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MECHANICAL SYSTEM WITH STOCHASTIC BOUNDARIES
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ABSTRACT

We consider a model of a fluid confined in a box A whose sides are
maintained at different temperatures through contact with thermal
reservoirs, We prove that the fluid has a unique steady state, to which any

initial state will converge.

The model is as follows: Let ACR? be compact and convex with
smooth boundary dA.Let the boundary temperature function T(Zf), ?[) oA,
be smooth and nowhere vanishing. We represent our fluid by n classical
particles evolving according to Hamilton’s equations, with Hamiltonian

H =kinetic energy + V(qy, ..., q,)»

where
g —q
V=2 u .—q.1).
z utlg,—q;D
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It is assumed that u(r), r =0, is smooth and repulsive: u(r) is C™°, u'(0) =0,
u(n<o for r# 0. When a particle  hits oA we
stipulate that it be instantly thermalized. This means that its momentum
immediately following collision with 9A at Z[) is a random variable with a
»Maxwellian” distribution at temperature T (?[)): the distribution is
proportional to

>2

P

B
n(@e T dp,

where 7(7;) is the inward directed unit normal vector to 9A at _q> (on the
- > —> . . : ;

set p *1(q)=0). If two or more particles collide with dA at the same time,

their outgoing momenta are required to be independent, A Markov process

is thus defined.

We prove the following: Let £ = (A XR?)". Then there exists a subset
cQ whose complement has vanishing Lebesgue measure, such that the

Markov process

X(1) = (q(1),p(1)),
6=(q1,.., 4, p=i,..., 0, with XOe,

(1) is well defined for all ¢>0, and

(2) lives on & forall > 0:

For xefd,
Prob { X(HeQ — SAI, forsome +>0 | X(0)=x } =0.

Moreover,

— 404 -

(3) the Q-valued process X(#) has a unique stationary probability

measure pu,
Ju(dx) P'(x,dy) = u(dy),

where P!(x,dy) = Prob {X(t)edy |X(0) =x } , and p is equivalent to Lebesgue

measure.,
(4) For any probability measure » on O
pP!l = Jo(dx)P'(x,dy)~>p  in variation norm.

The convexity of A and the repulsiveness of u are needed to establish
the existence of a nontrivial stationary probability measure. In case 7 (Z) is
constant, so that the canonical ensemble is stationary, (3) and (4) may be
established without these assumptions.

1. INTRODUCTION

Consider a gas in a box ACR? consisting of n (identical) interacting
particles, moving according to Newton’s equations of motion. What
happens when a particle hits 0A, the boundary of A? If the system is
closed, so that there is no exchange of energy with the outside, then it is
natural to assume that the particles undergo elastic collisions with the
boundary — the sign of the normal component of the momentum is
reversed. This assumption gives rise to a deterministic dyﬁamical system
with evolution S’.

Statistical mechanics says that the state of the gas in thermodynamic
equilibrium should be represented by the probability measure Mg, the
microcanonical ensemble at the appropriate energy, on the energy surface
Lp. 1y is stationary under S, as it must be if it is to represent equilibrium.
A strong theoretical indication of the appropriateness of py would be
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provided if it could be shown that u, is in some sense the only stationary
probability distribution on I'y. A form of this uniqueness would be
provided by the ergodicity of (S*,u g). This would guarantee that uy is the
unique absolutely continuous stationary probability distribution on I'j;.
Unfortunately ergodicity is extremely difficult to establish; it has been
established for only a few mechanical systems [1]. Moreover, we should
demand more: Systems do not start out in equilibrium, but they end up
there; thus we should demand that any initial probability distribution
should be driven toward equilibrium (u;) by S, A version of this is
equivalent to the mixing property for (S*u ) Mixing would give the above
convergence for any absolutely continuous initial distribution. Moreover,
not much more can be expected: if v =5, then Sty = 8 g1, » still a § measure.

Now consider an open system[2],[3].Our gas is in contact at dA with a
thermal reservoir at temperature 7. Statistical mechanics says that the state
of thermodynamic equilibrium (with the reservoir) should now be
represented by the canonical ensemble uT~e—kT dqdp, where His the
energy. Suppose we assume immediate thermalization upon contact with
the boundary. Then we should require that after colliding with oA the
momentum of the outgoing particle be a random variable with a
»Maxwellian distribution” at temperature 7. This is the simplest way to
model the e.ffect of the boundary, and it gives rise to a Markov process P’.
It is easy to check that p,. is stationary for P!, Furthermore, we show that
pp is the unique probability distribution stationary for P, and that an
initial state described by any probability distribution (including &
measures) converges to .. in a very strong sense.

Finally, consider the case where the temperature varies along the

boundary. The stochastic dynamics are as previously described, except that
now the ”Maxwellian” giving the velocity of a particle leaving 0A at ZeaA
will be at Tt (Z), the temperature at that point. Here, though there is no
obvious candidate for a stationary probability distribution, it seems clear
physically that the system should settle down to a steady state of heat flow.
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We further expect that this should be represented by a stationary
probability distribution u (the steady state) which represents this state. We
show that this is indeed the case, that u, is equivalent to the Lebesgue
measure, that it is unique, and that any other initial state converges to g in

a very strong sense.

We also hope that this steady state can be taken to the
thermodynamic limit in such a way that a mathematical object (analogous
to the Gibbs state for equilibrium phenomena) appropriate for the
description of steady state non-equilibrium phenomena can be extracted
and that this object will be reasonably independent of boundary conditions
— 1le.,, the details of the stochastic mechanism on the boundary. For
example, for a system confined between two walls, separated by a distance
L, at temperatures 7, and 7', respectively, we might expect that the steady
state ;st should be given by

7, — T
L. 2 1 1
Hg=H, * (T) Hoo*o(z)’

where u, is the appropriate equilibrium (Gibbs) state and u,, represents the
thermodynamic limit of the steady state, e.g., it can be used to describe
linear transport processes.

2. MAIN RESULTS

We now describe the main results more precisely and in greater detail.
We first indicate exactly what happens at 0A. When one particle collides
with 8A the only effect is that the momentum distribution (on the set

- > -
p * n(q)=0) of the outgoing particle becomes proportional to

>

p?

~>
- - -
H(g)e *MET@) gy
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where 71 (,71)) is the inward directed unit normal vector to dA at 5) All other
coordinates are unaffected. If two or more particles collide with 9A
simultaneously, we further require that their outgoing momenta be
independent.

Let H =Kkinetic energy + V(?z)1 e —q)n ), where

— - - >

V(q1,.--54,)= lg}_u(lql—'q,- .

Suppose u(r), =0, is smooth and repulsive: u(r) is Cc*, u'(0)=0, and
u'(r)< 0 for r#0. (The conditions on u guarantee, in particular, that V gives
rise to bounded forces, a fact which plays an important role in our
argument.)

Suppose that A is compact and convex w1th smooth boundary oA,
and suppose the boundary temperature T( q), qeaA is smooth and
nowhere vanishing. Let € =(AxR3)". Then there exists a subset Q2CQ
whose complement has vamshmg Lebesgue measure such that the Markov

process X(f) = (q(5),p(N), q = (ql,...,q ), DP= Dy -,p ), induced by
H and the stochastic boundary effect corresponding to T(q), with X(O)eQ

(1) is well defined for all +>0, and
(2) lives on  for all ¢>0:

For x efz,
Prob {X(t)eQ —SAZ, for some >0 IX(0)=x} =0,

Moreover,

(3)  the Q) -valued process X(f) has a unique stationary probability
measure, the”’steady state” u, and p_is equivalent to the Lebesgue measure

m:
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Consequently,

Let P'(x,dy) = Prob{X(t)edy X(0) =x } . Then a measure v is stationary
if pP! =y for all £20, ie.,

[ w(dx)P'(x,dy) =v(dy) forall t= 0.

Furthermore,
(4) For x efz,

SxP’ = P'(x,dy) —>u (dy) (1) in variation norm.
for ény probability measure » on Q we have

pP'= [p(dx)P'(x,dy) = u, in variation norm.
In particular, for » a stationary probability measure on &

v =pPt > [T

ie, v=u, giving the uniqueness described in (3). (WP’ > in variation
norm means that sup WPI(A") — pu (4) |> 0 (f—> o).

3. SKETCH OF THE PROOF

(a) Existence. As far as the existence of the Markov process is
concerned, note that since the deterministic part of the evolution is well
defined, as is the stochastic part, the only way the process could break
down would be by the occurrence of an infinite number of collisions with
3A in a finite amount of time. For this to occur at Jeast one of the particles
would have to undergo an infinite number of collisions in that time. But
since the forces are bounded, if the particle leaves 9A in a direction
bounded away from the tangential with a speed bounded away from 0 and
oo, its return time to dA will be bounded away from O (> «), uniformly in
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the rest of the coordinates. Thus in any infinite sequence of returns to oA,
an infinite number of the return times will be greater than a.

(b) Special Flow Representation. Markov chains (discrete time) are
frequently easier to handle directly than continuous time processes. There
is a way of extracting from our process a Markov chain in which all the
stochastic behavior is nicely isolated from the deterministic motion. Using
this Markov chain we construct a special “flow” representation of our

process [4]:

Let us define the base B of our system to be the set of phase points x
which have one or more particles on dA. Let R(x), xeB, be the return time
to B. Then, modulo a set of Lebesgue measure zero, {3 may be identified
with the portion of BXR" (R’ ={ teR | = 0} ) lying below the graph of
R. A point (x,t) in this set is identified with the phase point S’x — the
phase point which was last in B f units ago at x. Our process assumes the
form: flow directly “upward” with unit speed until the graph of R is
rached; then return to the base at a random point given by a stochastic
kernel P: B~ B.

P

The probablhty distribution of the ”return” point y is P(x day).
Moreover P = UK. Here U is deterministic: for x € B, Ux = SR () x the point
of deterministic first return to B, and K is stochastic: it thermalizes the

outgoing momenta of particles on 9A.

We remark that there is a simple relationship between stationary
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probability measures for the Markov chain on B induced by P and
stationary probability measures on & for P! If u (on B) is stationary for P
then duXdt is stationary for P!, Moreover, all measures stationary for P are
of this form. (Thus all questions concerning the existence and uniqueness
of stationary probability measures for P! can be settled by considering the
base process induced by P. It turns out, however, that it is easier to
establish the existence of nontrivial stationary probability measures directly
for the full P’ process.)

The last statement is not completely correct because the identification
we have proposed for £ is only a mod 0 identification. We have neglected
points xeQ for which either StxeB for no t or for no t<0. For xe€B, let
R~ (x) be the smallest £>0 for which S~xeB. (If S~ !x¢B for any >0, we
let R~ (x)=oo. -Similarly, if S'x¢B for any >0, R(x)=c.) Let
B, ={xeB| R(x)=e} B_, ={ xeB| R~ (x)=}.Then© may be

identified with

(.0 ¢ B X R —o0 <t <R(x) forx eB_
1) € '
0<r<R(x) otherwise

where C={ xeQ| S'xeBfornoteR} is the set of phase points which
never reach B. The structure of our process P’ on the special representation
of © — C is as before, except that when B is reached from below, a random

change governed by K occurs.

f




Now it is easy to see that any extremal stationary measure u either
comes from a stationary measure g on B for P or is supported by C. It is
also easy to see that if u is finite, u(B_ UB, ) =0.

(c) Existence of a ”nontrivial” stationary probability measure for P*.
If © were compact, and if P! were continuous for all ¢ (in the sense that

P!(x,") depends continuously on x, i.e.,

(PIH) = [P (x,dy) f ()

is a continuous function of x for every bounded continuous f), then we
could use a fairly standard argument to obtain a stationary probability

measure. Take any probability measure v on £ and let

up =L TPt

.
By compactness, My, - 1, which by the continuity of P’ must be stationary.

Unfortunately £ is not compact and P! is not continuous. And, in
general, if we attempt to discard the points of discontinuity of P! (assuming
that they are few), what remains of @ will be even less compact. £ is not
compact because it allows for arbitrarily large momenta. P! is not
continuous because the stochastic boundary effect does not occur
gradually: For x eQ , P! may fail {0 be continuous at x if

(i) R(x) =t (R(x) is the hitting time for B),
or
(ii) the collision with dA at time R (x) is tangential and ¢ > R(x),

or
(iii) x e B.

(i) presents no real problem. If we alter the topology on Q by ignoring
the momenta of particles edA, this case no longer gives rise to a
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discontinuity. Case (ii) is more serious; however, our assumptions of
convexity of A and repulsiveness of the potential preclude tangential
collisions., Case (iii), which is also serious, is handled using the long range

repulsive forces. We omit the details here,

Even if the difficulties just described did not arise, the argument for
the existence of a stationary probability measure would be seriously
flawed. This is because the stationary measure whose existence it
establishes could be trivial. For example, a phase point x all of whose
particles are at rest at the very same position is a fixed point for S* and 5.,
is stationary. In general, there may be other stationary measures
concentrated on C. We call such measures trivial. One consequence of the ‘
ni=s CA‘ Thus, such
triviality will be precluded if we can find a stationary probability measure

assumed repulsiveness is that C C{'Zl. =0,alli=1,...,

on £ — CA‘, which is even less compact than £2. To push the argument
through we isolate CA‘ and the point at o in a controllable, uniform way. By
this we nlean that the measures u . should form a tight family of measures
on £ — C, i.e., we have to prove that for all €> 0 there exists a compact
subset £, of @ — C such that

for all 7. If this can be shown, then { [ } is a compacc family of measures
and we can extract a subsequence converging to a stationary probability
measure u_ on £ — é In particular, ug(C) =0 and therefore for ug a.e.
x € §, S'x e B for some ¢ > 0 (since i (B_ ,UB,,,) = 0).

The main ingredients in establishing tightness are the following:

(i) Since the forces are bounded, a particle with a large momentum
will tend to move freely. Such particles will tend to rapidly hit 0A and give
up most of their momentum. This enables us to control the large momenta.
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(i) The density for the probability distribution of the thermalized
outgoing momentum of a particle of xeB leaving 0A is bounded uniformly
inx.

(iii) Since our potential is translation invariant, the total momentum
?:31 ., ,+3,, of our system will be conserved until B is reached. It
follows that R(x) < b , where b is a constant, independent of x.  Thus,

e

using (ii)
P(x,dy)

[ P@x,dy)R()<b i
7P I<g [P (»)!

1P1<8

is small, uniformly in x. Also, { Pl< €} is a neighborhood of ¢
(iv) For 6 small CA’(3 = l?,-l<6,i= L,...n}c{ Pl< e} .

Moreover, starting from xe B, the hitting time of é& can be uniformly
bounded away from O for a large (with respect to the thermalized
momentum distribution) set of values of the momentum of the particle
leaving dA, uniformly in x. (iii) and (iv) allow us to control the small
neighborhoods CA’S of é

(d) The Harris Condition. Having established the existence of a
nontrivial stationary probability distribution u,, we use the following
condition very strongly in establishing most of the remaining results. For

”any” X

(*) there exists a # > 0 such that P’(x,-)a . 70.

Here P'(x,), . denotes the absolutely continuous component of the
measure P/(x,.). Very roughly, (*) is proven as follows: each collision with
dA produces spreading in 3-dimensions. Thus after 2n such collisions we
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should have spreading in all the 6n-dimensions. of © and thus have an
absolutely continuous component. Part of the difficulty in making this
rigorous arises because the argument assumes that the spreading produced
by collision with dA will be independent of the spreading which has already
occurred. Since we can’t solve the equations of motion exactly, it is
difficult to keep track of exactly what spreading occurs. One of the main
ingredients in carrying the argument through is the fact that particles with
large momenta will move almost freely. Thus, by always having the particle
at O0A leave with an appropriately large momentum, we gain sufficient
control of the sequence of collisions with 0A , and the effects there of,

which ensues.

Let us indicate in a bit more detail what (*) is good for. Let P=P'.P
is the transition kernel for a Markov chain on Q, with stationary
probability measure p . For such a Markov chain, with u absolutely
continuous, the satisfaction of (*) by u g ae X (with teZ) is equivalent to
the Harris condition. In such a case we have a Harris process [5], for which
we have the following picture:

Nl

at most a countable number of ergodic (irreducible) components

Moreover, if the chain is ergodic (only one component) and aperiodic (no
cycles), there exists a set Q, with u (22) = 1, such that for x € Q,,
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P"(x,-) = p (") in variation norm.

Note that since our Harris process is embedded in a continuous time
process P!, it must be aperiodic.

Now if P!(x,) is to grow an absolutely continuous component it is
clear that S’ must eventually hit B; this is assured for x with total
momentum }'# 0. But this alone is obviously not sufficient, since if x
contains two or more coincident particles (i.e., having the same position
and momentum), these coincident particles cannot be parted until they
themselves reach 8A. Let us denote the submanifold formed by the phase
points x containing coincident particles by £ (the coincidence
submanifold). For x ¢ {R < 00} — §,, it may be shown that (*) is indeed
satisfied. Since the Lebesgue measure

m({—?=0}uszc)=0,

it follows that (*) is satisfied for m a.e. x. Thus the Harris condition will be
proven once the absolute continuity of u  has been established.

(e) Absolute Continuity. Let wus write u for M- Then
Hao P M ging “H = b= p, P *lging P!, The first term on the right is
absolutely continuous and the second term will have an absolutely
continuous component for sufficiently large ¢ unless p; . is concentrated
on the set of x for which (*) fails. Note that the above equation implies
thatp, . =, , P'and Hsing =usingP’. We conclude that unless g is
singular, u, provides us with a stationary absolutely continuous
probability measure, and that the singular part of 4 must be concentrated
shown  that p(R=e)=0. Now &,

as the phase space of a system of n —1 particles

on £, since  we have
may be regarded
similar to the one we are investigating, except that one of the particles will
have twice the mass of the others, and the pair potential involving this
heavy particle will be 2u rather than u. Moreover, the stochastic evolution
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on Qc viewed this way will agree with the stochastic evolution on Q,
regarded as a subset of , until the heavy particle hits 9A. We may
decompose Q into invariant sets 29, i=1,...,n — I according to which
particle is heavy. All the arguments and results for the stochastic evolution
on Q will be valid for the n — 1 particle stochastic evolution on Qc(i) . In
particular, we will soon show that if u_ is absolutely continuous, then it is
equivalent to the Lebesgue measure and the Markov process starting from
Mg 18 ergodic. This would imply that every particle must eventually hit 0A
(with probability 1). Similarly, if the n — 1 particle process on © () has an
absolutely continuous (with respect to the Lebesgue measure on Qc(i))
stationary probability measure, every particle, in particular the heavy one,
must hit d8A. But when this happens, the phase point will leave Q under
the n-particle stochastic evolution, for which this probability measure will
therefore not bestationary. Thus Hging must be concentrated on (Qc)c, the
coincidence submanifold of Q . lterating the above argument, we see that
Hging must be concentrated on the minimal coincidence submanifold in
which all particles are at the same position and have the same momentum,
But this is impossible. Thus u_ is absolutely continuous.

(f) Ergodicity and Equivalence to Lebesgue Measure. We give a sketch
of an argument, which though not completely correct as formulated here,
captures the flavor of the correct argument. By an analysis similar to the
one which we use to establish (*), we may show that if we discard
{ P- 0} U 2, all sets invariant for our Markov process are open. Since
Q —( {—ﬁ =0} U Q,)is connected, the results follow.

4. CONCLUDING REMARKS

We have stated our results for particles moving in a 3 dimensional
space, but everything should apply verbatim in any dimension greater than
one. For A CR, however, our arguments break down in several places,

though we believe that our results are valid in this case, too.
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As far as our other assumptions are concerned, we wish to emphasize
that most of these are unnecessary when the temperature is constant on
3A. We also believe that our results will remain true even if A is not convex
(but just connected), and our potential is not repulsive. In the case u =0,
i.e. the ideal gas, our arguments do not all apply directly. However in this
case all our results follow from the observation that the n-particle process
may be factored into » independent single particle processes, for which our

arguments easily apply.

Finally, we remark that as a consequence of the result (4), we obtain

that the time shift on trajectories of our process, starting in the steady

state, defines a Bernoulli flow [6].
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