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We investigate the density profile of a fluid of hard spheres in the vicinity
of a (container) wall. Our analysis is based on the solution of an integral
equation satisfied by this density profile in the Lebowitz—Percus mean
spherical approximation or its generalization. The latter leads to a density
profile in very good agreement with machine computations.

1. INTRODUCTION

Surface properties of various systems are currently a topic of considerable
theoretical and practical interest. For fluids there are two common types of
surfaces : those separating different phases of the system, such as the liquid and
vapour below the critical temperature, and those adjacent to the walls of the con-
tainer. While the first type of surfaces present even conceptually a difficult
problem, the latter surface can, at least when the walls are suitably idealized, be
readily treated by the standard methods of statistical mechanics [1]. Thus, at
low bulk densities, it is possible to obtain virial expansions for the surface free
energy and for the (non-uniform) density in the neighbourhood of the wall [2].

Virial expansions are however not suitable for liquid densities and it is there-
fore necessary to use some sort of approximation scheme even for the simplest
of such surfaces. In the case of bulk fluid properties, much useful information
has been gained from the use of integral equations. The availability of exact
analytical solutions of the Percus—Yevick (PY) equation [3] and of the Lebowitz-
Percus mean spherical approximation (MSA) equation [4] (and their generaliza-
tions) for various simple systems has been particularly useful. In this note we
consider hard spheres near a flat structureless rigid wall and describe the solution
of the MSA equation for the case where the wall-fluid direct correlation function
(DCF) decays exponentially outside the wall. This is related to the work of
Henderson [HAB] [5] and of Percus [6] who investigated the solution of the
PY equation for such a system.

1 Supported by a grant from the Petroleum Research Foundation No. PRF 8429 AC6
and by AFOSR Grant No. 73-2430B.
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Recently, Blum and Stell [7] have solved the MSA equation using the HAB
[5] form of the Ornstein—Zernike equation for a class of systems for which both
the wall-fluid and fluid—fluid DCF’s are non-zero outside their cores. For the
wall-fluid system, their results are a generalization of those given here. How-
ever, the solution given here is valid for arbitrary, and not solely infinite, diameter
of the solute molecule. The two solutions are in fact complementary.

2. FORMULATION OF THE PROBLEM

The basic idea of our approach is to treat a system in contact with a wall as a
limit of a uniform mixture in which one of the components becomes infinitely
dilute and then infinitely large. If we let p;, be the densities of the different
components of the system, then the Ornstein-Zernike equation has the form

hif(ry=c;(r)+ ZI: pi§ bt ey (v —r|) dv, (1)

where A;(r)+ 1= h;(r)+1=g;(r) are the radial distribution functions (RDF’s),
i.e. p;g;/(r) is the density of molecules of species i a distance 7 from the centre of a
molecule of species j and ¢;;(r) =c;;(r) are the DCF’s. Equation (1) is, of course,
just a definition of the ¢;(r) and becomes useful only when supplemented by other
equations for the ¢;(r) (which may also involve the RDF’s). It is, of course,
these latter relations, which are of necessity approximate, that define the different
theories.

Before going into these approximations we note that if we consider the

simplest case of a binary mixture and let p, >0, then from (1)
hoy = gy + phoy*cyy, (2)

where the asterisk denotes a convolution, p=p, is the bulk fluid density, and
¢11(7) is the DCF in the uniform one-component fluid consisting entirely of
molecules of species 1 with density p. We note again that (2) is still just an
identity or definition of ¢, (7).

In order to relate (2) to the surface problem, we let v,,(r)=2,(r), the
intermolecular potential between molecules of species 1 and 2 a distance 7 apart,

have the form
0, <Ry,
Vya(7) = { (3)

wip(x), r=Rp+a> R,

Letting R,, —~o0 and setting w(x) equal to the limit of w,,(x) when R,, o0,
then pgi, (%)= p[hio(x+ Rys)+ 1] will, in this limit, represent the density of
molecules of species 1 a normal distance x from a rigid wall. 'Thus, we have a
semi-finite one-component system in which the molecules (centres) are restricted
to the region x> 0.and interact with the wall through a potential w(x) ; x being
the normal distance to the wall.

Now, any approximation scheme developed for mixtures with general
densities p; and potentials v,/(r) will automatically be applicable to the limiting
case in which we are interested. Indeed, this is what was done by HAB [5] who
considered the case of a mixture with diameters R;;=4(R;+ R;). For this system

v;(r) = q(r), where 0, <Ry,
9ij(”)=

(4)
0, 7>Ri}'.
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HAB used the PY approximation scheme for this mixture. This consists in
setting ¢;;(#)=0 for > R,;; which when combined with the exact condition
hi(r)=0 for » < R;;, permits an explicit solution [8] of (1). Letting p, >0 and
R,, -0 in that order (or requiring that p,R,,* -0 also) yields the PY approxima-
tion for a hard-sphere fluid in the neighbourhood of a rigid wall. 'This density,
also obtained by Percus [6] in a different manner, is in remarkably good agree-
ment with machine simulations [9] up to distances very close to the wall (see
§5).
When the intermolecular potential is of the form

V(1) = uj(r) + wy(r), (3)

where g;;(r) is given by (4) and w,; is a soft potential, the MSA scheme consists in

setting
ciylr)=—Buwy(r), r>Ry, (6)

where 8=1/kT (T the temperature).
We shall now obtain the solution of (2) and (6), when

wy(r)=0, 7>R, (7)

and
— Bwyy(r)=B exp (—=zr)fr, >Ry, (8)

Taking the limit R, —oc0 will yield the MSA result for the density of hard spheres
in contact with a flat wall when the interaction between wall and hard sphere a
normal distance & from the wall is —eexp (—2r), where Be=lim B exp
(—2Ryy/Ry,) when Ry —00.  An alternative interpretation of our solution giving
an improved (compared to PY) approximation for a system of hard spheres
(w15 =0) will be discussed in § 5.

3. ForRMAL SOLUTION
Our task is to solve equation (2) with the conditions
ho(r)=—1, 7<Ry, )
co(r)=B exp (—zr)fr, r> Ry, (10)
and ¢;; the PY DCF of a pure fluid of hard spheres of diameter R;. For
convenience, we set R;=1 and R;,=R.

Define
hay(r) = hyy*(r) + Ahgy(r) (11)

and
car(r) = °(r) + Acy (7), (12)

where %y %(r) and ¢y%r) are the known solutions [5, 8] to the problem when
B=0 (i.e. in the PY approximation). Setting '

Acyy(r)=8cqyy(r) + B exp (—zr)/r, (13)
equation (2) becomes
og(r)=>0bexp (—2r)— 1]; op(y) dy |r—§v|<1 o(x) dx, (14)

M.P. 4z
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where
—08cy(r), 2<R,

ogy(r) =127
Ahg(r), r>R,
o(r) = — 129r3(7),

and b=127B. We note that (14) is linear in oy(7).
Taking the Laplace transform of (14) gives
_ (s —2) — (s*— &%) Fuy(5)]
Cnl) = e e sty

where o
Guls)= £ 0p(s) exp (—sr) dr,
Fo(s)= g on(r) exp (—s7) dr,
F(s)=F(s)~ F(—s),

and

F(s)=

© ey =

o(r) exp (—sr) dr.

(15)

(16)

(17)

(18)

(19)

(20)

(21)

We have solved (17) analytically, making use of the conditions that Fy (s) is an
entire function and Gy(s) is analytic in the closed half plane Re (s) 0. We do
not give details of the procedure as it follows closely the techniques used in the
solution of the PY equation for a pure-hard-sphere fluid [10] and for hard-sphere

mixtures [8].
We find that
Gar($) = 129(1 =n)*C exp (= As)f(s, 7)/(s + %),

where
C=Bexp (- A2) f(2, 1),
f(S, n)zL(s)+S(s) exp (S)’
L(s)=12q[1 429 + S(1 +7/2)],
and

S(s) = (1 —)2s3 + 69(1 —1)s? + 1825 — 12n(1 + 29).

In addition,
0, r<A

12nC —zy)—1 2

r 2 2 £

| Bexp (—zrfr), r>A,
where y=7r— A, ¢;=1+27 and Cz=1+77/2'

(22)

(23)
(24)

(25)

(26)

(27)
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If use is made of the fact that

Bexp (~zR)

Ah21(R+) = R

Acgi(R7), (28)

we obtain for the contact value of the RDF
Ahyy(R+)=C(1=7)*/R. (29)
To complete the solution, we must obtain Ak, (r). If we return to (29) and
expand in powers of L(s)/S(s), we obtain
3
(s+2)S(z)
< X el ST o)

n="0

Gu(s)=129(1 —9)'C exp (- Rs)

Thus,
[eo]
rAhy (r)= Y, ¢ (r)u(r+1—R+n), 31
n=1
where
0, x<0,
u(x)= (32)
1, x>0.
Hence, for R<r<R+1
A 1 ool . 8+iwc R s3ds
7 Bhyy(r)=5—C(1 =) a_fiw exp [s(r— R)] 580 (33)

Thus, using the residue theorem,

3

Mh(r) =5 (1=t { - g ex [ )

~ a%mexp [s,f(;'—R)]}, R<r<R+1, (34)

s

+

1

where the s, are the roots of

S(s)=0 (35)

and S'(s) is the derivative of S(s). Simple expressions for the s; have been
obtained by Wertheim [11]. After a little manipulation, equation (29) can be
obtained from (34).

Although Ak, (7) cannot be written in a closed form which is valid for all 7,
the moments of Ak, (7) can be obtained from (22) by expanding in power of s and
equating coefficients of like powers of s. Thus,

< C(L—n)*
}’; TAhzl(T) d?’zm (36)
and
T __C—n) 1 1492
}’; 7A]121(7') dr——m [/\+;+ 1+27]J- (37)
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Finally, by setting s=z in (22) and using (23), we obtain

B § By (ryn(r) dr=CH1 =) 25, (8)

where
— Bwy ()= B exp (—zr[r).

4, SOLUTION IN THE LIMIT OF INFINITE R

The solution in the limit R 0o can be obtained easily. However, because of
the importance of this limit, we give an explicit summary.
For infinite R, (10) becomes

— i,/ (x)= B’ exp (—2x), (39)

where w,,' (&) =w,(R+x), B'=B exp (—zR)/R is finite, and x=r—R is the
normal distance from the wall. Thus, (23) is replaced by

C'=C|R=B’exp (2)f(z, 7) (40)
The DCF is given by

0, x< -1,

o 129C'[ — ¢, y%2%
e1g (%) = + ¢y + 2}y + (exp (—zy) — 1)/z}/22], 1 < <0, (41)
B’ exp (—2x), x>0,

where y=x—1 and Acy,/(x) is defined similarly to w;,/(x).
In this limit,

Ahyy'(0)=C'(1—=7)?, (42)
where Ahy,'(x) is defined similarly to w;,'(x). Also

z3
! — ! . 4 — _
B (9= C1 =)t | =g ex0 (=)

.3

* 1 (st zgS'(&i,)

i

Finally, (36) and (37) become

exp (six)] O<x<l. (43)

Mo

1

[°o] ’ 1__ 4
[ Ahyy'(x) dx:g(i +22)) (44)
and (38) becomes
=B | by (x) () doe=(C)(1 =n)'[23. (45)

5. GENERALIZED MSA FOR HARD-SPHERE FLUID NEAR A WALL

The preceding results can be used to describe, in the MSA, a fluid of hard
spheres with a soft exponential interaction with the wall. Alternatively, and
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this is what we shall do now, we can use these results to give a generalized mean
spherical approximation (GMSA) for a fluid of hard spheres (with no soft
interactions) near a wall.

The essence of GMSA approximation is to solve the Ornstein—Zernike
relation, equation (1), for a fluid (mixture or single component), with interaction
potential (5), under the assumption that g;(r)=0 for <Ry and ¢;(r) has a
prescribed form containing unspecified parameters for r<R;. 'The form is
chosen to make the problem soluble and the unspecified parameters are then
adjusted for ‘best’ results [12]. 1In our problem we assume (10) to be the
functional form of the wall-fluid DCF outside the wall and then adjust the
parameters B and # occurring in ¢;,(r) according to the procedure outlined below
(for the case when R is infinite). This leads to better agreement with the results
of machine computations [9] than those obtained from the solution of the PY
equation for this system [5, 6].

We first note that the density of a fluid in contact with a flat hard wall is,
when multiplied by 27, just the momentum transfer to the wall and hence equal
to the pressure p of the fluid [1, 2]. Hence, when w;,=0, the pressure of the
bulk hard sphere fluid is given by

PIRT= lim pgis(R)=pg'ss(0) (46)
pa—>
R—c0

It is therefore natural to adjust the parameters B and # in such a way that (46) is
satisfied. Thus making the GMSA g,, (%) exact at x=0. While we do not
know the hard-sphere fluid pressure exactly, an accurate approximation to it is
given by

T4 492—°

PlpkT = 47
Ip T=n) (47)

On the other hand, the PY expression for g,,/(0) is

1429
"0)py=7—. 48
[g12 ( )]PX (1 _7])2 ( )
Thus, if in (42) we set
3—m

Tt — 49
N ppmen (49)

then the GMSA g,,(r) will satisfy (47). }

We note in passing that besides the familiar thermodynamic inconsistency
between the pressure and compressibility equations of state, the PY theory of
hard-sphere mixtures has the additional inconsistency that the PY £12(R) does
not satisfy (46) in the sense that (48) does not equal either PY equation of state of
bulk hard spheres [8]. On the other hand, the scaled-particle theory (SPT)
expression [14, 1] for g,,(R) in the limit R —co,

: 1+9+q92
0 =177
[£12'(0)]spr (=3’ (50)
does satisfy (46) because it is equal to the SP'T' equation of state for bulk hard
spheres. This means that the procedure of Grundke and Henderson [15], of
writing in analogy to Carnahan and Starling,

£ii(Rij) = 3[g:f(Ryj) oy + 3g(Ryg)sprs (51)
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although reliable for the region of interest to them (R~ 1), must fail for R large
because of the failure of the PY gy,(r) to satisfy (46).

In order to ‘ adjust > our second parameter, 2, we need an additional reliable
relation involving /;,(r), e.g. its integral. Using some general relations [8] for
the integrals of ¢;,(7) it is easy to show that in the limit p, >0

§ g dr=p={[1 =B 0p[2p,)/[B 2P[0P1]}ps=0 (52)

where p(p;, ps) is the pressure of a mixture of hard spheres. 'The difficulty now
arises of finding an expressin for p(p;, p,) which would be reliable to use in (52)
when R,—>o0. Using the PY compressibility (or, equivalently, the SPT)
equation of state yields

OE hyo' (%) dx=3n/2(1+27) (53)

a relation already satisfied by [A;,'(¥)]py. To obtain an improvement we should
therefore use an equation of state based on an ansatz like (51) which is the mixture
analogue of (47). Unfortunately however the PY virial pressure does not (as
already mentioned) have the right asymptotic form as R, —+co. What we have
therefore done is to assume that the deviation of the right side of (52) from its
SPT value is of the form aR,2+ yR,? but to determine o and y, not from the PY
pressure isotherm (which suggested this form), but by requiring that the result
be finite in the limit R —co and be equal to the Carnahan and Starling expression
for the integral of A(r) when R=1. In this manner we obtain (in the limit

R —+00)
P ~ (14 29) + %4 —n)(1 — 49)
J e @) = Ty ih— )] (34)
Combining this with (44) and (52) gives
2_1:(1+277)(1—n)[9n(1+277)+n2(4—n)(1—4n)_ 37 ] (55)
n*(3—) 6[(1+29)2 —n*4—n)] 2(1 +27)
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Figure 1. C’ for GMSA for hard spheres  Figure 2. =z for GMSA for hard spheres of

of diameter ¢;, =1 near a wall. diameter o,; =1 near a wall.
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Figure 3. Density profile for hard spheres of diameter o;;=1 near a wall. The points
give the MC results of Liu et a/. [9] and solid and broken curves give the GMSA
and PY results, respectively. The asymptotic bulk density p=0-609 corresponds
to the average density pay=0+7 of the Monte Carlo calculations,

"The values of C’" and 2, obtained from (49) and (55), are plotted in figures 1
and 2. In figure 3 we compare the resulting GMSA g, with the PY [5] and
Monte Carlo [9] values. The PY g, shows appreciable error for ¥~ 0 but is
otherwise in excellent agreement with the Monte Carlo values. The GMSA g,
is in excellent agreement with the Monte Carlo values for all .

'The authors are grateful to Drs. Liu, Kalos, and Chester and to Dr. Percus
for sending them the Monte Carlo values for g,,(7) for hard spheres near a wall.
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