,0? for a charged hard sphere model of an electrolyte solution (z = 1, ¢ = 2.76 x
10710 m, 7= 298 K, € = 78.4) near a charged wall with a surface density of 1.2 Cm™! calcu-
lated from PB theory

Conc./M Polv) p(0) 0?3 N,o?
0.0001 0.43 5.31 0.47
1.0 0.186 5.33 0.48

it is convenient to eliminate ¢o from eqns. (12) and (13). The result is

kT p(0) = kT p + cE?*/87 (15)
29172
pmor—px0)=4géx[@+0%§?)] (16)

Thus, the PB result satisfies eqn. (10) but with p replaced by the ideal gas
approximation, pkT. At large E, the PB result satisfies eqn. (11).

When E = 0, the PB expression for p(0) will be reliable only at very low densi-
ties or very low electrolyte concentrations where p = pkT. However, at high
field, the PB expressions for p(0) and q(0) will be exact, independent of the
density of the charged hard spheres (i.e., the electrolyte concentration).

This latter point may not be generally known since conventional wisdom is
that the PB theory fails as F is increased because unreasonably large values of
p(0) are obtained. In reality, for any density the PB values for p(0) and ¢(0)
become more accurate as E is increased and ultimately become exact."

A large value of p(0) does not mean that there are excessive numbers of
spheres near the wall. The number of spheres per unit area near the wall N, is
given by the integral of plx):

o/2
Ne= [ p(x)dx (17)

0

where o is the hard-sphere diameter. The upper limit in eqn. (17) is somewhat
arbitrary. However, eqn. (17) is at least qualitatively correct. If the density pro-
file falls off quickly enough, N, will be reasonable even when p(0) is large.
Values of N,, calculated from the PB p(x), for a value of E, larger than is experi-
mentally attainable, are listed in Table 1. Even though p(0) is large, N, is still
less than half the density of a close-packed layer,

SUMMARY

We obtained an exact general expression for the contact value, p(0), of the
density profile of a fluid near a wall which was applied to a system of hard
charged spheres near a charged hard wall, In addition, an exact result for the
high field limit of the contact value, g(0), of the charge profile was obtained.
The corresponding PB theory results are similar to these exact results. At low
fields the PB p(0) is satisfactory only at very low concentrations. However, at
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high fields both the PB £(0) and q(0) are satisfactory at all concentrations.

At very large fields the PB theory gives unphysically large values for N, even
though the PB p(0) is exact. Evidently at very large fields the PB p(x) does not
fall off fast enough. However, the fields at which this occurs are beyond the ex
experimentally accessible region. For experimentally attainable values of E, the
calculations of Henderson and Blum [1,4] indicate that the PB p(x) actually
falls off too fast. Hence, the PB values for N, may be too small for values of E
which are of experimental interest. In any case by itself p(0) is not relevant in
accessing the accuracy of the PB theory.
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