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I. INTRODUCTION

One of the most puzzling questions in macroscopic physics is the paradox :
how can reversible dynamical laws describing molecular motions lead to
the observed irreversible behavior of physical objects-that are composed
of these molecules ? There is a general feeling that the answer to the
paradox involves two distinct features of statistical mechanics : the

use of probability concepts, i.e. the macroscopic description of a
physical system is given by an ensemble density (probability measure) on
the phase space of the system, and the restricted character of the
observations that it is possible to make on macroscopic ﬁodies. A comple-
te theory of irreversibility or what might be called the 'good thermo-
dynamic behavior' of physical systems will presumably combine these two
features with the laws governing the behavior of the elementary consti-
tuents of matter to derive a system of irreversible kinetic equations

for macroscobic observables such as temperature, hydrodynam?c velocity,
etc. It would also include an estimate of the probability of observing

a significant deviation from the behavior predicted by the kinetic
equations. Unfortunately no such theory exists at present, and none

seems likely to appear in the near future.

In the absence of a complete theory, it is desirable to investigate

as much as possible the time evolution of non-equilibrium Gibbs ensem-—
bles which may approach equilibrium despite the reversibility of the
dynamics. This can be done with the help of general results from
ergodic theory. Ergodic theory arose out of the attempts by the founding
fathers : Maxwell, Boltzmann, Gibbs and Einstein to justify the founda-
tions of statistical mechanics. It directly provides a framework for
the investigation of the non-equilibrium behavior of finite (classical)
systems. It may be expected, however, that only in some appropriate
thermodynamic limit is good thermodynamic behavior precisely achieved.
Hence, if exact mathematical results are desired, infinite systems

of particles should be directly investigated; their very large yet
finite counterparts, which may for all practical burposes exhibit
behavior of the type described by macroscopic laws, will nonetheless

exhibit it only approximately, precluding the formulation and






proof of the appropriate theorems. (In the same way phase transitions,
which are associated with non-analyticities in thermodynamic functions,
do not occur for finite systems, though numerical computations on
systems containing just a few hundred particles and experimental obser-

vations on macroscopic systems mimic this behavior very closely.)

An unresolved problem in non-equilibrium statistical mechanics is
finding the limit appropriate to the task. I believe that the same
thermodynemic limit as used in equilibrium statistical mechanics is
appropriate; at least for part of the problem. (Different or additional
limits may have to be used for obtaining more specific kinetic behavior,
e.g. for the derivation of the Boltzmann equation.) The underlying
triplet (X,Tt,ufnecessary for ergodic theory is, for infinite systems,
the phase space of infinite (but locally finite) configurations of
particles in RV x RV, (where v = 3 for realistic systems), the appro-
priste Hamiltonian time evolution (whose existence for realistic infinite
systems has recently bgen proven by Lanford and others), and the infinite

volume equilibrium measure u.

IT. ERGODIC THEORY

In these lectures I shall first describe some general concepts of ergodic
theory, i.e., ergodicity, mixing, etc. I shall then discuss the ergodic
properties of infinite systems in particular those of infinite harmonic
crystals. Table 1 is essentially a summary of our present state of
knowledge (or ignorance) in this area : as it relates to statistical
mechanics. Not mentioned there is the concept of space-time ergodicity
of an infinite system. This was developed by S. Goldstein to make
distinctions between infinite systems having the same time ergodic

properties. It avoids "some" of the difficulties I am about to describe,






Infinite systems : Ideal
gas, Hard rod system, Per-
fect harmonic crystal

Bernouilli Equivalent to roulette

Baker's transformation, system wheel

Geodesic flow on space of

negative curvature, Par-—

ticle moving among fixed
convex scatterers

Infinite system : Lorentz
gas

K-system Essential randomness

Two or more hard spheres

moving in two or higher
dimensions

Simple model system with Mixing system Approach to equilibrium

collisions
One dimensional harmonic , Use of microcanonical
\ Ergodic system
oscillsator ensemble

Table 1 : Hierarchy of Systems

The middle column lists various ergodic properties with the strongest
at the top. Every mixing system is ergodic, every K-system is mixing
and every Bernouilli system is a K-system. At the left are examples of

the system and at the right physical interpretations or implications.
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I should point out that care must be exercised in drawing analogies betwecn
the ergodic properties of finite and infinite systems, as the dependence of
these properties on the interactions between the particles, and thus also
their physical interpretation, may be very different in the two cases. Thus
while a finite ideal gas (classical system of non-interacting point parti-
cles) is not even ergodic; the infinite ideal gas has the strongest possible
ergodic properties : it is a Bernouilli system. The seme is true for the

harmonic crystal.

The explanation of the good ergodic properties of the infinite ideal gas is
simple : local disturbances 'fly off' unhindered to infinity where they are
no longer observable. This means that the 'approach' or better the return to
equilibrium of a large (infinite) system, which is perturbed locally away
from equilibrium, may occur even in the absence of a local 'dissipative'
mechanism such as is provided by collisions. It can happen simply, as it
does in the ideal gas (or the perfect harmonic crystal) by the disturbance

disappearing from sight by the free streaming motion of the particles (phonons).

1

This kind of return to équilibrium is of course not described by a kinetic
or hydrodynamic equation and is therefore not the kind of irreversibiJity
which is of interest in real physical systems. It is therefore necessary

to introduce additional structure, to that provided by ergodic theory alone,
to distinguish between infinite systems of the ideal gas type and more rea-
listic physical systems, such as the Lorentz gas, where there exists a local
mechanism, e.g. collisions, for the approach to equilibrium. A start in this
direction has been made, as mentioned, by S. Goldstein who considered the
ergodic properties of an infinite system under the joint group consisting

of the time evolution and space translations. He showed that these two
different kinds of $ystems can indeed be clearly distinguished with this

sharper tool.

My reason for not dealing with quantum systems here is that a finite quantum
system can never exhibit any of the properties higher than simple ergodicity
in our hierarchy (although, of course, a large quantum system may approxi-
mate closely the behaviour characterized by these concepts). This is because
the spectrum of a finite quantum system in a box is necessarily discrecte,
whereas for a finite classical system the spectrum (of the Liouville operator)
can be continuous. Infinite quantum systems can, and do, exhibit ergodic
behaviour "similar" to classical systems. In particular they can be mixing

which is the essential property required for decay of initial perturbation.
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III. STATIONARY NON-EQUILIBRIUM ENSEMBLES

We have seen that while equilibrium systems are really well understood
- at least in principle - the general non-equilibrium situation is very
difficult even in principle and the right ingredients are not yet comple-
tely at hand. It seems therefore worthwhile to cqnsider e situation
which, in principle at least, ought to be more easy than the general
non-equilibrium situation - namely the case where a system is in a
stationary non-equilibrium state i.e. in which there are fluxes, such

as energy flows going through the system. In order to be in a statio-
nary state, a finite system must be in contect with outside reservoirs.
We shall be particulerly interested in the "steady state" energy flux

in a system in contact with heat reservoirs at different temperatures
T,+ Following the general principles of statistical mechanics, we
identify the observable properties of such & system with averages over
a "suiteble" phase-space ensemble. To obtain such a Gibbs ensemble we

use a formalism developed in earlier work, and look for the stationary

solution of a generalized Liouville equation having the form
Bi(x.tx 4 (e W)= ZS [K ki) 23y el -8 (B T’ a)
o

Here K, (x,x')dx dt is the conditional probability that when the system
is at the point x' in its phase space it will, due to its interaction
with the ath reservoir, make a transition to the volume element dx,
about x, in the time interval dt. It is assumed here that the reservoirs

are "stationary" so that the K,'s are independent of time.

Equation (1) describes a stationary Markov process, and we may define

the stochastic time evolution operator Wt, for t > 0, by

g(X.L} = th(x,o\ = SW(X,L )(')g(x'.oxc\x \ l:>/o. (2)

where p(x,t) is the solution of equation (1) when the ensemble density

at time zero is p(x,0). The operators W' form a semigroup

W!:.H:a. . th.wh

!:..‘:l- >,O

but are not unitary operators since the flow is not measure preserving.

It is possible to show, under certain conditions on H and the Ky'8s






generally satisfied by our systems, that as t + =, p(x,t) will approach
(in some suitable sense) & stationary ensemble demsity pg(x) which is

independent of the initial ensemble density p(x,0),

Qom W"‘S (x.O) = 8¢ (x\ , W tgs (x) = $(4) (4)

k>
When all the reservoirs have the same temperature this will be an
equilibrium canonical ensemble, whereas for reservoirs at different
temperatures this ensemble will represent & system in a steady non-

equilibrium state through whichheat is flowing. Define

WERL-[RgW (st [)dy ) <B> = RS (9) Ay
fg> = < (W95 = [ LI aAOW(uE[)] qeds 63

When equation (L) holds and W(y,t|x) + pg(y) as t + =, we have

WECLY —s <> ) <Rl —> <F><q> askso (g

&)

! To obtain the energy flow into the system from each reservoir we multiply

: equation (1) by H and integrate over x to obtain
z <H> _ ZSX_ SK*(x,x')[ H (X)*H(X’)j ‘\X}g(’('n ) dx'= Zj—-« (qi)
ok A «

where J is the average energy flux from the qth reservoir. In the steady

state we have, of course, I Jy = 0. Thus if the geometry is set up in
such a way that the system is in contact with only two reservoirs--"one
on the left" at a temperature T and "one on the right" at a tempera-
ture TR with Ty, > TR --gnd if the system has & uniform "cross-section" S
and "length“ii, then we expect that in the stationary state the heat
flux J = J;, = - Jg should, for macroscopic size systems, be related via
Fourier's law to the average temperature gradient (Ty, - Tr)/L. More
precisely, J shoud have the property that the quantity x(£) = (J/8)/
[(T;, -Tg)A] should approach a well defined limit k when& + . This «,
if it exists, we would identify with the heat conductivity of the system
at temperature T when Tp + Tg + T (This limit should probsbly be taken prior
to letting & + =).
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This formalism has been applied to a harmonic crystal with some parti-
cular forms of interaction with the heat reservoirs. The stationary
non-equilibrium ensemble density for such a harmonic system was found
to be a generalized Gaussian. The covariance matrix of this Géuaaian
was obtained explicitly for a one-dimensional chain of equal
masses with nearest neighbor interactions whose end atoms are in con-
tact with heat reservoirs at temperature T and Tr. Identifying the
number of particles in the chain with its length& , it was found
that in the stationary non-equilibrium state k@) ~&; i.e., the heat
flux achieves a constant value, for fixed Ty - TR, independent of the
length of the chaind . A similar result obtains for any perfectly
periodic harmonic crystal corresponding to an "infinite" heat conduc-

tivity, if one can speak of a heat conductivity in this case.

Searching for a model system in which Fourier's law could be shown to
hold, Casher and Lebowitz, and A.J. O'Connor and J.L. Lebowitz, inves-
tigated what happens in the same 'situation to a crystal whose atoms

are not all of the same mass, with the different masses distributed

at "random". We were unable to obtain a definite result for the asymptotic
behavior of k() but could show rigorously only that the heat flux J
will not vanish asd/ +  if the spectral measure of the infinite chain
has an absolutely continuous part. Indeed, this is the reason why the

heat flux in a periodic chain becomes independent of £ asd + « .

We also showed, by using a theorem of Matsuda and Ishii, that for a
random chain J + 0 asd& + « with probability one with <J7 > 0@-3/2),
vwhere <J> is the heat flow averéged over the random mass distribution.
This may suggest that the eigenfrequencies of a disordered infinite
chain are all isolated; but this is not so, as we show that the spectrum
of an infinite chain in which the masses can have only two different
values contains a non-denumerable infinity of points and is thus, in
particular, not exhausted by a set of discrete eigenvalues having a
denuﬁerable number of accumulation points. This result is based on a
proof that the cumulative frequency distribution of such a chain is

continuous.
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These results raise the possibility that the spectrum of a disordered
chain may be of the singular continuous type; i.e., its continuous
spectrum may have its support in a kind of Cantor set. They also raise
the question of whether in other systems, too--e.g., hard spheres—-the
existence of transport coefficients in the infinite system may not
require the absence of an absolutely continuous spectrum, i.e., the
kind of spectrum Sinei proved exists for a finite system. On the other
hand, as we already seen, the irreversible decay of local disturbances
requires the absence of localized bound states (corresponding to a

point spectrum).

An slternative way of investigating heat flow in a crystal (or for that
matter in a more general system) is to consider an isolated system
whose "left side" and "right side" act as reservoirs at different
temperatures, Tp, and Tg. To meke this a bit more precise, we might
imagine separating the system into three parts, left, middle and right,
and consider an initial distribution which is a direct product of
equilibrium distributions up, , ug in the right and left part and an
"erbitrary distribution in the middle : up = up, ® uy @ WR. We might
hope then that if the right and left sides are very large compared to
the middle part then, for "large" times, when the transients have died
out, the middle part should behave as if it was in a quasi-stationary
state with heat flowing through it. I say quasi-stationary since for

a finite system the ensemble average of the heat flux would vanish,

as t + ®, if the system is mixing and might oscillate indefinitely
otherwise. It would therefore again seem reasonable to consider the
case in which the left and right sides became infinitely large while
thé middle remained fixed. In such a situation the initial state would
be singular with fespect to any stationary measure and ergodic theory
would have nothing to say about the asymptotic, t + «, behaviour of

the heat flux. We might still expect however (on the basis of the solu-
tion of the heat equation) that for "real" systems the middle part of
the system would eventually come to equilibrium at some temperature
intermediate between T, and TR and the heat flux would therefore still
vanish as t + «, To extract a "stationary" state from this type of

system, it would be therefore necessary that we somehow find a way to






express the measure of the middle part of the system at time t,

um(t), (obtained as a projection of the total measure) as & sum of an
equilibrium part and of a stationary non—eqpilibriuh part prqportional
to the "temperature gradient", AT; uy(t) ~ uy(e) + AT(t) ¥g + o(AT).
(We may expect that AT(t) ~ t~1/2), It is ¥4 which ought to describe

the behaviour of stationary non-equilibrium states, i.e. we expect,
for systems having good thermodynamic behavior, that ¥g would have a
limit as a linear functional on the phase space of the system which

is independent of the initial uy.

The situation is, of course, quite different for the perfect harmonic
crystal where we can have a heat flux even in the absence of a tempe-
rature gradient. For a harmonic chain containing 2(M' +N) +1 particles
we might consider the first M-particles, indexed by j, - (M' +N) g j<- N
as constituting the left side of the system at temperaiure Ty, etc.
Letting now M' + », we have a model of a system, consisting of N-oscil-
lators, in contact with heat reservoirs. Working with H. Spohn, we have

. recently shown that, as t + @, u(t) + ugy =a stationary heat conducting

state independent of initial conditions in the middle part. Indeed we
show for this system that the stationary (infinite crystal) state g
has as good ergodic properties as the equilibrium state. Unlike the
equilibrium state however it is not "stable" against perturbations in

the Hamiltonian of the system.

The heat flow in this model, in the case where the masses in the middle
part are random while the ends have unit masses was first investigated

] by Rubin and Greer. It can be shown that the stationary heat flux in

E this system is_proportional to Lf[tN(m)|2dw where |ty(w)| is the "trans-
mission coefficient" for a sound wave of frequency w through the middle

part of the system. The integfation is over the spectrum of the infinite
harmonic chain of unit masses (with nearest neighbor unit coupling).

Firstenberg's theorem implies that for fixed w, |ty(w)| decays exponentially

e S e i

in N. The only contribution to the heat flux which does not vanish

exponentially in N can therefore come only from values of w which are O(N).

D Tt

It was recently shown by G. Papanicolos that the flux goes N Y2 for thin

system.

O S
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