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L. INTRODUCTION

The equilibrium and non-equilibrium properties of regular harmonie crystals
are well understood (Montroll, 1956, Lanford and Lebowitz, 1974). For them
it is possible to define an infinite volume equilibrium state for dimensionality
three and higher. This state is a Gaussian measure. For one (resp. two)
dimensions it is not possible to define such a state because the mean square
displacement of any particle diverges as |4]| (resp. In|A]) as |A]— o0, where |A]
is the volume of the system. In all dimensions, however, it is possible to
define a state on the algebra genérated by the difference variables {Lanford
and Lebowitz, 1974). .

It is natural to ask, as we do here, whether this dependence on
dimensionality, and essential independence of the detailed properties of the
harmonic force matrix, remains true for anharmonic forces. In one dimension,
the only case for which the answer can be computed explicitly, anharmonic
and harmonic yield the same result: there is no long-range order — by
which we mean that the expected value of the square displacement of a
particle at the center diverges as |Aj—oco. It scems likely that this analogy
also holds in two and three dimensions, and in this paper we present some
evidence that it does. ,

To simplify the situation as much as possible we restrict ourselves to
nearest neighbor interactions on a simple cubic lattice and we assume the
displacement of each particle to be one-dimensional; really it should be
a vector. Most of our results can be readily generalized to more complicated
situations. :

The setting is the lattice Z*, v=1, 2 or 3. Associated with each point
neZ® is a variable x,eR which we call the particle coordinate at n.
Let A be the cube in Z’, centered at the origin 0, of side 2L+1 and
volume 4| = (2L+1)". Finally, let v:R—R be a function such that

1@ = fe ™ <o va>0,

and v(x)=v(—x). We set X = {xi}ica-
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Thc potentlal energy of the particles in A is

HX)= ¥ v(q—x) o (1)

<tij> .
with the summation being over all distinct pairs of points <i,j>, ied,
jeZ’, i and j mcarest ncighbors in 27, ie. |i—jj=1. If j¢A4 we set

x;=0 in (1). Thus, the particles at the boundary of A are “tied down
With dX de,, let

Z,=JdX exp[—H(X)]. ~ 2
be the partition function. We are interested in knowing whether the marginal
distribution of x, has a limit as A—o0. E.g. does

§x§>,, = fdXx3exp [—H(X))/Z, ?3)

have a finite limit? When v = 1 the situation is clear because the increments
are essentially independent. Asymptotically, <x2> ,~|A|.

Consider the harmonic crystal wherein v(x) = ax?, «a>0. In this case all
the integrals are Gaussians and can be calculated exactly in terms of normal
modes (Montroll, 1956). As A— oo

I I . hd 1
|—/—1-| InZ,— —3 (2n)~"[d kln[v—];l_cos k’]_i lft(Za/n) 4)

where the integration is over the cube [ —mx, n]". Similarly,

<x§> 4—~(@da)” 1(2m) [k [v—- icos k,]_ l (5)
=1 : ‘

which diverges for v=1 and 2 but converges for v=3. A more careful
estimate shows that the divergence is proportional to |A| (resp. In|A[) for
v =1 (resp. 2). ‘

In Section V we shall show that for v = 2, <x$>, goes to infinity at
least as fast as In|A| for potentials that satisfy the hypothesis of Theorem 4.
This is.a large class, including non-convex potentials, but it does not include
potentials with hard walls, ie. ¥(x) = oo, |x|> M. For v = 3 our results,
in Section VI, are more meager and are confined to convex potentials which
increase at least as fast as x? as |x|-»co. However, if the potential is too
flat near x = 0, it must increase precisely as x? for large x. For-a decorated
lattice, and convex ¥(x), we can prove that <xo> 4 is bounded in three
dimensions. ,

Our theorems do not prove the conjecture that <x3>, always diverges
when v =2 and always stays bounded when v = 3, but they make it
plausible. We have been unable to find a counterexample.

A noteworthy point is that the integral in (5) occurs in the theory of
~. the random walk and is related to the reciprocal of the probability of not
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returning to the origin. This leads us to suspect that for general v(x)
there is also some connection between the random walk problem and
<x&>4 but we do not know what it is. We shall, however, have a little
o say about this in Scction VIL

II. THE THERMODYNAMIC LIMIT OFF THE FREE ENERGY
One question that is easy to dispose of is that if g4 = |A|"'InZ, then

| b, 9a= ©
exists. We shall discuss the two-dimensional case, but the argument is
general. An upper bound to Z, is obtained by writing exp(—H) = exp(—H))
exp(—H2) where H,(resp. H2) contains all the "horizontal” (resp. “vertical”)
terms in (1). By Schwarz’s inequality Z2<[exp(—2H,){exp(—2I1,). Using
the same inequality, [exp(—2H,)= [exp(—2H,)<I(Q)* L+ DI@y* 1.
Thus g4 < const. < co.

Now consider a sequence of domains A; with Lj=2,j=1,2,.., and
define g; = |[A4jlg4; 2722, In the integral for Z; do the integral over all
x» except when n = (0, m). With Y = {%,,m—2/ < m < 2/}, Z; has the form
Z;= [(W(Y)? exp[ —H(Y)]dY and H is the energy of the middle column.
Clearly, fw(Y)exp[ ~H(Y)] xexp[ - K(Y)] = ZJ, where Z; is the partition
function of a (2/*'+1)x(2/+1) rectangle and K(Y)= E..A(Ao,m) Using
Schwarzs  inequality, Zi<z j'exp[ 2K(Y)—H(Y)]dY<Z} (2] (4)””
Now splitting Z again into two pieces, we finally get

gizgi-1—R; - M
where |R;| < (const.) 277, Since g; is bounded above, (7) implies that g; has
a limit. Smce |4]27 27251, g4; has the same limit.

1. A COMPARISON THEOREM

We return to the problem of evaluating <x3> 4, and ask if there is any
way to relate it to the calculation (5) for the pure harmonic case.
A useful theorem is the following (Brascamp and Lieb, 1974, 1975).

Theorem 1: Let G=exp[—(x,Bx)], B>0, be a Gaussian on R"
with covariance matrix 1/2 B™. If V(x) is convex (resp. concave) and if M
is the covariance matrix of G exp (—V), then M<1/2B™! (resp. M>1/2B™").

This theorem can settle the question for v=3 when v'(x)=>20>0, +x.
In this case <x§>, < eqn. (5). See Section VI.

The following two theorems will also be useful in dealing with convex
potentials. A function F(x) is said to be log concave if F(x)= exp[ f)],
with f(x) convex.
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Theorem 2: (Prekopa, 1971, 1973, Leindler, 1972, Rinott, 1973, Brascamp
and Lieb, 1974, 1975): Let F(x,y) be log concave in (x, y)eR"'xR" Then

' G(x) = [ F(x, y)dy
is log concave in x e R™,

Theorem 2 is the basic for proving Theorem 1 (Brascamp and Lteb 1974).

An important consequence of Theorem 2 is that when v(x) is convex,
the distribution of xo is log concave and, of course, even and monotone
non-increasing on (0, o0). In this case, it is easy to see that if <x3> A
stays bounded, then all moments, <x§>4 stay bounded.

A sharpened version of Theorem 2 is the following (Brascamp and Lieb,
1975).

" Theorem 3: Let f(x,) be convex .in (x,y)e RxR, and let feCz(Rz)
Define F(x,y) = exp| —f(x, )], and .

exp[—g(x)] = [F(x, y)dy.
The last ‘integral and the integrals

(f=xFdy, [(f:)*Fdy

are assumed to converge uniformly in a neighborhood of a given point x,.

Then g(x) is twice continuously differentiable near x,. Its second derivative
at xo satisfies

g'(x0) 2 <fex—U)[fy> 2 0; - ®
the average is taken with the normalized weight proportional to F(xo, y).
Remarks: 1. Theorem 3 generalizes to (x, y)e R™ x R"; for the purpose
of this paper, however, we can restrict ourselves to the given case.
2. Since f is convex,

N

fw =0 and (ﬂ:r) < faxfiy-
Thus, if we set

- r[f"x"(fxy)z/f;r] (xo, }') =0
when f),(xo, y) = 0, the inequality (8) is true.

IV. STIFFENING THE SPRINGS DOES NOT NECESSARILY
DECREASE <xo>

It would be very hclpful if true, to know that increasing some of the

terms in (1) decreases <x§>. Consider the harmomc case and allow each
term in (1) to be different, ie.

; H= g wifxi—xp)?, " ay = 0.
- <i,J>
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It is elemeniary to see that increasmmg any o; does not increase
<x§>, because the total covariance matrix is decreased in the sense .
of forms. (As the following example shows, however, it is possible that
<x3> is independent of some ay;.)

" Now let us do the same thing for a general v(x), ie.

H- Z auv(x;—-xj)

<l j>

and we can even assume that v is convex. We shall give a simple counter-

" example to the proposal that increasing any «;; does not increase <x3>

Consuicr the following case with three particles, ie.

= v(x)+v(x—y)+v(y—2)+v(z2)+av(x—2z) and xo = y. Let v(x) = x*+ex*,
e>0. We want to show that increasing « from 0 can decrease
<xi>. Let g, (resp. go) be <x> for a = oo (resp. a =0). Then §, =2
§¥*60)/fG() and go= {y*F()/[F(), with G(y)= exp(—2v(y)) and
F(y) = R(y)* where R = exp(—v)* exp(—v). A simple calculation shows that
for the pure harmonic case (¢ =0), go = go = 1/2. When &> 0 it is
impossible to calculate the integrals, but it is possible to calculate
g1 = dgi/del;=0. One finds that g, = —3/4 and go = —9/8. Thus, for small,
positive & g« > go, which is the contradiction we wished to demonstrate.

V. TWO DIMENSIONS . o

We shall show that, for a large class of potentials v, <x}>, increases
at least as fast as InjA| as |4|—oco. The method given here follows the
argument by Hohenberg (1967), Mermin and Wagner (1966), Mermin (1967,
1968). We thank Dr. B. Halperin for showing us how the ideas in these
references apply to the present problem.

Let @1, @2 be vectors in R" with |o:|| = 1, and define

yi=(¢i, X); 0H/dy: = (¢i, VH). )
Let T be a linear orthogonal transformation, T: x; — %i, such that £; = y,.
Then, an integration “v parts given that

[ dXy2(@H/dys)exp(— H(X)) = [ dXexp[—H(X)]dys/dys.  (10)

In this section we shall assume veC? and, to justify eliminating the
boundary terms when integrating by parts, we assume that

[Ixl+ vl ]exp [ - vix)] —»Q as |x}—» 0. (11

Now 0dy2/0y: = (@1, p2). Application of Schwarz’s inequality to the left
side of (10) gives #

<> > (01, 92)Y < (@OH[oy) > % ®»
Consider the matrix '
M)y = < (0H/ox)) (OH[0ox)) > = <62H/6xgax,> (13)
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"« wheie the last cquality follows from an mtcgrahon by parts and (11)

Obviously, M is a real, positive definite matrix. In terms of* M, (12) reads

<y§> = (91, 92 /{91, M) (122)
Il we let @ = @2,y = (9, X) and @1 = M~ g/ |M~1¢p|, then we obtain
<y'>a2 (@, M '9). - (19
Let us 1nvest1gate the matrix M. By (13), :
: Mu= ¥ <v%n—nh>ﬂieA © T (15)
l <‘]> - Y e "
My = — <v"(xi—x;)>, if i,j are nearest neighbors
and i, je A,
My=0, otherwise.

The sum in (15) is over the 4 nearest neighbors of i; if iedA, it

should be understood that x; = 0 if j¢ A. Note that

(p, M) =< Y, (@i—@) <v'(xi—x)>a. ’ :

Let us assume, for the moment, that there is a positive constant A,
independent of i, j and A, such that

v <Vu—x)>a< A< " (16)
Then we have the matrix inequality o :
o M<-44 R Yy
where 4 < 0 is defined by '
. du= -—4,i6A, . )
Ay =1, if i,j are nearest neighbors and
iand jeA,
' 4y = 0, otherwise.
- The matrix 4 arises precisely in the case of pure harmonic forces,
- HX)= ) (u—x) = —(X,4X),
<i,j>
so that for harmonic forces / :
<y*>a= —(g, 47 p)2 (18)

By (14, 17, 18), and with y = xo, <x§>4(v) > (2/A4) <x§>a(v=x %)
Since the latter behaves as In|A| as A— oo, our statement is proved under
the assumptions (11, 16). Let us give some simple conditions on v that are
sufficient for (16). :

Obviously, it suffices that

Vix) < 4, » x.

(19

* . - On the other hand, since
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~<v"(xi—x_,)> = <v’(x;—x;) (0H/0x))>,
(16) is certainly satisfied if, for all i, j,

<[vlu—x)*> < 4/A - (20
Thus another sufficient condition is that
V(x) < B < 0, ¥ X, (21

We ﬁnally consider convex potcntlals v(x). Write
fdXexp[ —H(X)]6(xi—x;—x) = exp[ —v(x)] W (x),

which defines W(x). By Theorem 2, W(x) is log concave if v is assumec
to be convex. We always assume v(x) to be even, which implies tha
Wi(x) is even. Hence, W(x) is decreasing for x>0. Note further tha
V(x) is positive and increasing for x>0, since v(x) is even and “convex
Altogether, :

< [v xi—x)PP> = g dx[v'(x)]* Wx)exp[ - v(x)]/j' dx W (x)exp[ —v(x)]
2

g dx[v(x)]exp[—v(x)}/ _[ dxexp[ —v(x)].

L

The last inequality follows from the fact that [v(x)]* is increasing an
W(x) is decreasing. Thus, in the case of convex potenuals it suffices tha
the last member of (22) is finite.

We summarize the results of this section: -

Theorem 4: In two dimensions, <xo> 4 increases at least as In|/4
as A- o0 if v(x) satisfies

() [Ixl+ 1G] exp[ —v(x)] >0 as x| o

(i) One of the following three conditions:

@vx)< A< oo, »x -

BV < B < o, ¥ x

(c)v(x) is convex and
{dx[v(x)]?exp[ —v(x)] < oo.

By taking suitable limits this class includes such diverse potentials 2

" Jxf", 1 <y < o0,x2—|x| (which has a double minimum) and max (Jx[’, l

\/y >0 (which has a flat bottom). It does not include xP, 0<y<
or |x]', y=oo. By the last expresslon we mean the hammoc
potential, ie. : :
v(x) =0, |x| <

o, Jx] > 1

A final remark is that when v(x) satisfies the hypothesis of Theorem
then, by the methods of ‘Section VI, <x5> 4 -does not diverge fast
than In|A).



V1. THREE DIMENSIONS

‘As already remarked after Theorem i, <x0>4 is bounded in three
limensions if v(x) is convex in the following strict sense:
. vix)>2a> 0,V x
We exploit this idea a bit further for functions ve C2.. ,
Let us split the lattice points n = (m,nz, n3)e€Z? according to whether

n| = ny+nz2+n; is even or odd. To emphasize the distinction, let us write
Xa = Yn, if |0} is even; xa = za, if |n} is odd. Then we can write

HX)= Y X v0»—zu)

Imjodd B: <m,n>

so that o

' ' fexp[~HE)]dZ = I w(¥,), T @
jmlodd .

where Y;, stands for the 6 nearest neighbors of m, and

w(¥y) = [dzaexp[~ T v(a—zm) G4

m<nm>

Notice that the y’ s occupy a face-centered cubic lattice, consisting of the

points n with ny, nz, n3 even, together with the centres of the faces of the
resulting 2x2x 2 cubes. '
We shall show (Theorem 5) that, under certain conditions on v(x),

w(Ye) = exp[——%an T T G =f () 25)
where f is a convex function (of its 6 variables jointly) and a is a suitable
positive constant. "

“Let us further split the variables {Ya} into {w} and {v;}, with the u
corresponding to the corners of the 2x2x2 cubes and the v to the
centres of the faces. Then it follows from (23, 24, 25) and Theorem 2 that

. fexp[ —H(X)]dZdV = exp[—a«zl: (wi—u)*~g(U)} (26)
where g is a convex function of the U-variables and where the summation
is over all pairs of nearest neighbors on the lattice, (22)3, of 2x2x2 cubes.

Since the required <x3> is obviously equal to <ud> with the weight (26),

Theorem 1 implies that <x3> is bounded above by (5) and is thus bounded. '

Let us now give a sulficient condition on v(x) so that (25) is satisfied.
Theorem 5: Let v(x) be convex, and let o o
NO<A<V(X)<B<ow, ifix| 2M
([ p(x)-Cx}| <D < w0, » x ‘

with strictly positive constants A,B,C and M. Define
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. This proves Theorem 5.

exp[ =901, )] = fdzexp[ - Y v0,—2)]
Then P '

90k 3) = 30 T Gi=3)*+h0s, > 1)

ij=

with a constant a>0 and with the function h convex.
Proof: Apply Theorem 3 to the second derivative of g in a direction
(L1, --» &) at a given point. Thus : ' ' )

Y Aidiv' (yi—2)v" (y;—2)

AiA;0%g/oyidy; > Avyi—z)—4d =
2; 14,0°g/0yidy; ?2‘: v (i—2) Svo=a
. §

;(A'—A,-)zv"(v.-—z)v"(y;—z)f
2) V'(n—2)

= < >.

By condition (i), this exceeds ’ |
A? , )
kB g (Li—2)? l:_I"I )d; exp[-_‘zi: f(.v( —~2))/§dz exp[-z vi—2)}

Condition (i) in turn implies that this is not smaller than

2

A _ 132 L2 IR . | Y
2kBexp( 2kD)§(l( 2) |z|dezexp( kCz?*)/{dzexp(—kCz )_2a§(l‘ i)k

QED.

Remarks: 1. Theorem 5 obviously fails if v(x) increases slower than
quadratically as |x|]—oco0, because then also g”—0 as [y;—y]— 0.

2. It is less obvious, but true, that Theorem 5 also fails if v(x) increases
faster than quadratically, and if v’ = 0 somewhere.
Take, for example, v(x) = x*, and let

exp[—g(x,))] = {dzexp[—2z*—(x—2)* - (y~2)*}.
By Theorem 2, gxx > 0. Also, simple differentiation gives that
. TG 12 §(x—-z)2>.
In particular, for y = 2x
Gxx(x,2x) < 12 f dzz%exp[ - 32* - 1222x2)/[dzexp[ —3z* —12z2x*].
Hence, gxx(x, 2x) -0 as |x] - c0. Note however, that gxx(x, y}— 00 as (x, y) - @
in any other direction than y = 2x. The situation is a bit worse when
there are 6 neighbors, but in any case Theorem 5 only just barely fails
for v(x) = x*. This supports the conjecture that <x§> is bounded for the

x* interaction. More evidence in this direction is supplied by the fact that
<x}> can be proved to be bounded if some interactions are removed.:
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Namely, rcmove all the lattice points that do not lie.on a corner or on
an edge of some 2x2x2 cube. Then we have what is called a deco-

rated lattice and the points in the middle of an edge have only
two nearest neighbors. One can use the fact that

fdzexp[—v(x—2)—v(y—2)] = exp[ —a(x—y)* —f(x— y)] @n

with f convex, for a much wider class of potentials than ones in Theorem 5.
For example, (27) holds true v(x) = |x|", 7 > 2, including the hammock potential
(y = o).

Theorem 6: In three dimensions, <x§>, is bounded m A if v(x)
satisfies one of the following conditions

(a) v(x) = ax®*3+f(x), f convex, a>0

(b) conditions ‘(i) and (ii) of Theorem 5. :

As we said above, x* just fails. However, v(x) = x*, x| < 1
23 —1, x| = 1 does satisfy the hypothéses of Theorem 6 and therefore,
if x* fails in reality, it cannot be due to small amplitude fluctuations alone.

4

VII. A TENUOUS CONNECTION WITH THE RANDOM WALK
PROBLEM

As we said in the introduction, the various tricks we have employed to

show that <x3>, goes to infinity in one and two dimensions and stays -

‘bounded in three dimensions do not really go to the heart of the problem.
Somehow there must be a more immediate connection with some property
of the lattice more directly related to its geometry.

To this end, let 4 be the second difference operator on Z¥ with zero
boundary conditions on A. le., for ne A,

(@) = = 2of )+ X () @
where f(j) = 0 il j¢ As and x(n,j) = 1 if n and j are nearest neighbors and
zero otherwise. Consider the Green function for n, me A

- —4.G(n,m) =

with & being the Kronecker delta. If a random walker startmg at n is
observed for a very long time, then G(n,m) is proportional to the number
of times, on the average, that the walker visits the site m. Clearly

G(n,m) = G(m,n) and -as A-»c0, G(n,n) remains finite for v=13 and goes
to .infinity for v=1,2. 7
To use G, we write S
xo = [ x5050 = =), x,(4G(-,0) () _ 29)
\ Fa Jea ' o
= (1/2);Z(Vx) G, n) (VG(-,0) G, m) (30)

AN

~ handle any finite number of ofl-diagonal terms, ie.
-li-ji<B and B is fixed. We cannot handle all the terms this way because

= —Y.(4x) ()G (. 0) @31
YA SN

where (7f) (. n) = [fi)—fU0]xG. n), and fik) = 0 if k¢ A.

In one dimension, with A4 = [=L,L], G(n,0) = L+41—|n|, and (30) reads
xo0 = 1/2{(x0—x1)+(x1 —x2) + ... + (x0)} + 12 {(x0 — X - 1)+ (x- 1 —x~2)+
+..+(x-1)}.

" We now square the right side of (30) and insert it into (3), the expression
for <x3> 4 Suppose we consider only the “diagonal terms”, ie. when
j=j and n'=n. Assuming that <(x,—x,,)1>x(; n)<A< oo, thesc terms

would contribute

'(A/4)2;Z xG, 1) (PG(- 0 G, nY%,

and this is finite in thref; dimensions because* G(j,0)~|j|"' as j~o0 and
G(j, 0) is bounded. For the same reason, using Cauchys inequality, we could
those for which

>

we would end up w1th( Y Inl” ) and this diverges at infinity. However,
n:in}>1

the method would work (by Young’s inequality) if we knew that the

correlations

<_(xj—xn) (xk—xl)> X(i: II) X(ky I)
vanished faster than |j—k|"2"%e>0) as |j-k|— co.

We almost have here a proof by contradiction for v = 3. Loosely speaking,
if the correlations do not decay, then we have long-range order. But then
one would expect that <x}>, remains bounded, bccause <xt>4—
means there is no. long-range order, ie. the center of the crystal does
not feel the effect of the tied down boundaries.

When v=2, the use of (30) almost shows that <x3>, diverges,
because G(j,0)~ —Inljl for small j and large A. This argument is
insufficient, however, because there might.be a cancellation of alternating
terms.

s
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SUMMARY

l

It is well known that for a-lattice of oscillators coupled harmonically there is no long-range
order in one and two dimensions, but there is in three dimensions. Long-range order means
that the mean square dlsplaccmcm of an oscillator remains finite as the size of the lattice
incrcases. This fact is related to the probability of return to the origin of a random walk.
The question to be discussed here is whether the above facts are a consequence of geometry
or whether they depend on the harmonic (i.e. x?) nature of the potential. In the anharmonic
case no cxplicit solution exists. We show that for a large class of polennals the existence
or aon-existence of order depends only on dimensionality.

On sait dcpuis longtemps que, pour un sysleme d’oscillatenrs en interaction harmonique
sur un réseau, il existe un ordre macroscopiquc dans le cas de trois dimensions, mais non
dans le cas d’'une ou de deux dimensions.

L’existence d'un ordre macroscopique signifie que la moyenne quadratique de Pélongation
d'un oscillateur reste finie gquand la taille du réscan augmente indéfiniment. Cela est lié
a la probabilité pour une marche au hasard de retourncr a son point de _départ.

La question que nous disculons ici cst la suivante: les résultats précédents sont-ils une
conséquence dc la géométrie, ou dépendent-ils de la nature harmonique (i.e. ~x?) du potentiel?

Dans le cas d'un potentiel anharmonique, il n’existe pas dc solution explicite. Nous
moatrons quc, pour une vaste classe de polcntiels, lexistence ou la non-existence dun
ordre macroscopique ne dépend que du nombre de dlmcnsnons
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