COMPUTER SIMULATION OF PHASE SEPARATION IN A QUENCHED BINARY ALLOY
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We report results of computer simulations of the process of phase segregation in a
model binary alloy system following quenching. Comparison is made with predic-
tions of the classical Cahn-Hilliard theory as well as with more recent theories
by Langer and others. Among the conclusions drawn is that, for the model system
studied, there.is no region in the phase diagram in which there is an exponential
growth of density fluctuations with long wavelength. This is in disagreement with
the linearized classical theory which predicts exponential growth inside the
spinodal region. Indeed, doubt is cast on the possibility of making, for these

systems, a sharp operational distinection between a spinodal and a metastable
region inside the coexistence curve.

Introduction

The phenomenon of '"coarsening" occurs in its simplest form when an AB alloy (such as
ZnAl) is quenched, from some high temperature T, to & temperature T, below the critical temp-
erature TC, where the equilibrium state of the System is (for certain ranges of composition)
one of coexistence of two phases: one A-rich and one B-rich. Since the cooling is very
rapid (ideally instantaneous) there is no time for phase separation to take place and the
-system stays homogeneous during the quench. Consequently the system begins to undergo a pro-

cess of phase segregation or coarsening. The problem is to describe the temporal evolution
of this process. ’

According to the classical, essentially phenomonological, theory of this process (1,2),
one has to distinguish two regimes of different kinetic behavior. If the quench is to a
state within the so-called spinodal curve the system is supposed to be unstable with respect
to weak delocalized (i.e. long-wave-length) fluctuations; the growth of thése fluctuations
into zones of the two coexisting phases is called the spinodal decomposition mechanism. For

states between .the spinodal curve and the coexistence curve the system is stable with re-
spect to these delocalized fluctuations,

fluctuations (i.e. nucleus formation).
nucleation mechanism.

but still unstable with respect to strong localized
Phase separation is then a consequence of the

The classical theory, as well as the more recent developments of the theory. by Langer
and coworkers (3) (about which we shall have more to say later) is based essentially on the

assumption that the system may be described during coarsening, when it is undergoing an
irreversible process, by a free enerey of the form -




Given the existence of F it is then assumed that the variational derivative of the free
energy with respect to the local composition N(2,t) gives rise to a (chemical) potential
whose gradient is the driving force for phase segregation. Formally the classical theory
leads to a nonlinear kinetic equation for the structure function S(k,t) which is the
Fourier transform of the spatial correlation function (2)

a(z,t) = (G, - ) AE + 5,0 -, : (2)

where T is the average composition of the system, and { ) indicates an ensemble average

(or average over T'). We shall not write this equation here but note only that the lineariz-
ed equation, which should be valid for the "early' times following quenching, when S(k,t) is
small, (S(k,0) ~ O when the system is quenched from high temperature) predicts that

{s(k,t) - s(k,0)] o& lexp [-A@)e] - 1}, (3)

with A(k) oC k2 [kz +_K-l d2 f(ﬂ)/dﬂzj. It ii now Elear why in this theory the region of
negative curvature £(M), where K-1 a2 £(M)/al” = -k~ < 0, represents the unstable spinodal
region while the region_of positive curvature betwesn the minina of f£(1) represents a meta-
stable region. For an 1l within the spinodal region the linear theory predicts that S(k,t)
will have its most rapid growth at k }/2, that the peak of S(k,t) will stay at k /2 and
that S(k,t) will grow exponentially with time for small value of k. ¢

The solution of the nonlinear equation has also been investigated (4), and it appears
(this was also noted by Cook) to yield a less sharp distinction between the spinodal and
metastable region. It also shows a decrease in the location of the peak of S(k,t), k_(t),
with time (corresponding to an increase in the dimensions of the phase separated regions).
This seems to be in qualitative agreement with experiments but few quantitative comparisons
have been made. (The function S(k,t) can be obtained fairly directly from scattering experi-
ments (5) and it is very much to be hoped that more such experiments will be done soon.

This lack greatly hampers our understanding of the phase segregation process.).

There are many difficulties, both conceptual and practical associated with the classical
theory (6). One of the principal conceptual problems concerns the very existence and mean-
ing of the local free energy functional £(M) with its regions of negative curvature. As is
well known such a form cannot be derived from equilibrium statistical mechanics (7) or
thermodynamics (8) without the addition of extra constraints. The correct formulation of
such constraints and the derivation of an ‘'appropriate' free energy based on them appears
very difficult without a more microscopic theory of phase separation kinetics (9). For the
construction of such a theory we need more quantitative information about the cooperative
microscopic processes occuring during phase separation. Some information of this type is

best obtained from computer experiments on simple model systems. This is the motivation of
the work (10,11) which we shall now describe. ’

Description of Kinetics and Model System

The microscopic description‘of the time evolution of the quenched alloy system is based
on the fact that the atoms have to overcome potential barriers to change their positions.
The energy for this is supplied by the thermal vibrations (phonons) which act as a thermal
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the time unit which may be expected to be strongly temperature dependent.

Using Monte-Carlo techniques to carry out this stochastic process we compute S(k,t) and
other quantities of interest, such as the energy and (at low concentrations) the number of
clusters of A-atoms of different sizes. For the threce dimensional computations we used
primarily a 30 x 30 x 30 lattice with periocdic boundary conditions and made averages over
eight independent runs which appeared sufficient to smooth out most fluctuations.

We are well aware that this model is a great over-simplification of nature where ex-
change occurs indirectly via vacancies, etc. rather than directly and where '"lattice misfits"
of the two kinds of atoms, and resulting elastic distortions, have to be taken into account,
We nevertheless believe that the results of the computer simulation provide a stringent test
of theories: If a theory fails to describe this ‘very simple model system there is no reason
to assume that it will work better for more complicated real systems. The model is thus
useful as a test of theory. Even more important, the model, because of its flexibility, ecan
be used in some cases to identify the important physical steps in the coarsening process
which need to be built into a good theory.

Results and Some Conclusions

When the (spherically averaged) structure function S(k,t) is plotted as a function of k
for different values of t the growth of the peak and its shift to smaller values of k are
evident. They are similar to what is observed experimentally and are in strikingly good
agreement with the theoretical computations of Langer et al (3) which do not contain anv ad-
justable parameters. In order to compare our results with those of the linearized class.cal
theory we plotted S(k,t) as a function of time t after quenching, for different values of
k. It is clear from these figures (which are qualitatively similar for different tempera-
tures and concentrations) that there i1s no time regime in which S(k,t) can be said to grow
exponentially with time. For each value of k, S(k,t) has an initial growth in time, reaches
a peak and decays. The time required to reach the peak increases as k decreases and the
peak is never reached, during the course of the "experiment') for the smallest values of k.
The slope of S(k,t) vs. t appears to decrease monotonically with t until S(k,t) is past its

peak. As the temperature is increased the decay after the peak is reached becomes less pro-
nounced.

Two important parameters characterizing the time evolution of S(k,t) are the location’
of the peak k (t) and the heights of the peak S(k_(t),t). Due to the finite (small) size of
our system, which leads to a wide spacing between the values of k we can measure, it is.
difficult to determine these parameters precisely. Using a parabolic fit to three values of
k around km we find a reasonable fit for long times, with the following formulae:

k () ~o' (£ +10)7% | a2~ 2

I

S(k_(£),8) ~ @' (¢t +10)° | b~ 7
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ing the quenching. The clusters then become more compact as time goes on. We are not yet
certain whether these clusters correspond to the "droplets" observed in experiments using
electron microscopy on quenched alloys (13). 1If such an identification is made then their
growth appears to obey power laws with exponents which are smaller than those given by the
Lifshitz-Slyozov theory (14): this would be expected also from the analysis of Binder and
Stauffer (12). An intriguing observation, which we are currently investigating further, is
that the small clusters come to equilibrium very soon after the quench. It appears as if
the process of phase separation, may involve two time scales: (i) a rapid segregation of the
minority phase into two groups consisting of (a) relatively large loosc clusters and (b)
very small clusters of sizes one to five or so. The percentage of all A-particles in the
small clusters as well as their relative distribution within that group is more or less equal
to what it would be if the system was in its two phasc equilibrium state. (ii) a slow pro-
cess of aggregation of the larger clusters into still larger compact clusters, i.e. their
condensation into a fully segregated A-rich phase.

Finally we want to mention that we are currently extending our work to (1) investigate
the effects of vacancies, (2) the mechanism of cluster growth (evaporation and condensation
of single atoms vs. diffusion and coagulation of larger clusters) and (3) the development of
ordered states (as in AuCu) following quenching.
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