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1. Outline of chapter

2. Introduction: An outline of the physical ideas used in theories of
metastability and some difficulties in basing rigorous treatments on them:
can the van der Waals—Maxwell and Bragg— Williams treatments be
reconciled with exact equilibrium theory in which the free energy function
must be convex? Can the droplet (nucleation) picture be freed from the lack
of precision about basic definitions which makes it so hard to test
accurately against real experimental data and computer simulations?

3. Three dynamical models: The importance of dynamics in the study of
metastability: the Glauber and Kawasaki dynamical versions of the Ising
model for ferromagnets and for gas —vapor or binary alloy systems, and the
differences to be expected in their metastable behavior.

4. The restricted ensemble: Three criteria for characterizing metastable
states; the idea of calculating the static (reversible) properties of these states
from an ensemble in which the system is artificially restricted to a particular
set R of dynamical configurations chosen in accordance with these criteria.
5. How to define R: For systems of particles, R may be defined either by
dividing space into imaginary cells and restricting the number of particles
in each cell to a specified range of values, or by grouping the particles into
clusters, defining sizes for the clusters, and restricting each cluster to a
specified maximum size. For binary alloys and ferromagnets there are
analogous definitions.

6. Estimation of the escape rate: An outline of the work of Penrose and
Lebowitz on the van der Waals mode! of a fluid, and of Capocaccia,
Cassandro and Olivieri on the Glauber model of a ferromagnet, showing
that under suitable conditions a system started in a configuration in a
suitably defined set R is unlikely to escape rapidly from R.

7. Statistical mechanics of clusters: A precise definition is given for the
partition function of a cluster of given size in the lattice-gas version of the
Ising model. Using this we can write down rigorous upper bounds on the
partition function of the system and on the equilibrium density of clusters of
given size. These upper bounds are also good low-density approximations.
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The approximations provide a connection with standard nucleation theory
for this model at sufficiently low vapor densities.

8. Clusters and metastability: The work of the preceding section is
extended to the restricted ensemble and used to show that with Kawasaki
dynamics the escape rate from R is very small under suitable conditions on
temperature and density.

9. Nucleationrates: The Becker— Déring kinetic equations, describing the
way cluster sizes change by absorption and evaporation of particles, are
formulated and the approximations used in their derivation are discussed
formulae for calculating the coefficients in these equations from first
principles are given, and the Becker —Déring derivation of a formula for
nucleation rate is described.

10. Steady-state ensembles: Proposes a generalization of the Becker—
Do6ring definition for nucleation rate which, unlike that definition, is not
tied to any particular dynamical model or way of defining the set R.

11. Concluding discussion

2. 1ntroduction

Statistical mechanics has well-defined “canonical” formalisms for obtaining
(stable) equilibrium properties of macroscopic matter, and also, to a lesser
extent, non-equilibrium properties of systems sufficiently close to stable
equilibrium, from a knowledge of the interactions between the microscopic
constituents of the material. It has however no such general formalism for
metastability and nucleation; it has only a collection of ad hoc methods,
most of them approximate, for particular problems. Recently there have
been some attempts (Penrose and Lebowitz 1971, Capocaccia et al. 1974,
Cassandro et al. 1976, 1977) to put the study of metastability on a more
rigorous basis. It is the purpose of this article to explain and extend this
work and to relate it to other rigorous as well as non-rigorous approaches
to the problems of metastsbility and nucleation. Since a rigorous treatment
of metastability is worth attempting only where the underlying phase
transition can be treated rigorously, our discussion is confined to metasta-
bility associated with particular phase transitions, such as the liquid -
vapor transition, ferromagnetism, and transitions in binary mixtures and
alloys. We do not discuss metastability in glasses, superfluids or supercon-
ductors. The reader is referred to chapter 4 by Metiu et al. in this volume for
a more phenomenological approach to many of the problems discussed
here.

The main body of the article is in two parts. In the first we discuss the
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Fig. 1. Helmholtz free energy densily in the van der Waals—Maxwell theory.

problem of showing rigorously that the system under study has a
metastable state under suitable conditions, and of how to calculate the
equilibrium (quasi-thermodynamic) properties of such a state; in the
second we consider what can be said rigorously, as well as non-rigorously,
about its non-equilibrium properties, such as the rate of nucleation. But
before going into detail about rigor we outline some of the physical ideas
and models that have been used in the theory of metastability.

The simplest and best-known approach appears in the van der Waals—
Maxwell theory (Maxwell 1965) of the liquid—vapor transition. In this
theory, an approximation which treats the system as a uniform fluid phase
leads (at some suitable fixed temperature T) to a relationship between f, the
Helmbholtz free energy per unit volume, and p, the density, whose graph has
the general character of the solid curve shown in fig. 1.

This figure also shows a dashed straight line (the Gibbs double-tangent
construction) touching the curve at two points A and D. The points on this
line correspond to two-phase states, one phase (the vapor) having density
p,, the other (the liquid) having density P, Maxwell saw that for densities
between p, and p the stable equilibrium states would be the two-phase
states, but thougﬁt that, by careful experimentation, it should also be
possible to realize experimentally the parts of the curve labeled AB and CD;
these describe the one-phase metastable states. The part of the curve
between the inflection points B and C is impossible to realize because it has
d?f/dp? <0, so that the states it describes are mechanically vnstable.

The same free energy curve also appears in the mean-field theory of
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binary alloys (Bragg and Williams 1934, Fowler and Guggenheim 1939,
Yamauchi and de Fontaine 1974). In this case the horizontal axis is the
fraction of sites occupied by one of the two types of atoms composing the
alloy. The states on AB and CD are again metastable, but this time the
states on BC are not mechanically unstable; the theory, due to Hillert (1961)
and Cahn (1961, 1962), does, however, predict that they are unstable against
the process of “spinodal decomposition” in which the two types of atoms
diffuse in such a way that they ultimately separate themselves into small
aggregations of the two different phases. Further developments of this type
of theory are described by Langer et al. (1975) and in the article by Metiu
et al. in chapter 4 of this volume. Thus, both for fluids and for alloys, if we
accept the van der Waals expression for the free energy and Maxwell’s
kinetic interpretation of it, then we know precisely for what values of
density (or concentration) and temperature the'system can exist in a one-
phase metastable state.

The loci of p, and p, in a density — temperature diagram are called
coexistence curves, and the loci of the densities corresponding to the points
B and Cin fig. 1 are called the spinodal curves (see fig. 2). In metallurgy the
name “spinodal” is given to the corresponding curves in a concentration—
temperature diagram, and the region enclosed between them may be called
the spinodal region, since it represents the set of temperatures and
concentrations for which the theory predicts that spinodal decomposition
will take place. (In some materials the spinodal curve is thought not to
touch the coexistence curve.)
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Fig. 2. Spinodal curves (dashed) and spinodal regions (shaded), according to van der Waals—
Maxwell or Bragg— Williams theory. The metastable regions lie between the spinodal curves
and the coexistence curves.
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Although these approximate mean-field theories give metastable states
easily, it is more difficult to see how such states can arise in an exact theory;
for it follows from the general principles of statistical mechanics that the
exact free energy density of any large enough system, calculated from the
partition function, is a convex function of p and therefore cannot include
arcs such as AB and CD, which do not lie on the same convex curve. To
obtain the metastable states, some extension of the usual formalism of
equilibrium statistical mechanics is necessary going beyond the normal
methods based on the partition function,

One possibility, suggested by the preceding example, is that the
thermodynamic functions for the metastable states can be obtained by
extrapolation from the nearby stable one-phase states, so that, for example,
the arc AB in fig. 1 would be obtained by extrapolation from the curve to
the left of A. It is likely, however, that for real systems, for which van der
Waals’ theory is only an approximation, a singularity of the thermo-
dynamic functions blocks the extrapolation (Fisher 1967, Langer 1967,
Lanford and Ruelle 1969); and even when the extrapolation is possible, one
still has to justify the assumption that the extrapolated thermodynamic
functions really describe metastable states. (Recently Newman and
Schulman (1977) considered alternative methods of analytic continuation,
using the eigenvalues of the transfer matrix, from the equilibrium phase to a
metastable one. Their analysis is still in a preliminary stage and we shall not
comment on it further here; see however McCraw and Schulman (1978).)

The difficulty with these approaches is that they try to treat metastability
by purely static methods, whereas itis really a dynamic phenomenon. Some
of the basic ideas underlying this dynamics are already contained in
Maxwell’s own discussion. Maxwell (1965) recognized the importance of
nucleation; he saw that to set up the metastable state we must be sure that
none of the new phase is present. The idea of nucleation was developed
further by Volmer and Weber (1926) and Becker and Ddring (Becker and
Déring 1935, Doring 1937) who used quasi-thermodynamic arguments,
involving the surface tension, to find the smallest “liquid droplet” in a
supersaturated vapor that will grow to become part of the new liquid phase.
For droplets smaller than this minimum size, the “free energy” increases
with size and hence they will tend to shrink. Using the Einstein relation
between probability and free energy and some kinetic arguments about the
rate of collisions between molecules and droplets which might lead to an
increase in the size of the latter, this theory gives an estimate for the
probability per unit volume of forming such a critical droplet in the
homogeneous supersaturated phase. (More details are given later in this
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article). This probability is found to be extremely small for some values of
the temperature and pressure, which explains the metastability of the
supercooled vapor. The basic ideas of this theory have been used with great
success by many authors for a wide variety of phenomena: see, for example,
Frenkel (1955), Langer and Fisher (1967), Langer and Ambegaokar (1967),
Katz (1970), Skripov (1974).

Theories of this type do not give, like the van der Waals—Maxwell
theory, a mathematically sharp separation (the spinodal line) between the
metastable and unstable regions of the phase diagram since the probability
of nucleating the new phase varies continuously as a function of the
thermodynamic parameters of the system. Nevertheless, the transition from
a vanishingly small nucleation rate per unit volume to an enormously large
one occurs over such a small range of the parameters (e.g. temperature and
pressure) that these theories lead to a fairly well-defined metastable region.
The abruptness of the change in the probability of nucleating the new phase
has the effect that in practice any reasonably-sized macroscopic system will
either remain entirely in one phase, such as a supercooled vapor, or will
quickly form many droplets of the other phase. The further development of
these droplets will then be affected by various mechanisms, such as gravity,
hydrodynamic effects, etc., which are not allowed for in the usual droplet
theory. '

Despite its successes, however, the classical droplet theory does not
answer all our questions. It does not contain a precise definition of a droplet
or of the free energy of a droplet, a central quantity in the theory; and the
kinetic equations governing the growth and decay of the droplets are
derived as if the droplets were spherical liquid drops of macroscopic size.
That this lack of precision is not a purely aesthetic defect can be seen
from the controversy, initiated by the work of Lothe and Pound (1962),
about a large factor in the theory of the spontaneous nucleation rate of
supersaturated vapor. While more recent work on nucleation theory
(Binder and Miiller-Krumbhaar 1974) avoids some of these over-
simplifications, it is still very far from being a precisely defined theory.

The situation becomes even more complicated when one tries to use the
theory to interpret computer simulations of the time evolution of a binary
alloy quenched into the coexistence region (Bortz et al. 1974, Marro et al.
1975, Rao et al. 1976, Sur et al. 1977, Binder et al. 1979, Kalos et al. 1978),
Here one observes events on a “molecular” time-scale, and therefore it is not
always possible to observe them for long enough to decide whether the
system should be said to be in a metastable or an unstable state.
Consequently thete is a need for a microscopic theory which deals directly
with the quantities observed in these computer “experiments”.
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3. Three dynamical models

One of the points which becomes clear as soon as we look into the
microscopic theory of nucleation is the important part played by the
dynamics of the system in determining its metastability properties. Most
work on the statistical mechanics of metastability has been done on three
dynamical models. One is the normal interacting particle model used in
discussing the liquid — vapor transition. (A variant of this is the binary fluid
mixture model of Widom and Rowlinson (1971), for which a proof of
metastability was given recently by Cassandro and Olivieri (1977). This
model is described in Appendix 1.) The other two are dynamical versions of
the Ising model which we now describe briefly.

The Ising model (see, for example, Thompson 1972) is defined by
considering some regular lattice at each site of which there is a tiny magnet
(usually called a “spin”) which can point either up or down. The spins
interact with the vertical component of the external magnetic field. In the
cases we shall consider there is a ferromagnetic interaction between
neighboring spins, i.e. the parallel alignment of a pair of spins on nearest-
neighbor lattice sites gives a lower energy than the anti-parallel alignment.
Below the critical temperature T, this interaction produces, in zero
magnetic field, a spontaneous magnetization (alignment of the spins) which
may point either up or down. If the magnetization is constrained to take a
value less than the spontaneous value, the spins segregate into two phases,
in one of which most of them point up, and in the other most point down.

Glauber’s (1963) dynamical version of the Ising model consists of
permitting the spins to reverse their directions in a random way. The
probabilities of these spin reversals are chosen in accordance with the
detailed balancing condition. To express this condition mathematically,
suppose that a reversal of the jth spin converts the configuration ¢,, with
energy U, , to a configuration ¢, with energy U, and that W(£,, ;) denotes
the conditional probability per unit time of a transition to the new
configuration &,, given that the old configuration is £, ; then the detailed
balancing condition is

W&, ¢)e” AT = W (&,,&)e” U2lkT,

For simplicity it is usually assumed that, at a given temperature,
W(£,,&,) depends only on the energy change AU = U, — U this energy
change is determined by the configuration of the spins on the lattice sites
adjacent to j. Under this assumption the detailed balancing condition
becomes

W(4U)=e~ AU Tyw(AD)
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where w(AU) is an even function. In the absence of specific information
about microscopic transition rates we might conveniently choose w(4U) to
be a constant (although this “constant” would of course depend on
temperature, perhaps as exp(— Eo/kT) where E, really is a constant).
Another possible choice, used by Glauber, is w(4U)= const/
cosh (AU/2kT).

The Ising model can also be used as a model of a binary alloy consisting
of atoms of two types, A and B, when the “up” spins are identified with A
atoms and “down” spins are identified with B atoms (see, for example, Hill
1956). For this interpretation the Glauber dynamics is inappropriate since
it would not conserve particle number, The simplest appropriate dynamical
assumption, first studied seriously by Kawasaki (1966, 1972), is that the spin
configuration changes by random interchanges of the spins (atoms) on
neighboring sites. As in the Glauber model the probability of an in-
terchange that increases the energy by AU is taken to be proportional to
exp[— 4U/2kT] times an even function of AU. This is the third of the
dynamical models we shall consider in this article.

As a variant of this alloy model, we may consider the “lattice gas”, for
which instead of B atoms we have unoccupied lattice sites. The rigorous
study of the equilibrium properties of this model, based on its equivalence
to the Ising model, was started by Lee and Yang (1952), although the model
was used much earlier by Becker and Doring (1935) in a discussion of the
process of crystallization. The dynamics appropriate to the lattice gas are
the analogue of Kawasaki dynamics: the configuration changes by random
steps in which an atom moves from some site to a neighboring empty site,
with probability equal to exp [ — AU/2kT] times an even function of AU, as
before.

The importance of dynamics in the study of metastability can be seen by
comparing the Glauber and Kawasaki versions of the Ising model. Since
every configuration has the same energy in both models, their (stable)
equilibrium thermodynamic properties are the same, up to a rein-
terpretation of the relevant variables, even though the natural equilibrium
ensembles for the two models are equivalent only in the thermodynamic
limit (the appropriate ensemble for the Glauber model corresponds to a
specified magnetic field, whereas that for the Kawasaki model corresponds
to a specified concentration—the analogue of magnetization). But their
non-equilibrium properties, including those related to metastability and
spinodal decomposition, are profoundly different, because the local
magnetization in the Glauber model can change rapidly, whereas the local
concentration in the Kawasaki model can only change relatively slowly (as
the result of diffusion of A or B atoms from another locality). For example,
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when a ferromagnet is suddenly brought (by quenching) from a one-phase
part of its magnetization —temperature diagram into the two-phase part,
the nuclei of the new phase, once formed, can grow rapidly as spins reverse
just outside the boundary of the nucleus; but if the analogous quenching is
carried out for a binary alloy or a liquid mixture, the nuclei will grow much
more slowly, since the atoms they require for growth must diffuse from
other parts of the system. One may say that the alloy or mixture is
exhibiting spinodal decomposition, but that the ferromagnet is not.
Striking experimental demonstrations of such phase segregation in liquid
mixtures have been given recently (Huang et al. 1974, Schwartz et al. 1975,
Huang and Goldburg 1976, Wong and Knobler 1977).

The behavior of a (chemically pure) liquid - vapor system when quenched
is likely to be different again, because although matter is conserved, as in an
alloy, it can be transferred from one place to another rapidly by kinetic and
hydrodynamic flow, instead of slowly by diffusion.

4, The restricted ensemble

To begin our discussion of rigorous results related to metastability in these
models, we list three properties (from Penrose and Lebowitz 1971) which,
we believe, characterize metastable thermodynamic states:

(i) Only one thermodynamic phase is present, although the intensive
thermodynamic parameters have values such that the equilibrium state
would consist of more than one phase, or possibly a single but different
phase. Under small slow changes of the thermodynamic parameters, the
metastable state responds with small reversible changes obeying the usual
laws of therimodynamics; but under large or rapid changes of the
parameters the system may respond with a large irreversible change which
takes it right out of the metastable state.

(i) If the system is isolated the metastable state decays very slowly as a
result of fluctuations which, if large enough, can nucleate the growth of a
new phase; but these fluctuations are so improbable that the rate of decay is
very slow, i.e. there is a high probability that a system in a metastable state
at time ¢ = 0 will still be in that state at ¢t =, where 7 can be very large (say
years),

(iii) Escape from the metastable state is an irreversible process: once the
nuclei of the new phase are sufficiently large or numerous, the probability
that they will disappear again is negligibly small.

A complete theory of metastability should describe both the static
(reversible) properties relevant to criterion (i) and the dynamic or
irreversible properties relevant to criteria (ii) and (iii). That is, it should
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combine the equilibrium-like view of the metastable state coming from
theories like that of van der Waals and Maxwell with the kinetic view
coming from nucleation theory. In this and the next two sections of this
chapter we concentrate on the static or quasi-equilibrium view of the
metastable state; then in the later sections we turn to the dynamic or non-
equilibrium view.

The main idea of the static formalism is to consider a modified system in
which nucleation is prevented by a restriction or constraint, not present in
the real system, on the motion of its representative point in phase space. The
properties of this modified system when it is in (stable) equilibrium are then
used as an approximation to those of the real system. Our main guide in
deciding on a suitable form for the restriction is the first of the three criteria
for a metastable state: that only one thermodynamic phase should be
present. That is, the restriction should prevent any large nuclei of the new
phase forming anywhere in the metastable phase. In the case of supercooled
vapor, for example, the restriction would be contrived so as to keep the
density from becoming too large in any locality, so that no nucleating
droplets of liquid phase could form. In the case of an alloy, the restriction
should keep the local composition from deviating too much from the
overall composition; a thought-experiment using semi-permeable mem-
branes which can do just this is discussed by Reiss (1975).

The effect of such a restriction would be to confine the system (or, strictly
speaking, its representative point) to a particular region of configuration
space, which we shall call R. (We shall discuss later how to specify R.) The
restriction corresponds to adding to the Hamiltonian H a potential energy
term which takes the value 0 for configurations in R and the value + oo for
configurations outside R. Then the equilibrium properties of the modified
system can be calculated from a restricted equilibrium ensemble with
probabilities given by

conste” HOKT  ifthe configuration £ isin R} 1)

p({):{ 0 ifnot

for all points £ in phase space. i

We have already mentioned that for this ensemble to give a good
representation of the static properties of the metastable state it is necessary
for R to be chosen so that no large nuclei of the “wrong” phase are present if
the configuration is inside R. This choice meets our first criterion for a
metastable state. To meet our second criterion, that the metastable state
decays very slowly, we want to ensure that a system started somewherein R
is likely to take a long time to escape. The probability that it will have
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escaped after a time ¢ can in principle be calculated by studying the time
evolution of the restricted ensemble under the action of the unmodified
Hamiltonian H, which permits nucleation and will therefore move some of
the systems of the ensemble from inside R to outside.

Let us define P(¢) as the probability that a system started in the restricted
ensemble (4.1) at time O will have escaped from R by time ¢ (with ¢ > 0). Then
we would expect that, after any initial transients had died out, the rate of
increase A(t) = d P(t)/dt will be equal to the rate at which systems escape
from the metastable state R by nucleation. A simple argument due to
Penrose and Lebowitz (1971, referred to below as PL) shows that A(f)
< 1(0); and hence if we can show that the initial escape rate 1(0) is small, the
actual rate of decay of the metastable state described by the restricted
ensemble (4.1) is also small. Some methods of showing that 4(0) is small for
particular cases will be developed later.

Finally, to satisfy the third criterion, that the escape from R should be an
irreversible process, it is (at least) necessary that the probability, in the true
equilibrium ensemble, for finding the configuration in R be negligibly smail.
For the cases that have been considered in detail this necessary condition is
always satisfied because the free energy of the restricted ensemble is less
than that of the unrestricted by an amount proportional to the size of the
system, so that the (true equilibrium) probability of a configuration in R
goes to zero exponentially as the system is made larger and larger.

5. How to define R

In this section we describe in more detail some of the methods that have
been used to define regions R in configuration space to represent metastable
states in the model systems described earlier.

One such method is the one used by PL in the discussion of the liquid -
vapor transition for a system with very long range attractive interactions—
the van der Waals system. There, the volume occupied by the system is
partitioned into imaginary cubical cells, and R is defined to consist of all
configurations for which the number of particles in every cell is within a
specified range of values. This range of values must, of course, include the
value corresponding to a uniform distribution of particles, but excludes the
value corresponding to the cell’s being completely filled with the wrong
phase. Moreover, the cell should not be so large that the particles in it can
separate into two macroscopically distinguishable phases.

For an Ising system — ferromagnet, alloy, or lattice gas—the correspond-
ing method of defining R would be to divide the latticeinto cells and require
that the number of up spins, or A atoms, or occupied sites within each cell
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should lie within a specified range of values. That is to say, R would consist
-of all phase-space points or configurations ¢ such that n,(¢), the number of
up spins or A atoms or occupied sites in the ith cell, lies, for every i, between
two specified integers, n_ and n_, . In symbols, this definition can be written

R={&n_<n(®<n, (i=12,...,M)) (5.1)

where M is the number of cells.

This method of defining R is related to the discussion of the spinodal
decomposition of an alloy given by Reiss (1975). He introduces into the
system two sets of imaginary membranes, one permeable only to A atoms
and the other only to B atoms. As long as the membranes do not move, no
atom (of either kind) can cross any membrane, and so the membranes divide
the volume occupied by the system into cells within each of which the
number of each type of atom is restricted to a particular value. This is a
particular case of the type of constraint defined in eq. (5.1), with bothn_ and
n, equal to the number of particles required to be in each cell. Reiss also
considers the effect of moving the membranes, but this does not seem to be
necessary as long as we are discussing metastability rather than spinodal
decomposition. )

For alloys or real fluids, where the range of the interaction potential
responsible for the phase transition is comparable with the interparticle
separation in the system, the PL cell description is less satisfactory than for
very long-range interactions. This is because the cell size has to satisfy two
incompatible requirements. On the one hand, it should be large enough to
permit the use of macroscopic concepts, such as the free energies of the bulk
liquid and gas phases, to estimate its properties; on the other hand, it should
be small enough to counteract the tendency for the particles inside each cell
to form two phases. This incompatibility leads to great technical problems
in proving that our second criterion of metastability is satisfied. These
difficulties in the way of extending the results of PL to realistic systems have
not yet been overcome in general. Such an extension has only been made so
far for lattice models and for the Widom — Rowlinson model; in both cases
the results are restricted to temperatures well away from the critical
temperature and to densities (of up spins, or A atoms, or occupied sites)
close to those at coexistence.

The first treatment of such a model was given by Capocaccia, Cassandro
and Olivieri (1974) (referred to below as CCO), who studied metastability in
the Ising model of a ferromagnet with Glauber dynamics, using a definition
of R somewhat different from the one in (5.1). Their definition is particularly
well adapted to lattice systems but, as indicated, only yields useful results
for a very limited range of the thermodynamic parameters. Taking the
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applied magnetic field to be in the down direction, they defined R to consist
of all configurations for which all the down spins could be grouped into
connected sets, which we call clusters, separated by up spins, in such a
way that all the clusters were less than some specified size. By “connected”
we mean that no member of one cluster is a nearest neighbor of a member of
another, but that if a cluster is divided into two subsets then at least one
member of one subset is a nearest member of the other. By the “size” of a
cluster we mean the number of sites belonging to the cluster or completely
enclosed by it. As with the cell method of defining R, we must not make the
specified maximum size too large, for too large a cluster would be
essentially the same as a macroscopic part of the system magnetized in the
“down” direction and so would violate our single-phase criterion.

An analogous definition of R is possible for an alloy where the
concentration of one type of atom is small enough, though larger than at
coexistence: we just interpret the “down” spins as atoms of the less nu-
merous kind and the “up” spins as atoms of the more numerous kind. The
true equilibrium state at this concentration would have two phases, onerich
in each type of atom. One of these phases would correspond, in the cluster
description, to a single very large cluster, and the other would consist of a
large number of small clusters.

For lattice systems, the definition of R in terms of clusters has the
advantage of using only one arbitrary quantity, the size of the largest
allowed cluster, instead of the three (n_, n., , and the cell size) used in the PL
method. A disadvantage is that (in three or more dimensions) the presence
of very large clusters is not necessarily a sign that a second phase is present.
Itis found, for example, that if a concentration of more than 317 of “down”
spins is arranged completely at random (as if at infinite temperature) on a
simple cubic lattice then an infinite cluster will almost certainly be present,
cven though at infinite temperature there is no question of phase separation
(Sykes and Essam 1964, Essam 1972). However, at low enough densities this
difficulty does not arise. A possible way to remedy this situation for higher
densities, by changing the method of defining a cluster, has been discussed
recently by Binder and Stauffer (1976). We shall not comment on their
analysis here except to note that whatever the definition of clusters the
study of metastability by means of the restricted ensemble (5.1) can in
principle still be carried out by a suitable definition of R.

6. Estimation of the escape rate

Having seen how to define a region R in configuration space consistently
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with our first criterion of metastability, that only one phase should be
present, we now want to check whether it is consistent with the second and
third criteria. These are that the rate of escape from R should be slow, and
that escape should be an irreversible process. In this section we outline the
work of PL and CCO which, for the particular models they considered,
shows that the escape rates are small and makes it plausible that escape is
irreversible.

The model studied by PL is the van der Waals model of a fluid, with an
interaction potential that is the sum of a short-range mainly repulsive part
q(r) and a weak long-range mainly attractive part y” ¢(yr), where v is the
number of dimensions (so that v=3 for real systems) and y is a small
parameter equal to the inverse range of the attractive potential. It was
shown by Lebowitz and Penrose (1966) that in the limit y—0 the
equilibrium behavior of such a system includes a phase transition of the
type discovered by van der Waals and Maxwell. The proof involves
dividing the system into cells whose size is much smaller than the long range
of the attractive force ¢, and yet much larger than the short range of the
repulsive force g or of the interparticle separation; these two conditions are
compatible only in the “van der Waals limit” in which I/y, which is the
range of the attractive force ¢, becomes very large (i.e. 1/y — c0).

To study the metastable states of this system we again divide the volume
Q occupied by the system into M cells w,, .. ., w,, and define n, to be the
number of particles in the cell w,. We may take © and the w, to be cubes of
volume | Q| and |w]| respectively, where | Q| = M |w|. Then, as we have seen,
we can take the region of restriction R to be the part of configuration space
for which

n_<nm<n,

with n_ and n, suitably chosen integers. It is shown in PL that the initial
escape rate A(0) is the product of two factors: a “probability factor”, giving
the probability that the number of particles in some cell is at the edge of the
allowed range, i.e. that

m=n_ Or m=n, for some i (6.1)
and a “kinetic factor” giving the (conditional) probability per unit time that
n; will then go beyond the allowed range if the constraint is lifted. This
product, when multiplied also by dt, gives the probability that a system of
the ensemble is near the edge of the region R in configuration space at the
moment the constraint is lifted and that it will cross the boundary of R in the
first dt of time thereafter, The first of the two factors, the probability factor,
has an upper bound of the form

prob{n;=n_ or n;=n,}<exp{—Clw|+o(|lw|)} (6.2)
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where Cis a constant, |w| means the volume of one cell, and o(|w|) means a
quantity that increases less rapidly than |w| as |w| becomes large. The
important thing is that (provided certain conditions are satisfied) C can be
chosen positive (Penrose and Lebowitz 1971, Millard and Lund 1973) if the
mean density p and the two local density bounds n_/|w|and n /|w| are on
the same locally convex part of the solid curve in fig. 1. This curve is the
graph of the function f(p) + $ap? where f, is the free energy density when
the long-range part of the potential is set equal to zero, and a is the space
integral of this long-range part,

a=y [ pondr=[pd’s. (63)

The sign of « is negative, since this potential is attractive. The condition for
the solid curve in fig. 1 to be convex is f;'(2) + a > 0, which is Maxwell’s
stability condition and is equivalent to saying that the compressibility
calculated from the free energy density fo(p) +ap? is positive.

The probability estimate (6.2) tells us that if the density p satisfies
Maxwell’s stability condition

fo'(p)+a>0

then we can make the probability factor as small as we please by making the
box size |w| large enough. This condition on|w|, however, affects the choice
of the size of the system and the range of the long-range potential, because
the estimate (6.2) is only valid when |Q|*”, the linear dimension of the
system, is much greater than y~ !, the range of the long-range part of the
potential, and y~ ! in turn is much greater than |w|'”, the linear dimension
of one of the cells. These conditions of validity can be combined in the
formula

217>y > o], 64

The second factor in the escape rate, the kinetic factor, is shown in PL to
have a bound of the form const |2||w|™ !/* and hence the escape rate as a
whole has a bound of the form

A <const|Q||w|” " exp {— Clw|+ o(|w])}. (6.5)

From this we see that the escape rate per unit volume, A/||, can be made as
small as we please by choosing |w| large enough provided always that we
are allowed at the same time to choose the range y ! of the long-range
potential even larger and the size |Q|'/* of the container larger still. Making
y very small in this way is in perfect harmony with the spirit of van der
Waals’ equation, which becomes exact only in the limit where y is
vanishingly small.




310 O. PENROSE AND J.L. LEBOWITZ

The result that 1/|Q2| is small tells us that the rate of escape from the
' metastable state per unit volume is small, but not that the escape rate itself is
small. Since the escape rate A is proportional to Q, the volume of the system,
[see eq. (6.5)] one would not normally expect to find A itself small when the
system is very large; but in this particular model it is possible to make 2 as
small as we please by taking the thermodynamic limit (the limit in which the
size of the system becomes very large) in a peculiar way, with the range of
the interaction becoming large at the same time as the size of the system
(instead of afterwards as in the normal derivation of the generalized van der
Waals equation). Specifically, we take this limit in such a way that

12]>77"> |o| > In|Q| (6.6)

(which means that |Q|/y ¥ — 00,7 */|@| — 0, etc.). This condition ensures
that (6.4) is satisfied, and at the same time ensures, by (6.5), that the escape
rate A itself tends to 0 in the limit, so that by suitable (finite) choices of | 2|, y
and |w| we can make not only 1/|Q| but 4 as small as we please.

Whichever way the limit is taken, we have finally to check our third
criterion, that of low return probability. As explained in sect. 4, it is
necessary (but perhaps not sufficient) to choose R so that the restricted free
energy density, which is f;(p) + $0p?, exceeds the true free energy density
obtained from the Gibbs double tangent construction illustrated in fig. 1,
which is the convex envelope (CE) of the function fy(p)+3op?. This
condition is satisfied for all p corresponding to two-phase equilibrium
states in the van der Waals—Maxwell theory. We conclude that Maxwell’s
conditions for metastability in a vapor—liquid system

folp) + 3ap® > CE {fo(p) + 3ap”}
fop)+a>0

are precisely those required by the present theory when applied to a phase
transition caused by a very long-range very weak attractive potential.
Many of the same ideas appear in the treatments or metastability given
by CCO for the Ising model with Glauber dynamics (1974) and with
Kawasaki dynamics (1976). We describe here their method for Glauber
dynamics; the extension of these results to Kawasaki dynamics will be
outlined in sect. 8. As we have mentioned already in the preceding section,
they consider a ferromagnet in a downward magnetic field, so that at
equilibrium most of the spins point downwards, but define R to be a set of
configurations in which downward spins are relatively rare, so that when
they are grouped into connected clusters all the clusters are less than a
specified size. Confining their discussion to a two-dimensional system, they
take as their measure of size the area enclosed by the contour forming the
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outer boundary of the cluster. This area is equal to the number of sites
occupied by the cluster plus the number completely enclosed by it. They
denote this maximum area by c?. Just as in the model treated by PL, the
initial escape rate can be expressed as the product of a probability factor
and a kinetic factor. The probability factor is the probability, calculated in
the restricted ensemble, that the system contains a cluster, or several
clusters close together, which can be changed into a single cluster bigger
than c? by the reversal of just one spin; and the kinetic factor is

. . . . [ . .
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Fig. 3. }f ¢* =8, and down spins are represented by crosses, then the reversal of either of the

encircled spins produces a cluster of “size” exceeding c?. In the left-hand case, the actual

number of down spins in the cluster does nol exceed 8 even after the reversal, bt the “size” of
the new cluster is 9 because the area enclosed by the dashed contour is 9.

the probability per unit time that this particular spin will be reversed. CCO
show that if

¢ <4(J — kT In 3)/|h|

where h is the applied magnetic field, then the probability factor has an
upper bound which is essentially of the form

const|A|3*exp[— 4Jc/kT + |h|c?/kT]

where A denotes the [attice and | 4] the number of sites in it. The exponent is
a bound on the energy of the “critical” cluster or set of clusters and | 4]3%is
a bound on the number of such clusters. The kinetic factor is at most Wy,
defined as an upper bound on the probability per unit time that a given spin
will reverse its direction.

Provided the temperature is low enough [T < J/(k1n 3)], and h is small
enough, we can use these bounds to show that the initial escape rate is very
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small. For example, if we choose
c=2(J —kTIn3)/|h|
the upper bound on the initial escape rate per lattice site is
. MAl < WMexp[—4(J—len'3)2/|h|kT] (6.7)

which goes to zero rapidly as the applied field |A| goes to zero. CCO also
show that this model satisfies our other criteria of metastability and so we
may conclude that, according to the static picture of metastability, this two-
dimensional model of a ferromagnet has metastable states at sufficiently
small magnetic fields for all temperatures below about 0.2T..

The fact that we are able to prove rigorous results about metastability
here only by considering a limiting case (y— 0, i.e. infinitely long range
forces, in the van der Waals fluid; h — 0 in the ferromagnet) is probably not
accidental. A necessary condition for a metastable state is that there should
be two very different relaxation times: a short one for the establishment of
metastable equilibrium, and a loug one for the decay out of it. In the models
we have considered we can make the ratio of these relaxation times as large
as we like by a suitable choice of parameters such as y or A. In a real system,
however, we cannot always choose the physical parameters to suit our
mathematical convenience; so although the ratio of the two relaxation
times may be very large under suitable conditions it is not possible to make
this ratio arbitrarily large, and there is no way of completely separating the
process of establishment of metastable equilibrium from the process of
decay out of it.

7. Statistical mechanics of clusters

The rigorous treatments described in the preceding sections are based on
somewhat different concepts from those in the usual “droplet” theory of
nucleation due to Becker and Déring (1935) and others (see Abraham 1974),
One of the most important concepts in nucleation theory is the idea of the
free energy of a droplet or nucleus of the new phase, which is used to
estimate the expected number of such nuclei as a function of their size when
the system is in equilibrium or close to it. To establish a connection between
this concept and the concepts in the rigorous theory, we develop in this
section some formulae and inequalities for the expected number of clusters
of various types in a lattice system at equilibrium. We shall find that a fairly
close connection can in fact be set up.

Since the droplet theory, as usuvally formulated, applies to a saturated
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vapor, we give our discussion in a language appropriate to a lattice gas,
rather than to a ferromagnet; this makes the connection with a real vapor -
liquid system a little clearer. By a lattice gas we mean a system of particles
which occupy some of the sites of a regular lattice, at most one particle being
permitted at each site. Each configuration of an Ising system can be
interpreted as a lattice gas configuration, by regarding the up spins as
unoccupied sites and the down spins as occupied sites. The connected
clusters of down spins considered by CCO can then be regarded as
connected clusters of occupied sites (i.e. of particles of the lattice gas).

In the correspondence between the Ising ferromagnet and the lattice gas,
the canonical ensemble for the ferromagnet at a given temperature and
magnetic field corresponds to the grand canonical ensemble for the lattice
gas at the same temperature and a chemical potential (or fugacity) which is
related to the temperature and magneticfield in a simple way (Lee and Yang
1952). We shall use this grand canonical ensemble, where only the average
rather than the exact number of particles in the system is specified, only for
the computation of static properties; the dynamics of the lattice gas will
always be taken to be particle-conserving. The legitimacy of using the grand
canonical ensemble in this way is discussed by PL and CCO.

The grand partition function of the lattice gas, at fugacity z and
reciprocal temperature f, is

B(z)=Y Ve~ IUQ@ (1.1)
g

where the sum goes over all possible configurations ¢ of occupied and
unoccupied sites on the given lattice, N(¢) denotes the number of occupied
sites in the configuration ¢, and U(€) denotes the potential energy of that
configuration. The potential energy is given by

U&= —Uyp() (7.2)

where U, is a positive constant and p(£) is the number of pairs of occupied
sites that are nearest neighbors.

For each configuration we can partition the set of occupied sites into
connected subsets, which we shall call clusters. By “connected” we mean (as
in sect. 5) that no member of one cluster is a nearest neighbor of a member
of another, but that if a cluster is subdivided into two subsets then at least
one member of one subset is a nearest neighbor of a member of the other
subset.

At sufficiently low values of the fugacity, i.e. at sufficiently low densities,
the clusters will be fairly widely separated and we can, following Minlos and
Sinai (1968), think of the system as a “gas” of clusters with an “interaction”
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which prevents two clusters overlapping or touching (i.e. using neighboring
_ sites). To express this idea mathematically we write N(£) and U(£) as sums
of contributions from each cluster; that is

N@=YNe), UGO=3U) (7.3)

where c,,c,, ... are the clusters constituting £, N(c,) is the number of
particles in the ith cluster and U(c)) its energy. Then we can rewrite the
grand partition function as

E=1+)[]zNe re (7.4)
(© i

where {c} denotes a possible arrangement of clusters ¢, ¢,, .. . (i.e. one in
which no two clusters overlap or use neighboring sites). The term 1
corresponds to the “arrangement” in which no clusters at all are present.
An approximation to the partition function (7.4) which is good at low
densities, and gives an upper bound at all densities, can be obtained by
including in the sum additional terms corresponding to all the impossible
(overlapping or touching) arrangements of clusters. This gives an upper

bound which can be written

E< H(1+2N(c)e—ﬁ0(c)) (7_5)

where the product is over all possible single clusters. The corresponding
upper bound on the grand canonical thermodynamic potential is

logZ < Y log(l +zV e~ ©)
[4

< ZZN(c)e—ﬁU(c)_ (7.6)

In the formula (7.6) we can group together the terms corresponding to
clusters of the same size, obtaining
14l
logE< ) z¥Zy(4) (7.7)
N=1
where | A| is the total number of lattice sites (analogous to the volume in a
real system) and
ZyA)= ) e fU@ (7.8)
¢iN(©)=N
the sum going over all clusters containing N sites.
If | A] is large enough in comparison with N, then each cluster in the sum
(7.8) is congruent under translations to about | A} other clusters. (This is
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exactly so, for ail N, if we use periodic boundary conditions on A.) Since all
these congruent clusters have the same energy U(c), the sum in (7.8) is
approximately proportional to |4}, and in fact it is not hard to show
rigorously that the following limit exists

Qy= lim (1/]4) Y e #U@

(large A) c:N{c)=N
_ Z e AUt (7.9)
c:N{e)=N

where the sum ) includes just one representative from each set of
translationally equivalent clusters (for example, we might count only
clusters whose “center of mass” falls in the unit cell containing the origin).

- We can think of Qy as the internal partition function for clusters of size N
(ie. the partition function for non-translational degrees of freedom).

If the lattice A is rectangular in shape, and 24 denotes a new lattice, also
rectangular in shape, made by putting two copies of A next to each other,
then the definition (7.8) implies Z(2A4) = 2Zy(A). It follows from this that
the limit in (7.9) is approached from below if a sequence 4, 24, 44, .. ., is
used in taking the limit, and hence that

Zy(A) <14]Qy (7.10)

for any rectangular-shaped lattice. (For periodic boundary conditions
(7.10) is an equality.)
If z is small enough for the series

oo

MR (7.11)
N=1
to converge, then this series gives an upper bound on | 4|~ ! times the series
in (7.7), and hence also on the thermodynamic limit of the grand canonical
potential per lattice site, so that we obtain

0o

lim (l/|A})logE< Y zMQ, (7.12)
(largeA) N=1
and this upper bound can be shown to give a good approximation to log &
if the activity z is small enough. The right side of (7.12) has been used by
authors such as Fisher (1967) for discussing the thermodynamics of the
critical point, but the justification for using it as an approximation at such
high values of the activity must rest on different grounds from those
discussed here.
The convergence of the series Y. z¥ Oy can indeed be established for small
enough z. For a plane square lattice, O, has (see Appendix 2) the upper
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bound
., <Pexp{(2log3 +26UGN —2BU 4 /N}
" so that the series (7.11) certainly converges if
z< e 2o,
For a simple cubic lattice, the corresponding upper bound on Qy is
Oy <3iexp{(4log3+3BUg)N — 3pUN??}

and so the series (7.11) certainly converges if

1 o= 38U
z < gre” 3,

The methods that gave us the upper bound (7.5) on the grand partition
function also give us an upper bound on the probability P(c) that the cluster
cis present in the system (Lebowitz and Penrose 1977). This upper bound is

P(c) < 2V @e U@, (7.13)

The formula (7.13) can be derived by noting that for every configuration
with cluster ¢ present, the configuration obtained by removing this cluster,
while leaving the rest untouched, has a probability that is greater by the
factor (z¥©@e~#U)~1 In addition there are further configurations with
cluster ¢ absent, in which other clusters overlap or touch the sites used in c.
Consequently the probability of not finding cluster ¢ is more than
(zVe~PU@)~ ! times the probability of finding it; since these two
probabilities add to 1, the probability of finding cluster ¢ is less than
1/[1 +(z¥9e~#Y€)~ 1] which in turn is less than zN¥®e™ AU This
completes the derivation of (7.13).

From (7.13), (7.8) and (7.10) it follows that m,, the expected number of
N-particle clusters per unit volume in the system, has the upper bound

my=(1/14l) Y P <(1/|4)z"Zy(A)

aN{e)=N

<zVQ,. (7.14)

It is also possible (Lebowitz and Penrose [977) to derive lower bounds on
my having the general form

my = zVQ (1 + O(2)). (7.15)
From this it follows that at very low densities the approximation
my~zVQy (7.16)

is a good one.
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Sur et al. (1977) have carried out computer simulations from which
concentrations of clusters can be estimated. The results of these simulations
have been analyzed by Kalos et al. (1978). They found that the distribution
of sizes of small clusters at equilibrium and also at low supersaturations,
when the system appeared to be in a metastable state, could be represented
by an empirical formula

m, ~(1 —p)*w

my=(l - pf*w'0y,  (122).
Here p is the density (in lattice gas language) or fractional concentration of
minority phase (in alloy language) and w is an adjustable parameter. The
empirical formula is consistent with (7.16) since the latter refers only to very

small values of p.

As we have mentioned, one can interpret Q, as the internal partition
function of a single droplet containing N particles. If we define an internal
free energy F, related to this internal partition function by the usual
formula Q, =exp [ — fF,], we can write (7.16) in the form

my ~ zVexp(— fFy)=exp[— f(Fy — NkTlogz)] (smallz). (7.17)

We can look on F, as the increase in the non-translational part of the free
energy (i.e. the contribution from the internal partition function) that would
be brought about by taking N single-particle droplets out of the system and
putting in one N-particle droplet.

A reasonable first guess at the dependence of F\, on N for large N, in
v dimensions, is given by the formula

Fy~Nf+N¥~ Vg (7.18)

where fis the equilibrium bulk free energy per particle for the dense phase
and s is proportional to the surface tension. Our formulae are consistent
with this approximation, at least in the case v = 2 where for the plane square
lattice we have (see Appendix 3) the bounds

Fy> —2(kTlog3 + U,)N +2U,N'? — kTlog 9/8
and
Fy< —2UyN 42U N2+ U,.

The dominant terms in these bounds are both of the form (7.15), suggesting
that the approximation (7.18) may be valid, with a value for f somewhere
between —2U, and — 2U, — 2kTlog 3, and with s = 2U,,. In particular at
T =0 we are compelled to choose /= —2U, and s=2U,, and these are
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indeed the correct zero-temperature values for the free energy per particle in
the dense phase and for the surface tension.
However at higher temperatures expressions of the form

Fy~Nf+N°s

with ¢ decreasing to zero as the temperature T increases to the critical
temperature T,, give (Kalos et al. 1978) a better fit to the few values of Fy
that can be calculated exactly (i.e. those for N < 10, in the case of the single
cubic lattice). Expressions of the form first suggested by Fisher (1967)

Fy=Nf+N’s—tInN

with ¢ now independent of temperature (g.= 0.64 for the simple cubic
lattice) and s decreasing to zero as T increases to T, give an even better fit.
Recently Fisher and Cagenalp (1977) have rigorously justified a formula of
the type (7.18) for the thermodynamic free energy of an N-particle system on
a lattice with a number ofsites that increases in proportion to N, but there is
no rigorous proof that any of the large-N approximations we have
discussed are valid for the cluster free energies Fy.
In nucleation theory the formula normally used is (Reiss 1975)

my=I'm, exp(— Wy/kT). (7.19)
In this formula the quantity W), is defined by '
Wy = N(us—p,) + N*3s (7.20)

with u, and g, the chemical potentials of the droplets and the vapor, and is
an approximation to the reversible work required to form an N-particle
cluster; and T is the controversial “replacement factor” introduced by
Lothe and Pound (1962), to allow for differences of definition between the
partition function of a cluster or droplet on the one hand and a portion of
bulk liquid on the other. For a lattice system, the natural identifications are

Ha=f  pu,=kTlogz.
If we also take the replacement factor to be
F=m Y~z

then for a lattice system eq. (7.19) is precisely the same as the simplest
approximation suggested by the rigorous theory, namely the formula

my~z¥exp — BN f+ N*/3s)

obtained by combining the rigorously justified approximation correspond-
ing to (7.17) with the reasonable first guess (7.18). For a continuous system,
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of course, the rigorous theory is not so well developed, and so there is much
more scope for controversy in the discussion of the replacement factor. A
very neat exact formula for this factor is, however, given by Reiss (1974).

8. Clusters and metastability

In this section we show how to use the information about the equilibrium
concentrations of various types of clusters, obtained in the preceding
section, to find an upper bound on the rate of escape from a suitably defined
set of configurations R. While following the main ideas of CCO’s method
we deviate from it in detail, considering Kawasaki rather than Glauber
dynamics since it is to particle-conserving dynamics that the droplet model
is normally applied, and defining R in a different way from CCO so that we
can more conveniently use results from the preceding section. CCO defined
their restricted ensemble by requiring all clusters to encompass at most some
specified number c? of sites; but we shall require the number of sites
constituting the cluster itself to be bounded, by some number u. The
difference is that if a cluster encloses some empty sites, or even some smaller
clusters (see fig. 3), we do not reckon these in the “size” of the cluster,
whereas CCO do. Under the conditions we are considering the change is
numerically unimportant, since very few clusters enclose empty sites, but it
simplifies the correspondence with standard nucleation theory, in which the
“size” of a cluster or droplet is measured by the number of particles in it
rather than by its volume. ‘

As we have seen in earlier sections the main problem in showing that the
given restricted ensemble describes a metastable state is to estimate the rate
of escape. For the restricted ensemble we are discussing, escape is defined to
take place if any cluster consisting of more than u particles forms. One way
for this to happen is for a cluster containing exactly u particles to acquire
one or more further particles. With particle-conserving dynamics, this
acquisition can only happen if there is another cluster near by, and at low
densities this other cluster very probably consists of just one particle.
Alternatively two clusters, each comprising mote than one but less than u
particles, may join up to make one cluster of more than u particles; and
there are also processes where three or more clusters join together. The rate
of escape A will be the sum of the contributions due to all these different
processes.

To illustrate how these contributions may be estimated, we consider the
first of the processes just mentioned, in which a u-particle cluster combines
with a one-particle cluster. Its contribution to the total escape rate will be
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denoted here by A4, 1). As in the treatments by PL and CCO, described in
sect. 6, we can write A(u,1) as the product of a kinetic factor and a
probability factor. The probability factor is the probability (in the restricted
ensemble) that the configuration includes a u-particle cluster and also a
one-particle cluster, close enough to form a (u + 1)-particle cluster in one
move. The kinetic factor is the probability per unit time that, given this
configuration, the (u + 1)-particle cluster will actually form. The probability
factor, which must of course be calculated in the restricted grand canonical
ensemble, can be bounded above by the method we used in the preceding
section to estimate the probability of finding a single cluster of given size in
the unrestricted grand canonical ensemble. The upper bound has the form

W2 1G4

where g, is a geometrical factor giving the largest possible number of
different ways of placing a single-particle cluster near enough to a given
u-particle cluster to form a (u + 1)-particle cluster in one miove; the other
factor z*1Q, | 4| can be thought of as the product of z, which is an upper
bound on the mean number of single-particle clusters per lattice site, of
2*Q,, which is an upper bound on the mean number of u-particle clusters
per lattice site, and of | A|, the total number of lattice sites. The kinetic factor
has an upper bound of the form

g Wy
where W,, is an upper bound on the probability per unit time that a given
particle will move to a given vacant neighboring site, and g’ is an upper
bound on the number of different moves that will join the one-particle

cluster to the u-particle cluster, Multiplying together our upper bounds on
the probability factor and the kinetic factor we obtain

Au, 1) <g,g' Wizt 1 Q)41
To complete this calculation we need an upper bound on g,g’. Suitable,
though crude, bounds on g, and g’ are

g < q4, g<q

where q is the coordination number of the lattice (i.e. the number of nearest
neighbors to each site). The contribution of A(y, 1) to the total escape rate is
therefore bounded by

[A(u,1)/|A]] < constuz* *1Q,.

In a similar way we can find bounds on the contributions from other types
of process, for example the process where a (u — 2)-particle cluster combines
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with a 3-particle cluster: its contribution would have an upper bound of the
form

[Au—2,3)/|A|] <const(u — 2)2"2Q, _,2°Q;
=const(u—2)z**1Q,_,0,.

Numerical estimates indicate that this is roughly } of the corresponding
upper bound for A(, 1), so that these other processes are far from negligible.

The complication of having to add up contributions from many different
types of processes can be partly avoided by an alternative way of estimating
the escape rate, in which we consider together all the processes which lead
to the formation of a (u+ 1)-particle cluster. Provided the transition”
probabilities satisfy the principle of detailed balancing, the equilibrium
probability (per unit time) for each such process is the same as the
equilibrium probability of the inverse process, calculated in the unrestricted
ensemble. The total of all these probabilities of inverse processes equals
the probability of a (u+ 1)-particle cluster breaking up. Now the
equilibrium probability of finding a (u + 1)-particle cluster is at most
2**1Q, . ,|4]; the number of transitions that can break it up is at most
g(u + 1) since none of the u + 1 particles in it has more than ¢ places it can
move to; and the probability per unit time of each such transition is at most
W, ; therefore the equilibrium probability per unit time of a (u + 1)-particle
cluster breaking up is at most

Z“+1Qu+ Alglu+ YWy,

This formula also provides an upper bound on the equilibrium probability
per unit time of forming a (u + 1)-particle cluster from smaller clusters. By
an extension of the above argument, one can show that this last upper
bound holds also for the restricted equilibrium ensemble. It follows that
A(u + 1), the probability of escape from the restricted ensemble by
formation of a (4 + 1)-particle cluster, has the bound

2710, 4 (| A] glu+ )W)y

In the same way we can obtain bounds on A(# + 2), the contribution from
processes that produce a (u + 2)-particle cluster, and so on up to the
contribution from processes that produce clusters of size (¢ — Du+ 1,
which is the largest cluster than can be produced in a single step starting
from a cluster compatible with our restricted ensemble. In this way we can
obtain the upper bound

@-Du+1

[(MIATSWyqg ) nz'Q,

n=u+1
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This upper bound could probably be improved considerably, since the later
terms in the sum are fairly crude estimates; but it serves to show how the
rate of escape can be very smallif uis not too large and if z exceeds the radius
of convergence of the series ) ;" t"Q, by a small enough margin to make
z"Q, very small over a range of values of n. Under these conditions the
region R also satisfies the other two of our three conditions for metasta-
bility, and so the rigorous theory confirms the prediction of nucleation
theory that these conditions make a metastable state possible.

9. Nucleation rates

We now turn from the problem of proving that a metastable state exists to
the second main problem in the statistical mechanics of metastability,
which is to obtain quantitative information about the rate at which the
metastable phase goes over into the new phase. In nucleation theory the
measure of this rate which is normally used is the nucleation rate, defined as
the number of nuclei of the new phase formed per unit volume per unit time.
The escape rate concept, which we have been using so far to help prove that
a metastable state exists, does provide the upper bound 1/{2]| on the time
rate of nucleation, but this upper bound is rather crude. We may expect that
the nucleation rate is considerably less than the escape rate. This is partly
because the escape rate calculations assume one-way traffic from small to
large clusters, whereas in fact this is partially compensated by processes
going in the opposite direction, such as the evaporation of a particle from a
(u+ 1)-particle cluster. Also the escape rate depends on the number of
clusters of size u and less, which is probably overestimated in the restricted
equilibrium ensemble since the processes that tend to convert such clusters
into super-critical ones are not accounted for in the equilibrium theory of
the restricted ensemble.

The first question to settle is what mathematical expression is to be used
to define the rate of nucleation. In the present section, we base our
discussion on the standard treatment due to Becker and Doring (1935), for
which the necessary mathematical expression is known. This treatment,
however, depends on simplifying assumptions which are unlikely to be
accurate even at very low densities, and therefore in the section following
this one we shall describe a more general way of defining nucleation rates.

We begin by outlining the treatment due to Becker and Doring, with a
view to showing how it relates to the rigorous methods used in the
preceding section. The main assumptions in this treatment are that clusters
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are statistically indepéndent and that processes in which a cluster gains or
loses more than one particle may be ignored.

As we have noted in the preceding section, other processes, for example
the absorption of a three-particle cluster into an n-particle cluster, can be
comparable in importance with those involving one-particle clusters, so
that the Becker — Doring theory will be only qualitatively correct, even at
very low densities. The more complicated kinetic equation that is needed to
take account of these other processes has been formulated by Mirold and
Binder (1978). If we accept the assumption that these processes can be
ignored, however, then with particle-conserving dynamics the only way an
n-particle cluster can grow is by absorbing a [-particle cluster. The number
of times this process happens per unit volume per unit time is propottional
to m,, the density of n-particle clusters, and also to m{", the mean density of
1-particle clusters near an n-particle cluster; it is therefore taken to be
a,m,m" where a, is independent of time and m, and m{" are the numbers of
n-particle and 1-particle clusters per unit volume. The only way an (n+ 1)-
particle cluster can shrink is by emitting a 1-particle cluster; the number of
times this happens per unit volume per unit time is taken to be b, . (m, , 4
where b, , , is independent of time. The net rate at which n-particle clusters
are being converted to (n + 1)-particle clusters is therefore

Jn=anmnm(1")_bn+ 1My 15 (nZl) (91)

and the net rate of change of m, is given by

dm/fdt=J, ,—J, (n=2). 9.2)

This equation does not apply for n = 1 since one-particle clusters are not

restricted to processes involving other one-particle clusters. In the original
paper of Becker and Déring it was assumed, in effect, that m, does not
significantly change with time, so that

dm,/dt =0. (9.3)
This assumption has the mathematical advantage of making the kinetic
‘equations (9.1) and (9.2) a linear constant-coefficient system for the
variables m,, ms, . . . ; moreover it is exact if we imagine the system coupled
to a reservoir which can emit and absorb only one-particle clusters. For a
more realistic treatment, however, we should replace (9.3) by the condition
that Zr’ nm,, the expectation of the total number of particles in the system,
does not change with time; this condition, combined with (9.2) gives

dmjdt=~— > n(J,_(—J,)
n=2

=-2,— Y J,. (94)
n=2
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To complete the system of egs. (9.1, 9.2, 9.4), we need a relation
connecting m{” with m,. At equilibrium we have, in the low density limit,
simply

m =m,

Becker and Doring assumed that this relation was also true away from
equilibrium, but it was later realized (Lifshitz and Slyozov 1961) that away
from equilibrium the quantities m{ and m, will differ because of the
concentration gradient necessary to make one-particle clusters diffuse from
infinity to the surface of an n-particle cluster. It is reasonable to assume that
this concentration difference is proportional to J,/m,, the average rate at
which n-particle clusters are increasing in size, This assumption gives

m(ln) =my — kn']n/mn
where, for each value of n, k, is inversely proportional to the diffusion
coefficient, If this last equation is substituted into (9.1) we obtain

4 by s

_ n m — m 9.13
" 1+k,a, nh 1+kya, "*! O 1a)
an equation depending on cluster concentrations in the same way as the one
analyzed by Becker and Déring when they assumed (ignoring the diffusion

effect) that m{ =m, in (9.1)

J

The equilibrium solutions of these equations are those for which all the
“flows” J, are zero. There s a family of such solutions, with one member for
each value of m,, given by '

mn = cn(ml)n (95)
where
a; a,a, ay...d,_q
a=lc=—c3=7"... ,Cp="7F"7 (9.6)
. 27 b, byby b,...b,

In the lattice model we considered in sect. 6, the coefficients a,, b,, c, can
be expressed in terms of microscopic properties of the model. This is
simplest for c,: the low-density approximation corresponding to the
rigorous inequality (7.13) is m,~z"Q, and in particular (since Q,
= 1)m, = z; and since these approximations are correct to lowest order in z
their substitution into (9.6) gives

¢, =0, 0.7)

The other coefficients, a, and b,, can be determined from the type of



MOLECULAR THEORY OF METASTABILITY 325

argument we used in sect. 8, if we make the further assumption that the
densities of different types of clusters containing the same number of
particles are always in the same ratios as they are at equilibrium (this further
assumption is dubious, but isinherent in the form of kinetic equation we are
working with. An accurate low-density kinetic equation would use a
separate density m, for each type of cluster c, instead of lnmping together all
clusters with the same number of particles in a single density). Having
adopted this assumption, we can calculate the coefficients a, and b, , , by
calculating the equilibrium values of a,m,m, and b, , ;m, , . The equilib-
rium value of a,m,m, is the rate per unit volume at which n-particle and
1-particle clusters are combining to give n+ 1-particle clusters; it was
denoted by A(n + 1,1)/| 4] in sect. 8, and the type of argument used there
shows that

a,m,m,; = bn+1mn+ 1
=2 Y W, 7P| 4] 9.8)
¢

where ¢ is any (n + 1)-particle cluster, ¢’ is a configuration consisting of a
n-particle cluster and a 1-particle cluster, such that ¢’ can change to ¢ in just
one step, and W, .. is the probability per unit time that this step takes place
given that the configuration of the system is such that the step is possible.
The formula we have written in (9.8) is for the process n—n+ 1, but the
formula for the reverse process, obtainable by interchanging c and c’, is the
same because of detailed balancing. Inserting the equilibrium formulae
m, = z"Q,, etc, in (9.8) we obtain

a,=(1/Q,) ¥, W, .e” /|4

‘ (9.9)
bn+1 =(1/Qn+ 1) Z, Wc,c‘e—pv(c )/|A|

Thus although the Becker—Doring equations are far from being
rigorously justified or even accurate, we can at least write down well-
defined formulae for the kinetic coefficients appearing in them.

Let us now see how Becker and Déring calculated the nucleation rate
from their kinetic equations. Their method is to assume that every time the
number of particles in a cluster passes a specified fairly large value u, the
cluster is removed from the system. This has the effect of replacing eq. (9.2)
for n > u by the condition

m,=0, ifn>u. 9.10)
There is then a steady-state solution of the eq. (9.2) for dm,/dt (n>2) in
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which J, is independent of n. If we are using the Becker—Déring
assumption (9.3) that m, is constant, rather than the more realistic equation
(9.4) for the time variation of m,, then making J, independent of n is also
consistent with the equation for dm, /dt. The common value of J, can then
be calculated from the eq. (9.1a), which it is convenient to rewrite in terms of
the new variables @,, @,,... and R,, R,, ... defined by

D, =m,fim;)" " 'c,, (22

9.11)
Py =m,
and
R,=(1+k,a)/(m}c,a, (n21) (9.12)
so that the equation (9.1a) takes the form
JR=0,—B,,,, nxl (9.13)

(As first pointed out by Becker and Déring these equations have the
interpretation that R, is the resistance of an electrical path from a node n to
anode n + 1, J, the current in it, and &, is the potential at the node n. See also
Binder and Stauffer (1976)). Summing from n = 1 to u, using the conditions
&, =m, [fromeq. (9.11)Jand ¢, , , =0 [from (9.10) and (9.11) ], we obtain

u
Y., J,R,=m,. 9.14)
n=1
The nucleation rate J is defined as the common value of J,, J,, . . . and is
therefore given by

K
J=m/ ) R, 9.15)
n=1

Equation (9.15), with (9.12), expresses the nucleation rate in terms of
microscopic quantities (it is practically independent of u if u is chosen
correctly —ie. sufficiently large). However, its derivation depends on
various assumptions which may not always be valid and thereforeitis not a
complete solution to the problem of defining nucleation rates microscopi-
cally.

A more realistic picture of nucleation would be obtained if we based our
analysis on the more accurate kinetic eq. (9.4) for dm,/dt and used (9.2)
instead of the approximation (9.10) to determine m, for n> u. A rigorous
analysis is difficult because the resulting equations are non-linear, but we
may expect that the results would be fairly similar to the Becker—Déring
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analysis over times which, while long compared to the time for the values of
Ji, Ja,. .., J, to become approximately equal are short compared to the
time for m, to change by an appreciable fraction of its original value.

To conclude this section let us compare the Becker—Déring estimate
(9.15) of the nucleation rate with the escape rate estimated for the
corresponding restricted ensemble by the methods used earlier in this
article. To get the equilibrium properties of the restricted ensemble, we alter
the dynamics so that no u-particle cluster can increase in size. This is not the
same thing as removing all (u+ 1)-particle clusters, which we did in_
estimating the nucleation rate; instead it corresponds to replacing eq. (9.1)
for n> u by

J,=0, (n=u. 9.16)

The equilibrium solutions (with J,=0forn=1...u— 1) for the modified
kinetic equations, using either (9.3) or (9.4) for dm, /dt, are

_ fea(my), ifn<u ,
h {0, ifn>u. ©.17

n

The escape rate is calculated by the usual method: we assume the above
distribution at time 0, with unrestricted dynamics [i.e. with (9.16) replaced
by the original kinetic equation (9.1)] and calculate the probability per unit
time per unit volume of forming a cluster of size greater than w. This
probability rate is

(dmuf1/dt)r=o+
=J,—J, 1=J, (sinceJ,, ,=0att=0+)
=m,R,(by 914)since J, =...=J,_;=0att=0+).

The optimum value of u (the one minimizing this escape rate) is the one that
taximizes R,,, but comparison with (9.15) shows that even this escape rate is
a crude overestimate of the nucleation rate J, corresponding to using the

largest term in the series Z:= , R, as an estimate of the entire series. This
estimate could be wrong by a factor comparable with u, which could be
several orders of magnitude in unfavorable cases. On the other hand, these
calculations confirm that the escape rate does provide an upper bound on
the estimated nucleation rate J, so that a proof that the state is metastable in
the sense we have defined earlier (which implies that the escape rate is small)
is also a proof that the estimate (9.15) of the nucleation rate is small.
Recently Mirold and Binder (1977) described the onset of phase
segregation in a binary alloy, following quenching into the miscibility gap,
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by means of a non-linear set of equations for the concentration of clusters of
the minority phase. Their equations are a generalization of the Becker—
Doring equations in that they take into account also the coagulation of
clusters of sizes n and m to form one cluster of n + m particles as well as the
inverse process. They solved their equations numerically, using clusters up
to size 150, and found results qualitatively similar to those obtained in the
computer simulations of Sur et al. (1977) at high values of supersaturation.

10. Slowly-varying ensembles

In this section we suggest a possible way of improving on the restricted
ensemble as a way of treating metastable lattice systems, which may make it
possible to calculate nucleation rates from first principles instead of using
kinetic equations, such as the Becker — Déring equations, whose reliability
is open to some doubt. The method is a development of the idea of Becker
and Ddéring of looking for a distribution of droplet sizes which is steady if
every droplet reaching some specified super-critical size is removed from
the system and replaced by small droplets. The main differences from their
method are these: first, we consider an ensemble of systems in place of a
collection of droplets within a single system; secondly we assume that every
system of the ensemble in which a super-critical droplet forms is removed
completely from the ensemble instead of being replaced by a system with
the super-critical droplet broken up into one-particle droplets; and thirdly
we look for a slowly varying ensemble in place of a steady one.

Our method applies to any system with a discrete set of microscopic
states, whose dynamics has the form of a Markov process. It therefore
applies to the Ising model with either Glauber or Kawasaki dynamics, but
not to a system of particles, such as the Widom — Rowlinson model, obeying
Newton’s laws of motion.

We use the variables i, j to denote microscopic states of our system, and
write W,; for the probability per unit time that the system will make a
transition from state j to state i. Then the rate of change of p,(t), the
probability that the system is in state i at time ¢, is given for each i by the
“master equation”

d .
3 P= 2 IWiP () — Wy P()]. (10.1)
j

Let us denote by ¢ the equilibrium probability of the state i, not
necessarily normalized. For a lattice model we would take e;=exp
(— E;/kT) where E, is the energy of state i, but this formula for e; does not
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apply when the state i of the Markov process contains more than one
microstate. The principle of detailed balancing, which we shall assume to
hold, asserts that

W, e;=Wje;, for all i,j (10.2)

so that the only steady solution of (10.1) is p, = const ¢;, unless the states
happen to split up into two or more groups between which no transitions
are possible.

If the system has a (macroscopic) metastable state, then there should be a
set R of microscopic states with the properties that escape from R is slow
and that the probability of return by a system which has escaped from R is
completely negligible. The second of these conditions implies that, for the
probability distributions we are interested in, the terms in (10.1) of the form
WP (t) withi inside R and j outside can be neglected when computing P(1)
for i€ R, if the system starts inside R; hence (10.1) can be replaced by the
approximation

d
a?Pi(t) = Zj[Wiij(t) - W;P{(1)], (ieR)
(10.3)
Pt)=0,  (i¢R) "

which is our basic system of equations for this section.
To study the system of equations (10.3) we write them ih the form

d ,
i

where Y. means a sum over the microscopic states in R only, v; and G;; are
defined by

v;=v;(t) = p;(t)/e;
k
and the sum ), goes over all microscopic states. Because of detailed
balancing [eq. (10.2)] the matrix G is symmetric. Moreover, assuming at
" least one transition out of R to be possible, the matrix G is negative definite,
because for any non-zero vector {v;} we have
N Zj 0;Gyo;= 2 Y, iWye0; — Y ol Y Wue
i i k

= “%z Z Wijej(vi - Uj)z - Z Ui2 Z We;
i i k

<0 (10.6)
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where ). means a sum over all the microscopic states outside R. It follows
that all the eigenvalues 1) of the equation

e = — 3" G o) (10.7)
i

are real and positive and that we can solve the initial-value problem for our
basic equation (10.3) by expressing the initial vector as a linear combination
of eigenvectors

b()= ¥ 4, exp[— 106

where 4, A,, ..., are chosen to make

1;(0)=) A0, foralliinR.

After a long time, therefore, the probabilities in an ensemble that was
started with any distribution over R will have the asymptotic form

Pi(t) = ev,(t) ~ constexp [ — A@¢]e,of® (ie R) (10.8)

where 1@ is the smallest eigenvalue. From this fact we can see that 1(® js
non-degenerate, unless there are two non-vanishing sets of states within R
such that transitions from a state in one set to a state in another have zero
probability —in which case R splits into two disjoint metastable sets of
configurations.

Equation (10.8) shows that after the initial transients have died out the
probability of finding the system in R decays exponentially at a rate 1, If
the region R corresponds to a metastable equilibrium, it is therefore natural
to interpret A as the rate of decay of the metastable state, i.e. the rate of
nucleation. (This corresponds exactly to the interpretation of a similarly
defined eigenvalue in the problem of dissociation of diatomic molecules, as
studied, for example, by Bak and Lebowitz (1962, 1963).) Our second
criterion of metastability, that this rate of decay should be very slow, then
tells us that 2% must be very small in the case of metastability, but unless
there is more than one metastable region inside R we would not expect any
of the other eigenvalues to be very small.

One virtue of identifying the rate of nucleation with A® is that we can
apply the Rayleigh—Ritz principle (Courant and Hilbert 1953). This
principle can be written, using (10.6), in the form

%Z Zj Wiei(v,—v)? + 3 v} Zk Wae
20 <! . i
2 v}

(10.9)
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for any vector {v;}, with equality if and only if v; is an eigenvector of G;;
belonging to the eigenvalue 1©_ Thus, with enough ingenuity in choosing
trial vectors {v,} we may be able to calculate very good estimates of the
nucleation rate.

A possible disadvantage of defining the nucleation rate as the smallest
eigenvalue of G, or by the variational principle (10.9), is that it depends on
the choice of the metastable region R, which is somewhat arbitrary.
However, this disadvantage is inherent in the use of such a region. We hope
that if R is large enough then A will not depend seriously on the choice of
R.

To illustrate the use of (10.9) we consider the choice v, =1 for alliin R.
This gives

Z'ei ( X Wki)
pIC QLR TE S (10.10)
€
i

The right-hand side is the average, calculated in the restricted equilibrium
ensemble, of the probability per unit time that the system will escape from
R; in other words, it is the initial escape rate A(0), and we recover our
previous conclusion that the nucleation rate is bounded above by the
escape rate which in turn was shown to be small in the models considered by
PL and CCO.

As a more substantial application of the variational principle (10.9), we
show how the Becker — Doring nucleationrate formula (9.15) can be derived
from it. For this, we take the states j to be the configurations of a lattice gas
and give v; the form :

v;= ["If(c,,) (10.11)

where {¢;, ¢,, - - -} is the set of clusters constituting the configuration j, and f
is a function which assigns a positive number to each cluster that can exist
on the lattice. To make the metastable distribution p; = e;v; agree as well as
possible with the corresponding Gibbs equilibrium distribution when all
the clusters are small, we would like v, to be close to 1 when all clusters are
small; that is, we would like f (c) to be close to 1 when N(c), the number of
particles in the cluster ¢, is small. We shall allow for this requirement in our
calculation by setting

flo=1, ifN@=1 (10.12)

At the same time, we want v; to be zero outside the set R of configurations
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defining the restricted ensemble; we do this by setting
f©)=0, - ifN(c)>u (10.13)

where u is the maximum cluster size,

In accordance with the basic approximation made by Becker and
Déring, we consider only processes in which a n-particle cluster and a
1-particle cluster combine to give an (n + 1)-particle cluster, together with
their inverses. The contribution to the right-hand side of (10.9) from
processes in which a specified cluster ¢ combines with some one-particle
cluster to give a specified cluster ¢’ is bounded above by

We, 2" e 1PO(f () — f(e)) {1+ 3" [TzVe=PUten f(c)2)
) k
1+ [1zN e PUe £(c,)2 + other terms
{¢) &k
where ), denotes a sum over all configurations of contours which are
compatible with (i.e. do not touch or overlap) the contour c. The given
expression is in turn bounded above by

We, 2" 1e™PPO(f () - f(0))2. (10.14)

If we use a trial function fwhich depends only on the number of particles
in the cluster we can sum this last formula over all n-particle clusters c, and
all clusters ¢’ obtainable from them by the absorption of a one-particle
cluster, to obtain

; We 2" " 1e™PVO(f(n 4 1) - f(n))?

=14]2"*1Q,a,(f(n))? (10.15)
where we have used (9.9) in deriving the last line. Summing over all
n<u — 1, dropping the factor £ in (10.9) to allow for the contribution of the
inverse transitions, which by detailed balancing is precisely equal to that of
the transitions we have considered, and adding in an n = u term to take care
of the second sum on the top of (10.9), we obtain

4] —i, 21 Q,a,(f(n+1) - £ (n))? (10.16)

for our approximation to the upper bound on A©.
The condition for this approximate upper bound to be a minimum with
respect to changes in f (n) is

70,0, (f(n+ 1) = (M) =2"Q, _ya,_ (/W) — f(n - 1)). (10.17)
From this and the conditions (10.12) and (10.13) which require f(1)=1,
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flu+1)=0,it follows that (in the notation of (9.7) and (9.12), with m, set
equal toz,an approximation which becomes exact in the Jow-density limit)

T Ry(1+kya) !

fy=2" (10.18)
Y R(1+ka)""
k=1

Hence our approximation (10.16) to the upper bound on A0 becomes
[Alz/ Y, Ry (1+kya,)” 1 (10.19)
k=1

To get a rigorous upper bound, however, we should add in the effects of the
types of transitions neglected by Becker and Déring, in which more than
one multi-particle cluster takes part.

In the low-density approximation, where m, = z, €q. (10.19) agrees with
the Becker—Doring estimate (9.15) for the nucleation rate. The fact we
noted at the end of sect. 9, that their formula (9.15) or (10.19) gives 2
nucleation rate which is less than the escape rate, now has a simple
interpretation: both can be obtained from the variational principle (10.9),
but in deriving (10.19) we choose the function fto make our upper bound on
29 a5 small as possible, whereas our derivation of the escape rate is
equivalent to the choice

1 ifN)<u
FO=4  iNQ@zu+1

which is far from the best and therefore gives a larger upper bound.

11. Concluding discussion

Metastability is a kinetic phenomenon. It is due to the fact that under
suitable experimental circumstances the system finds itself in a
configuration-space region R from which it has only a small probability of
escaping, though an equilibrium system outside the region has an even
smaller probability of getting into it. When the system isin such a region it
has only one thermodynamic phase, €.8. super-cooled vapor, even though
the relevant equilibrium Gibbs ensemble predicts that the system will, with
overwhelming probability, consist of two phases. The exact specification of
the boundary of the region R is not critical to the theory, since the system is
extremely unlikely to be found near the boundary of R in any case: in
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different parts of this paper we have used several different ways of specifying
R, according to the mathematical needs of the particular situation under
study. The important thing is to specify R in such a way that the
configurationisin R if and only if there are no large droplets or nuclei of the
new phase in the system,

The above statements require, of course, that we specify the probability
distribution of the system inside R. For this purpose, as well as to calculate
the static properties of the metastable state, we replace the equilibrium
Gibbs ensemble by a modified Gibbs ensemble whose members are
restricted to the region R. To justify the use of such an ensemble
for the metastable state we would have to show that the dynamics of
the system contains both a “fast” mechanism bringing the system to the
(quasi-) equilibrium described by the restricted ensemble, and a “slow”
mechanism for taking the system out of the configuration-space region
where it is trapped. So far this problem has not been solved, but the work of
PL and CCO described in the first part of this chapter does show that for
certain model system (the van der Waals model, the two dynamical versions
of the Ising model, and the Widom -~ Rowlinson model), if we assume that
the fast mechanism exists, then we can demonstrate (by proving that the
vescape rate is small) that the other mechanism is “slow” for a suitable choice
of the region R and of the thermodynamic parameters. The methods of
proof rely heavily on equilibrium concepts, since we use the Gibbs
equilibrium ensemble to give the relative probabilities of the different
microstates in R - in other words we assume that the correct ensemble to
describe a system started “somewhere in R” is the appropriate equilibrium
Gibbs ensemble restricted to R. For greater realism, it would be desirable to
consider more carefully the way in which the system reached R in the first
place — perhaps as the result of the sudden quenching of a binary alloy from
a higher temperature or the sudden cooling of a previously unsaturated
vapor by adiabatic expansion. Such an investigation would provide some of
the information about the “fast” mechanism which is taken for granted in
the work of PL and CCO.

The work described in the second part of the chapter carries the
investigation of one of our special models (the lattice gas with Kawasaki
dynamics) a little beyond the stage of demonstrating that a metastable state
exists, and provides a method of obtaining further information about both
the “fast” and “slow” mechanisms, This work shows that if the density is
very low and if processes involving more than one many-particle cluster can
be neglected, then the Becker — Déring kinetic equations may be expected
to apply to this model, and gives explicit formulae for the coefficients in
these equations. We hope that these formulae will make it possible to make
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accurate predictions of the metastable behavior of such models, which can
be tested against computer simulations. However, it is unlikely that all the
assumptions going into the Becker —Déring equations are valid, even at
very low densities; in particular, better estimates of the effects of processes
involving more than one many-patticle cluster, and the effects of cor-
relations between clusters, are needed. Some recent work on these problems
has been reported by Binder and Stauffer (1976), and by Mirold and Binder
(1978), but it is clear that much more work remains to be done on the
formation and derivation of kinetic equations for droplets.

The last part of the paper discusses ways of obtaining a numerical
measure of the “degree of metastability” of a system which would be well-
defined, simply related to experimental data and, we hope, essentially
independent of the arbitrary features in the definition of R. When the
Becker — Ddring equations apply, such a measure is provided by the
pucleation rate, but we would like to have a more general formulation valid
also for higher densities and temperatures where these equations do not
apply. A generalization which may help to answer this requirement is
described in sect. 10, and is shown to give the same answer as the Becker—
Déring nucleation rate formula when the latter applies.

Since so little work has been done up to now on the rigorous treatment of
metastability, it is hardly surprising that so many questions remain
unanswered. What is encouraging is that a start has been made and that
further progress appears to be possible.
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Appendix 1: The Widom — Rowlinson model

This model (Widom and Rowlinson 1971) consists of a mixture of two kinds
of particles. There is no interaction between like particles, but unlike
particles repel by means of a hard-sphere potential. In other words, the
Hamiltonian is the sum of a kinetic energy term for each particle and a
potential energy, which is equal to 0if all the unlike particles arc separated
by a distance exceeding some fixed value g, and to + oo if not.
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It was shown rigorously by Ruelle (1971) that in two dimensions this
system has a phase transition: below a certain temperature, if the density is
high enough, the system separates into two phases, each of them rich in one
of the two types of particle. The proofby Cassandro and Olivieri (1977) that
this model has metastable states is based on the techniques developed by
Ruelle for his proof. For two dimensions, the fundamental idea of Ruelle’s
method is to define, for each configuration of the particles, a system of
polygonal contours which enclose particles of one kind only. The particles
inside each polygon may be regarded asa cluster of that type of particle, and
the proofs of the existence of a phase transition and of metastable states for
this model are very similar in spirit to the corresponding proofs for lattice
Systems given respectively by Peierls (1936) and Griffiths (1964), and by
CCO (1974).

Appendix 2: An upper bound on Q, for the plane square lattice

Equations (7.2) and (7.9) give On =2l ni-neV°P . Now p(c) is related to
b(c), the number of neighboring pairs of sites, one of which is occupied and
the other not, by gN = 2p + b where q is the coordination number; so the
formula can be written, for the plane square lattice which has q=4

Qy = ?PUON § ¢ = BUob /2.
c
Sinceb > 4 /N (every cluster having a perimeter b at least as large as that of
a square containing the same number of sites) this formula gives

28UoN — 2pUg /N
QNsANcﬂo BUo v

where A, is the number of terms in the sum Y., that is, the number of
translationally inequivalent clusters with N occupied sites. To estimate Ay,
we note that every cluster can be converted to a simply connected cluster by
making, if necessary, some cuts in the bonds joining its sites, The resulting
simply connected cluster has a boundary consisting of a polygon made out
of line segments of unit length, each bisecting one of the bonds on its
boundary perpendicularly (see fig, 4). The resulting polygon has at most
2N + 2 line segments in its sides, and the number of such polygons with
2k + 2 sides is at most 32k because in drawing it segment by segment we
make 2k choices, each from 3 alternatives, of which direction to draw
the next segment in. Hence the number of such polygons with at most
2N +2 sides is less than 32. . 4 32V =332 *2 _32) <232V 14 follows
that 4, < §3%" and hence that Q,, < 2exp [2(log3 + BUL)N — 28U, /N].
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Fig. 4. At left: cutting one bond so as to make the cluster simply connected (crosses denote
particles); al right, the “boundary” of the resulting simply connected cluster.

Appendix 3: A lower bound on Q for the plane square lattice

One of the terms in the formula (7.9) for Qy is an integer multiple of
exp U, pm“(N) where p (N) is the largest possible number of nearest-
neighbor pairsin a cluster o N particles. If Nisa perfect square, say r2, then
a square array gives r(r — 1) vertical bonds and an equal number of
horizontal bonds, so that

pmax(rz) =2r(r —1). _
Removing any number up tor — 1 of particles from one side of the square
we find, since k removals destroy at least 2k bonds

2 __ — __ -
P nl” ")_zg _3_2’:} fo<k<r—1.

Alternatively we may add uptor particles to one side of the square. The first
adds one bond, but after that each can add two bonds, and so we find

pm,l(r2 +R=2r(r—D+2k—1
=20 +k)—2r—1

Every integer N can be written in one of the forms r2, 7% — k, or r> + k with k
restricted as indicated, and all three of the above formulae are consistent
with the inequality

pmn(N)_>_2N—2\/N—l, N=12...)
We conclude that
0, > exp[2BU,N — 28U N = BUo]-

} if 1<k<r.
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Note added in proof

We add here a few words about some recent developments in the areas
mentioned in this chapter.

1. Equilibrium properties of clusters

Binder and Kalos (1979) have studied clusters of supercritical size on a
lattice by computer simulations in which these clusters were stabilized by
confining the vapor surrounding them to a sufficiently small region. This
work provides information about quantities such as the cluster partition
functions and free energies defined in sect. 7. Further references are also
given in that section. McGraw and Reiss (1979) have discussed corrections
to the low-density theory discussed in sect. 7, arising from the fact that
clusters cannot overlap, concentrating on the effect of these corrections on
metastability of a gas—liquid system near its critical temperature.

2. The Becker—Ddring equations

Some confirmation of the validity of these equations, for densities below
about 7.5% (five times the saturation vapor density) in a lattice gas with
Kawasaki dynamics, is provided by the work of Penrose et al. (1978) and of
Penrose and Buhagiar (1979). In the first of these papers an approximate
solution of the equations is obtained using ideas due to Lifshitzand Slyozoy
(1961) and used to explain the time-dependent cluster distributions
obtained after the breakdown of metastability. In the second, the coefj-
cients in the Becker—Déring equations are calculated for small clusters
using an extension of the methods described insect. 9 and then extrapolated
to large clusters; the resulting system of differential equations is integrated
numerically, and the predicted time dependent cluster distributions
compared with the cluster distributions found in computer simulations.

3. Fluids and fluid mixtures

Further experiments on spinodal decomposition in binary fluid mixtures
have been carried out by Goldburg et al.(1978). A theoretical analysis of the
various competing processes determining the nucleation kinetics in a fluid
near its critical point is given by Siggia (1979). Molecular dynamics
computations on the formation and decomposition of clusters in a two-
dimensional gas with square-well hard-core interactions are described by
Zurek and Schieve (1978); and on spinodal decomposition in a three-
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dimensional gas with Lennard-Jones interactions, by Muzrik etal. (1978). A
review of the theoretical, experimental and computer simulation work on
this topic is given by Abraham (1979).
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