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Results, which supplement those of Thompson et al. (preceding paper),
are given for a Yukawa fluid interacting with a hard planar wall with an
exponential tail. It is argued that density profiles calculated in a mean
spherical approximation treatment of this system are only qualitatively reliable,

1. INTRODUCTION

In previous papers [1, 2] we investigated the density profile of a fluid near a
planar wall. We did this by combining an exact relation for the wall (situated
at ¥=0) and fluid (in semi-infinite space x> 0) correlation function

ha(x)=-1, x<0, (1a)

with an approximate relation for the corresponding direct correlation function
n(x)=Kyexp {—zyx}, >0, (1)

The functions /,,(x) and ¢, (%) are connected by the Ornstein—Zernike relation
hoy = co1 -+ phyy* c. (2)
Here p is the density of molecules of the bulk fluid, p= lim p(x), Ay (x)=

x—>00

[p(x)—p]/p is the desired profile function, and ¢(r) is the direct correlation

function of the bulk fluid.
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The parameters Ky and 2y in equation (1) may be thought of either as
determined by the fluid-wall interaction Wy(x) [cq(x) = — BWy(x) being the
mean spherical approximation (MSA)] or as ‘open’ parameters to be determined
by some criteria such as self consistency (generalized mean spherical approxima-
tion (GMSA)). In either case, a knowledge of ¢(r) which specifies the nature of
the bulk fluid is necessary and sufficient for making (1) and (2) a closed set of
equations for Ay (x).

In references [1] and [2] we dealt with a fluid of hard spheres of diameter o
and further assumed that the bulk fluid correlations are given by the Percus—
Yevick approximation for this system. Hence

Mry=-1, r<o, 3 a)
c(r)=0, r>o0, (3b)

where A(r) is the total correlation function of the bulk fluid which is related to
¢(r) by the Ornstein—Zernike relation :

h=c+ph*c. “4)

It is the purpose of this note to present results obtained from the solution of
(1) and (2) for a more general bulk fluid, i.e. for the case where (3 b) is replaced
by a Yukawa function :

c(r)=K exp {—2(r—o)}fr, r>o. (5)

Recently, Thompson et al. [3] have independently considered this case and
obtained profiles numerically. Therefore, we describe here only results not
found in that paper. These results are, whenever possible given in terms of the
parameters or properties of the bulk Yukawa fluid which are readily available
[4-8].

As is the case with the Yukawa form in (1 ), the form (5) is useful not only
in MSA treatments of fluids with Yukawa interactions but also in GMSA treat-
ments of this and other fluids.

2. ResuLTs
We find that the Laplace transform of goy(%)= /g (x)+1 is given by

Gu(5)= | &u(w) exp (~sx)d=1 (1=n)" exp ()5

+C(1=n)* exp ()f($)/(s+221),  (6)
where 7 =mpac[6,

a=(Bop[dp)'", (7)
C =Ky exp (2a)f(2a1, ), (8)
fs)= L(s)+ S(s) exp (s) ®
L(s)=12n(1 —7)2 $* =(s), (10)

S(s)=(1 = m)? {1 - 12n(s)]. (11)
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The parameters a, b, ¢, d and the polynomials 7(s) and o(s) are defined by Hoye
and Blum [7] and describe the bulk Yukawa fluid. For example, the Laplace
transform of g(r)=h(r)+1is
= sL(s)
exp (—sr)g(r) dr=
§ o (=mel) & = Ty S5y exp ()
In the limit K -0, L(s) and S(s) are the usual polynomials arising in the solution

of the Percus—Yevick equation for a hard sphere fluid [9, 10]. Hence, in the
limit K —0, equation (6) reduces to the results of Waisman et al. [1].

(12)

The contact value of gy (x) is
gu(0)=a+C(1—n9)* (13)

and the contact value of the derivative of gy (x) is

0gn(x
2| g g (0) )y~ 120gm(O)ef2 b+ exp (—5)— (e + )] (14)
=0
It is interesting to compare (13) with the exact result of Henderson et al. [11].
< oW,
g21(0):‘B—P+:B § _8‘“2} gaa(%)dx, (15)
p o X

where W, is the interaction potential between the molecules and the wall. If
the integral in (15) is known or can be approximated, then in a GMSA treatment,
C can be adjusted to bring (13) into agreement with (15). On the other hand,
in a MSA treatment, the degree of consistency between (13) and (15) gives an
estimate of the accuracy of the calculation. Proceeding in the latter mode by
assuming that W,,(x) is indeed an exponential function we may evaluate (15) by
using the solution given in (6). This yields

£01(0) = Bp[p + 291 Pen1 Goy(%01) = Bp[p + a(l—n)? C+§(1—n)* C* (16)

Equations (13) and (16) are generally in poor agreement. Equation (16) is exact
when C=0 (that is, Bey; =0). In equation (13) Bp/p is incorrectly replaced by
a=[Bop/op]t/2. 'This is a poor approximation, particularly near the coexistence
curve where p~0 and a>0. In addition, (16) has a higher-order term in fey,
than does (13). Further (13) is based only on the contact value of gy (x)
whereas (16) results from an integration of gy (x) over all values of x. As a
result, it seems likely that g,;(0) is given more accurately by (16) than by (13).
Hence, we conclude that the MSA density profiles calculated by inversion of (6)
may be significantly in error for x~0.
The number of molecules per unit area absorbed by the wall is

No= § o) =p] s (17)

This integral can be calculated by expanding (6) in powers of 5. 'Thus, using
equations (20 @) and (20 b) of Heye and Blum [7], -

Nazp[—g +z£21 (—1:“’7—)2] (18)

If 25 —0,

C=Ky/(1-n)* (19)
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and if 2,; =0,

C'= Kyy/[a(1 —n)*], (20)

so that particularly simple expressions are obtained.

3. REMARKS

Equations (13) and (18) have been used in a GMSA treatment of hard spheres
near a hard wall by adjusting K and z to give a good GMSA description of the
bulk hard spheres and adjusting’ K,; and zy to fit equations (46) and (54) of
Waisman et al. [1]. The results are only very slightly better than those obtained
by Waisman et al. [1].

We have inverted equation (6) to obtain density profiles similar to those of
Thompson et al. [3]. However, for the reasons given above we believe these
curves are, at best, only qualitatively reliable. Near the coexistence curve, these
curves may not be even qualitatively reliable. Some improvement is obtained
if a, b, ¢, and d arc determined by a GMSA description of the Yukawa fluid.
However, without a good GMSA criteria for determination for K, and z,,, the
difficulties remain.

Thompson et al. interpret the maximum which often occurs in the density
profile as evidence of monolayer formation. While the structure of the density
profile may be indicative of monolayer formation, this treatment is not likely to be
a good theory of physical adsorption since fluid in contact with the wall is
considered to be in only one phase.

Finally, we have calculated N, and obtained results similar to those reported
in [2] except that a singularity, which may be interpreted as indicative of wetting,
occurs when a=0.

Perram and Smith [12] have calculated N, for a‘ sticky ’ interaction potential
using the Percus—Yevick approximation and have found an additional singularity
(i.e., one notassociated with a2 = 80p/0p=0). They interpret this new singularity
as predicting the formation of a condensed film on the surface. Since the
Perram—Smith singularity is present for all radii of the solute molecule and no
analogue of it is present in this analysis, we believe that this singularity is an
artifact of the * sticky ’ interaction and is unrelated to any adsorption phenomena.

The authors are grateful to Drs. N. E. Thompson, D. J. Isbister, R. J.
Bearman, and B. C. Freasier for sending them a preprint of their paper.
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