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L. INTRCDUCTION

I would like to talk about some of the progress that has been
made in recent years in the mathematicsl theory of measure preserving
transformations: ergodic theory. Since the dynamical'flow in the
phase space, which describes the time evolution of a Hamiltonian sys-
tem, is an examﬁle of such a transformation, this work has, in my -
opinion, much relevance to statistical mechanics and to the question
of irreversibility. While the recent progress in this field is due
mostly te the work of mathematicians like von Neumsnn, Hopf, Kolmo-
gorov, Sinai, Ornstein and others, the origins of the subject go back
to the founding fathers of statistical mechanics; Boltzmann, Maxwell,
Gibbs and Linstein. These men and their followers invented the con-
cept of ensembles to describe equilibrium and nonequilibrium macro-
scopic systems. In trying to justify the use of ensembles, and to
determine whether the ensembles evolved as expected from nonequili-
brium to equilibrium, they introduced further concepts such as
"ergodicity" snd "coarse graining". The use of these concepts raised
mathematical problems that they could not solve, but like the good
physicists they were they assumed thet everything was or could be made
all right mathematically and went on with the physics.

Their mathematical worries, however, became the seeds from which
grew a whole beautiful subject called "ergodic theory". Here I will
describe some recent (and some not so recent)developments that par-
tially solve some of the problems that worried the Founding Fathers.
Although results are not yet well enough developed to answer all the
guestions in this srea that are of interest to physicists, such as the
derivation of kinetic equations or the general problem of irreversi-
bility, they do make a staxrt.

Since it has been only in the last few years that physicists have
égain become deeply involved in this subject, there is a big gap in
the statistical mechanics literature concerning the developments in
ergodic theory which have occurred in the last forty years. As 8
recent convert I have preached the gospel of ergodic theory many times
in many places. Some of you will therefore have heard some psrts of
this talk before or youfmay have resd it in some of the reviews of the
subject I have written, Indeed these notes contain some (almost)
verbetim transcripts of my article with Penrose:. in Physics Today.
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Yy imwe olso borrowed freely from Jjoinl works with Coldstein, Lanford
and Aizenwsn, 8s well as independent works of these suthors The
credit, but certainly not the bLame, for what I will pres gsent here is

therefore & shared one. .
A partial list of references, especislly suited for physicists,

is given at the ond.

1.1 Scope of lectures

Ergodic theory is concerned with the time evolution of Gibbs
ensembles. It has revealed that there is more to the subject than
the simple gquestion of whebther a dynamical system is ergodic (which
mesns roughly, whether the system, if left to itself for long enough,
will pass close to nearly all the dynsmical states compatible with
conservation of energy). Instead there is a hierarchy of properties
that a dynsmical system may have, each property implying the pre-
ceding one, and of which ergodicity is only the first (see Table l)
The next one, called "mixing" provides & formulation of the type of
irreversible behaviour that people try to obtain by introducing
coarse-grained ensembles. At the top of our hierarchy is & condition
(the Bernoulli condition) ensuring that in a certaln gense the system,
though deterministic, may appesr to behave as randomly as the numbers
produced by & roulette wheel.

Some of the mathematicélvresults we shall be discussing have
established the positions of some model physical systems in this
hlerarchy. of partlcular interest to physicists is the work of Ya.

~ Binai on the hard—sphere system, which shows thet this system isg

both ergodic snd mixing I shell also discuss some work by A.N,
Kolmogorov, V.I. Arnold and J. Moser on systems of coupled anharmonic
0501llators, which shows that, contrary to a common assumptlon, theoe
jsystems maey not even reach the "ergodlc" rung on the - ladder. (G H.

"fﬂiwalker and J. Ford have described this work for phy31clsts)

All the. phy51cal sysbems I shall dlscuss obey classmcal mechanlcs

.';gor are models of such systems, - I shall con81der Tirst systems whigh -

" “have a flnlte -number of degrees of freedom and are confined to 8 flnlte

f":QﬂregLon of" physical space., Here.: the concepts, 4f not the -proofs, are

’ b831cally s1mple. Later I shall dlscuss 1nf1nite sysbems, by which -
T meon the limit of a finite system as its size incresses without
bound. The concepts involved here arec more difficult or at least may
-‘be less famillar to you. Also . the bech ingredient ror the study of
bho ergodlc proporties of such systems, the ex1stence of a well- defmnod
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Infinite cystems: Ideal
gas. Hard rod system, per-

fect harmonic crystel Bernouilli' Bquivalent %o Touletbe

system wheel
Baker s transformation, '
Geodesic flow on space of
negative curvature, Par-
ticle moving among fixed
convex scatterers

Infinite system: Lorentz
gas :

1rrevers1b111ty,ﬁ

-quentum system,

K—-system Essentisl randomness
Two or more hard spheres
moving in two or higher
dimensions?
"Simple model system with N S
ColElSlonS J Mixing system Approach to equilibrium
One dimensional harmonic Ergodic system Use of microcanonical
os¢illator ensemble

- Table 1. Hierarchy of Systems

The middle colunn lists the systems that will be discussed in
these lectures, with the strongest at the top. Every mixing
system is ergodlc, every h~system is lelng and every Bernoulli
system is s Kesystem. At the left sre examples of the system
and atlthe.riéht physical 1nterpretatlons or implicstions,

tlme evolutlon, has only very recently been proved by Lanford. My
dlscus31on of inflnlte systems will therefore be even more sketchy

| than for the flnlte cese. The reason for dlscuss1ng them at all is

that it is only in this limlt usually referred to a8 the thormo-
dynemic llmlt “thot the: dlstlnctlon between mlcroscopio and Macro=-
scopic observable'iiwhloh appears essentlal to any complete theory of
_nfbe formulated pr631se1y.u;;gf“”“f w'- R ~
My reaqoh for hot ‘dealing w1th quantum systems here is that 8
finite quantum svstem can never exhibit any of the properties higher
in our. hierarchy ( lthough of oourse, s large
BpD] oximate Glosely th "."_*haviour chersoterized by
This is because ‘the spectrum‘of a finite quantum

than 81mple er

these concents).




A
system is necessarily discrete, whereas for a finite classical sys-— o :

tem the spectrum (of the Liouville operator) can be continucus. In-

~ finite quantum systems can, and do, exhibit ergodic behaviour similar

to classical ‘systems., Some very besutiful work on such systems hos
just, verxry. recently, been done by Haag, Kastler and Eva Trych-Pohlmeyer,
who is here. I hope to elaborate sllghtly on these remarks ebout

. guantum systems during these lectures.

T should point out right here that care must be exercised in
drawing analogles between the ergodlc propertles of finite and in-
finite systems, as the dependence of these properties on the inter-
actions between the particles, and thus also their physical interpre-
tation, may be very different in the two cases. Thus while & finite
ideal gas (cless1cal system of noen-interacting p01nt particles) is
not even ergod1c,1ﬂm:uf1n1te idesl gas has the strongest possible
ergodic properties: it is a Bernoulli system, c.f. Table 1.

The explanation of the good ergodic properties of the. infinite

ideal gas is simple: local disturbences ~fly off’ unhindered to

infinity where they are no longer observable. This means that the
“approach’ or better the return to eguilibrium of a large (1nf1n1te)

system, which is perturbed locally away Irom equlllbrlum, may occur

even in the absence of a locsal ‘dissipative’ mechanlsm such as is

~ provided. by collisions. It can happen simply, as it does in the

';fsyetems of;the ideeal. gas. type and more reallatlc physrcel systems,.

btﬁtheeeutWO‘dlfferentvkinds of syatems cen. indeed be cleerly dlStlngulSh—‘

of 1rreversmb111ty which ig of interest in resl phys1cal systems. It
is therefore necessary to introduce addltlonal structure, to that

ideal gas (or the perfect hermonic crystal) by the disturbance dis-
appearing from 81ght by the free stresming motion of the partlcles
(phonons) ‘

ThlS klnd of return to equilibriunm is of course not described
by a8 klnetlc or hydrodynamlc equation end is. therefore not. the klnd

prov1ded by ergodic theory alone, o dlstlngulsh between 1nf1n1te

h* Lorentz gas, where there ex1sts a- local mechanlem, e, g ,
S b‘éthe approach to equlllbrlum.‘ A start ln thle dlrec~
een,made by s. Goldsteln who considered the (generallzed)
1ee of an 1nfln1te system under the 301nt group cona‘
'"ievolutlon and epace translatlons._ He showed that

ed w1th ‘this sharper tool. The work of Haag, Kestler snd Pohlmeyer,
‘egrlier, also has some bearlng on this question and I hope

point later.f




Ir,  ERGODICITY AND ENSEMBLE DENSITIES

| Before we go on to discuss the new resuits,‘we review some
‘mathematical‘definitionsQ If our dynemicel system hes n
degrees of freedom, we can think of its possible dynamical states
‘geometrlcally, as points in a 2n~dimensional space (phase space),
with n position coordinates and n momentum coordinates, If the
- energy of the system is E, then its dynamlcal state x (= (ql e

Qps Py «o- pn)) must lie on the energy surface H(x) = E, where H
' is the Hamiltonian function. We denote the energy surface, which is
(2n - l)-dlmen31onal by S or just S and asaume that S is
smooth and of flnlte extent, for example in the case of a 'system of
. harmonic os01llators, for which the Hamiltonisn is a quadratic form,
the energy surfaces are (2n ~ 1)~dimensionsl ellipsoids.,

The time evolution of the system causes x to move in phase space,
but since we are assuming our system to be conservatlve the point x
always stays on the energy surface. If the system is in some state
X at some time t, then its state st any other time ty + t is
uniquely determined by x and t (only). ILet us call the new state

¢t(x) This defines a transformation - ﬁt from 8 onto itself,

There is one such function for each value of ¢, ' ,
We shall want to integrate dynamlcal functions (that is, functions

of the dynemical state) over S. When d01ng this it is convenient

not to measure (2n -~ 1)~d1mens1onal "areas" on the surface S in the

._usual way but to weight the areas in such.a way that the natural motion

of the system on S carries any reglon 'R (after any time t) into a

fregion ﬁt(R) of the same area., This can be accompllshed by deflnlng

~-the welghted area of ‘a small surface element near x, dx, to he such

;that dxdE. 1s the correct Euclldean 2n-dimen81onal volume‘element of

1“a'"p111 box" w1th base dx end helght dE 2

e P

where . cio--'(x) ~is the usual , suri‘ace area’ on ' SE and '*'VH(x) :i.s the '

1§;gradient of the Hamlltonlan

e e e e et et et e,




coilection of systems, all having the same Hamiltonian but not ne-
cessarily the same dynamical state. We shall only consider ensembles
whose systems all have the same energy, SO that their dynamical states
are distributed in some way over SOme energy surface S. It may happen
that this distrihution can be described by an ensemble density; Dby

this we mesn a resl-valued function ? on S? such that the fraction
of members of the ensemble whose dynsmical states lie 'in any region
R on the surface S 1is

IR ?(x)dx

with dx the weighted area defined above. The simplest ensemble
density on S is given by '

?(x) = C (all x in 8)
where € is a constant, which can be determined from the normalization
condition f C dx = 1. This is called the microcanonical ensemble
S
on S.

The systems constituting the ensemble evolve with time, so that
the ensemble density will depend on time. The rule connecting the
‘ensemble densities ?t describing the ssme ensemble at different
times + is ILiouville’s theorem, which can be written

§ ) = ?O[Qf_t(x)] (a1l t, 8ll x in 8)

where ?O(x) is the ensemble density at time zero. For example,
Tiouville’s theorem shows that the density of the microcanonical en-
. semble does not change with time: If

?b(x) = C

’

for ell x ih S;_ then Liouville’s theorem'gives; for any t,

Qu(x) = ‘,C

for 8ll X in S.

————
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ol The ergodic problem

The principal success of ensemble theory has been in its applica-
tion to equilibrium. To calculate the equilibrium value of any dyna-
mical function we average it over a suitable ensemble. The Seme en—
semble also enables us to estimate the magnitude of the fluctustions
of our dynamicsl function. To ensure that the celculated averages
are independent, of time, we use an invarisnt ensemble; that is, one
for which the fraction of members of the ensemble in every region R
on the energy surface S is independent of time. We already know
one invarisnt ensemble: the microcanonical, whose ensemble density
. is uniform on S. Before we can use it confidently to calculate
equilibrium values, however, we would like to be sure that this is
the only invariant ensemble: If other invariant ensembles exist then,
in principle, they could do just as well for the calculation of equili-
brium properties, and we would have to choose which to use in & par-
ticular situation.

There are two questions to settle: +the first is whether there
are any invariant ensembles on S +that do not have an ensemble den-
sity. In general there are; for example in the case of a hard~-sphere
system in a box one could have an invariant ensemble where every par-
ticle moves on the same straight line being reflected at each end
from a perfectly smooth parallel wall (see fig. 1).

The obviously exceptional charscter of this motion is reflected
mathematically in the fact thet this ensemble, though invarisnt, is
confined to & region of zero '"area" on S s8&nd therefore has no en-
semble density. To set up such a motion would presumébly be physicoally
impossible because the slightest perturbation would rapidly destroy
the - perfect slignment. It is therefore naturel to rule out such ex-
ceptional ensembles by adopting the principle that any ensemble cor-
résponding to 8 physically realizable situation must have an ensemble
density. ) | o - S

There remeins the second part.of the question: Are*there any
invariant ensembles on S that do have a density'but differ from the
microcenonical ensemble? This is equivalent to the ergbdiclproblem

in which one compares the time sverages of a dynamical function £,

! T
/ f*kx) = lim .% I f(dt(x))dt
' T >0 o}




Smooth herd walls

Fig. 1. Ensemble with no ensemble density.

Hard spheres movc up and down the dotted line,
which meets the perfectly smooth hard walls at
right sngles. Collisions between particles and
collisions with the walls do not deflect the
particles from the line if they are perfectly
aligned at the start. "An ensemble of such systems
nas no ensemble density becsuse it is concentrated
on a region on the energy surface with zero ares
(just as the area of a line or of a line segment
in a plane is zero).

with its microcanonical ensemble average

e .-.'I f(x)dx/_ ax .
o - [ oo/

A system is Said to be ergodic on its energy surface S if time ‘
averages are in general equal to ensemble averages; thet is, if for
every integrable function f we have

£ %) <y (1)

for slmost 8ll points X 6n . YAlmost ell" means that if M is
the set of pdints; x for which eq. 1 i.s false, we have Ide = 0.
Mhe anawer to our second question ig given by 8 theowrem, which




Sl onol o prove:r  Ghe microcanonicsol cnsemble densily s the ouly . /
Cnvoriant onsemble - that ds, the only one satislying S)[o’_t(x)] = S)(y)
'or all x in 8 ~ if and only if the systewm is ergodic on 8.

‘'he physical importance of ergodicity is that it can be used to
justi fy the use of the microcanonical ensemblé for calculating equili-
brium values and fluctuations. Suppose f 1is some macroscopic ob-
servable and the system is started at time zero from s dynamical state
x, for which f(x) has a value that may be very far from its equili-
brium value. As time proceeds, we expect the current value of £,
which is f[}t(x)] , to aspproach and mostly stay very close to an
equilibrium value with only very rare large fluctustions sway from
this value. This equilibrium value should therefore be equal to the
time average % because the initial period during which equilibrium
is established contributes only negligibly to the formula defining
£®(x). 'The theorem tells us that this equilibrium velue is almost
always equal to {f) , +the average of f in the microcsnonical
ensemble, provided the system 1s ergodice.

To justify the use of the microcsnonical ensemble in calculating
equilibrium fluctuations we proceed in 8 similar way. For some ob-
servable evenlt A (such ag the event that the percentage of gas
molecules in one half of a container exceeds 51%) let R be the
region in phase space consisting of all phase points compatible with
the event A; +that is the event A 1is observed if and only if the
phase point is in R 8t time t. If the system is observed over a
long period of time, the fraction of time during which event A will
be observed is given by the time average g“(xo), where X is the
initial dynsmical state and g 1is defined by

g(x)

_ 1 if x is in R
0O if not.

The ergodic theorem tells us that for almost all initial dynemical
states this fraction of time is equal to the enscmble average of g,

(s) = J; dﬁ///Jé dx .

This is just the "probability" of the event A as calculated in the

which is

microcanonical ensemble on S,
Another way of defining ergodlclfy is ‘to say thqt any :ntegrablu

invarisnt function is constant almost everywhere. That is to say, if

S




r i oan integrable funation calislying the condition that _ /0

£ [ﬁ)'t (x )] re £(x)

for sll x in S, then there is a constant ¢ such that f(x)
equals ¢ for almost all X : In othen wordé, the set M of points
4 for which f(x) does not equal c¢ sstisfies fmdx = 0. This
has the physical intevpretation that for & Hamiltonian system ergolic
on S every integrable constant of the motion is constant on S,
I'urthermore if ergodiciﬁy holds on each SE then there are no inte-
gratle constants of the motion other than functions of the encrgy E.
Indeed, if there were otbher consbants of the motion (for example
angular momentum if the Hamiltonian had an axis of symmetry) we could
construct invariant densities that were not microcanonical by taking
?(x) to be a function of one of these other constants of the motion,
and so the system would clearly be nonergodic. (When such additional
constants of the motion exist they must be taken into asccount in the
statistical mechanics and thermodynamics of the system; the stendard
methods, based on the microcanonical ensemble, must then be generalized
for these systems.)

These relationships between ergodicity and constants of the mo-
tion are a consequence of Birkhoff’s theorem tha® ergodicity, as de-
fined by the equality of the time average Lo the ensemble average,
eq. 1, is equivalent to the energy surface being "metrically transi-
tive"., Stated precisely this means that a system is ergodic on S
if snd only if all the regions R on S left invariant by the time
evolution, ¢t(R) - R, either have zero ares OT have an area equal
to the area of S. _

The difficult part of Birkhoff's Theorem is to show that ©¥(x),
which involves taking the time average over infinite times, actually
exists for almost all x waen £(x) is an integrsble function. It
is then relatively easy to show that £™x) 4is time inveriant; that
is, -f*{ﬂt(xil= f*(x), and that ergodicity is equivalent to S be-

ing metrically intrensitive.

2.2 ~Brief history of ergodic theory

The "ergodic hypothesis'" was introduced by Boltzmann in 1871.
To quote Maxwell w,, (it) is that the system, if left to itself in its
sctual state of motion, will, sooner OT later, pass through every
vhage whichvis consistent with the equation of energy." In our




nrotation "phase" means dynamical state and the oripinal ergodic
hjpothesis means that if y end x are any two points on the energy
surface SE’ then y = ¢t(x) for some +t. The ergodic hypothesis
thus stated was proven to be false, whenever SE has dimensionality
greater than one, by A. Rosenthal and M. Plancherel in 1913. S.G.
Brush gives a nice account of the early work ou this problem.

The definition of an ergodic system given in eg. 1 can be shown
to imply'what is sometimes called the "quasi-ergodic" hypothesis,
which replaces "every phase" in Msxwell’s statement by "every region
R on 8y of finite area", with the further gualitication that this
is true for "almost all" dynamical states, Indeed as was pointed out,
the fraction of time thal the system will spend in R is equal, for
an ergodic system, to the fraction of the area of 8,, that is oc-

EM]

cupied by R.

III. SYSTEMS OF OSCILLATORS AND THE KAM THEOREM

We shall now consider some examples of ergodic and non-ergodic
systems. The simplest example of an ergodic system is the simple
harmonic oscillator whose Hamiltonian (in some suitable units) is

) )
w(p™ + q7)

rof—

i

H(q,p)

where W is the angular frequency. The transformation ¢t for this
system is a rotation through angle wt in the (g,p) plane. The
trajectories, which here 001n01de with the energy surfaces SE’ are

circles of radius (2L) (The surface element dx is here NS

proportional to the ordlnary length of an arc segment.) To be in-
variant under the transformation ¢t an ensemble density on S must
be unaffected by rotations and is therefore a constent. It follows,
then that the on1y invariant density is the mlcrocanonlcal density
and so the simple harmonic oscillator is ergodic. v
Almost as simple is the mUltiple harmonic oscillator (physically,
say, an ideal crystél), that is, a system with two or more degrees
of freedom whose potential energy is & qQuadretic form in the posai-
tion coordinates. Unlike the simple harmonic oscillator it cennot
be‘efgodic, becasuse it has constants of the motion (the energies of
the individusl normsl modes) that are not constant on bhe energy
surfaces (the surfaces of constant total energy)

It used to be thought that this lack of ezgodicity was an

'//w
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aceident and that any small anharmonicity (such as would inevitably
be present in a real sygtem) must make the system ergodic by permiti-
Lirng transfer of energy from one mode to another. In 1954, however,
KolmogorovV announced results that contradicted this belief, In

1955, Enrico Fermi, J. Pasta and S.W. Ulam carried out a8 computer
simulation of such a system. Tnitislly, they excited one mode only,
and instead of the equipartition of the erergy between all modes pre-
dicted by the microcanonical ensemble they found that most of it ap~
peared to remain concentrated in a few modes; this indicated that
anharmonic oscillator systems may not be engodic.

The lack of ergodicity was proved rigorously by Kolmogorov,
Lrnold and Moser. They found that if the frequencies of the unper-
turbed oscillators are not "rationally connected" (that is, if no
rationsl linear combination of them is zero) then, in general, adding
to the Hamiltonien an anhermonic perturbation sufficiently small com-
pared to the total energy does not make the system ergodic. The un-
perturbed trajectories (possible paths of the phase point) all lie on
n-dimensional surfaces 1n 8 (which has 2n~l dimensions) called
"invariant tori", and "KAM" prove that under a weak perturbation most
trajectories continue to 1ie within smooth n-dimensional tori, so that
the perturbed system is also non-ergodic. The trajectories that do
not lie on the new inveriant tori are, on the other hand, very ervatic
and nay fill some (2n ~ 1)~dimensional region densely. One conse-~
quence of this very complicated hehaviour is that even though the sys-~
tem is not ergodic the motion can no longer be decomposed into inde-
pendent normal modes. .

Similar results probably hold also for rationally connected fre-
" quencies (which cannot be treated rigorously, slthough they are of
more physical interest); thus HMichael Hénon and Casrl Heiles carried
out computer calculations for the Hamiltonian

3)

1 2 2 2 2 2 1 -
‘H = §<P1 + Py Q) *t A ) + (@779 - 397 (3.1)

whose'unperturbed frequencies W, = 1, wy = 1, ore rationslly con-
‘nected since 1-w; - Lw, = 0. They found that the energy‘surfaces
with E equal to 1/12, 1/8 and probably also '1/6 eare not ergodic
(see figure 2). As seen in the disgrams the fraction of the eres
correépdnding o smooth curves (which are responsible'for the non-
ergodic tehaviour) decreases as the energy increaseds.

For & genersl system of snharmonic oscillators, such as a real
crystel, we expect similar pehaviour, with the fraction of 8 cor-
reapondine to non-ergodic behaviour decreasing as E inoreases, and

[P
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rig, 2. Nonergodicity of an anharmonic oscillator system
with rationally connected frequencies, :

The Hamiltonian for this system is given in eq. (3.1).
Michael Hénon and Carl Heiles did computer calculations
for this system and found that energy surfaces SF with
E equal to 1/12, 1/8 snd probably 1/6 are not ergodic.
The planes shown here are intersections of the surface
q; equal to zero with 8, for E equal to 1/12 (a), 1/8 (b)

snd 1/€ (c¢), end the points are the intersections of s
trajectory with this plane. When the trajectory lies on

8 smooth two-dimensional invarisnt torus, the intersection
points form a smooth curve, but the intersections of an
"erratic" trajectory (one that does not lie on a smooth
curve) are more or less random. Note that the fraction

of ares corresponding to smooth curves (which are res-
ponsible for the nonergodic behaviour) decresses with

increasing energy.

protably dissppeering altogether at some critical energy, shove which
the system would be ergodic ond perhaps also show the stronger pro;
periiies that we shall discuss. AV present very little is known about
the magnitude of this critical energy in a system with many degrees
of freedom.

In the case of gases, the situstion is somewhat different. If
therée were no interaction st all between the molecules then the energy
of each molecule would be an invarisnt of the motion, so that the sys-
tem (an idesl ges) would be nonergodic. The'KAM‘,theorem would there-
fore lead us to expect nonergodicity to persist in the event of a
sufficiently weak interaction between the particles, The actusl in-
ter@otions,‘however, are not wesk becauﬁe'two_molecules very close
together repel esch other strongly; consequently‘the theorem does
not 8ppiy. A simple model of this type is the hard—sphefc g8s en-
fclosed in @ cube with perfectly reflecting walls or periodic boundury
conditions. Sinsi has outlined a proof that this system is ergodic;
he has pubiished a detasiled proof, based on the ssme ideas, for a




pdxblcle moving in e periodic box containing any number of rigid /%-

convex elastic scatterers. We shall refer again to this important

result.

IvV. MIXING

We have seen how to formulate a condition to ensure that the
equilibrium properties of a dynamical system are determined by 1ts
energy alone and can be calculated from s microcanonical ensemble.
This ergodicity condition does not, however, ensure that if we start
from & non-equilibrium ensemble the expectation values of dynamical
functions will epproach their equilibrium values 8as time prpceeds.

An illustrative example is given by the harmonic oscillator. For the
hermonic-—oscillator system, Liouville’s theorem shows that the en-
semble density repeats itself regularly at time intervals of 2N /w ;
therefore all ensemble averages also have this periodicity, and so
cannot irreversibly approach their equlllbrlum values.

To ensure that our ensembles approach eguilibrium in the way we
would expect of ensembles composed of real systems, we need 8 stronger
condition then ergodicity. To see what is requlred let us start at
t = O with some ensemble density ?b(x) on S, which is suppo sed
to represent the initial non-equilibrium state. At a lster time %
the ensemble density is, by Liouville’s theorem, ?0 [ﬁ_t(x)] . The
expectation value of any dynamical variable f at time t is there-

fore

f £(x) ?o[“—t@‘)] dx | | (4.1)

As %+ becomes large we would like this integral to approach the

equlllbrlum value of f, which is (for sn ergodic system)
J'f(x) dxy/‘(dx. A sufflclent condltlon for thls 1s that the system

should satisfy the condltlon called mixing which is that for every
- pair of functions f &end g whose squares are 1ntegrable on S, we

._ require | |
. o f,f(.x)dx fs(x)
- ' . 5 S . (&.2)
. E? . L £ (x)e(F_y(x))ax f -
. . S

The special case where g is @, shows that integrel (4.1) will ap-
comaeh  the equilibrium value of £ for large % when the system




is mixing. Another wesy of looking at this condition is that it re-

) qufres every equilibrium time-dependent correlstion function such as
<f(xfg [dt(xf1>to approach a limit <f> <g§> as % sapproaches * w.
The condition of mixing can be shown to be equivelent to the

following regquirement: if Q@ s8nd R sre arbitrary regions in 8,

and en ensemble is initially distributed uniformly over Q, <then the
fraction of members of the ensemble with phase points in R at time

t will epproasch e limit ss t approaches w ; this limit equals the
fraction of the ares of S occupied by R,

This condition can be stated formally as follows: Let/MCA) de-
note the normalized area of a set A on the energy surface S, i.e.
the probsbility in the microcanonicel ensemble of finding the system

pa - Lax/ rsdx

(For simplicity we shall set j- dx = 1 from now on.)
S

in A,

A system is mixing iff for any sets A and B
ANE) ———————t M(A)M(B A= F(A) . (4.3)
PLAND) ————w HOOM(B) ;A= By (M)

We can interpret this to mean that if we start with. an ensemble at
t = O such that sll the systems are in region A,

[}A(A)]"l if x e A
0

otherwise ,

Qo) =

then the fraction of systems in this ensemble that will be in region
B 8t time t will spproach )k(B), see figure 3.

. | «S
*g @.IIII.-m’ (‘ | ‘- Hh
ANB—EES] g
Fi.ﬁurc 3.

Mixing is & stronger condicioh‘than'ergodicity: it can eésily be
shown to imply ergodicity but is not implied by it, es we have seen

S




in the case of a simple harmonic oscillator. /g

The proof is simple. BSuppose that A 1is an invariant set,
Ay = A. Then if the system is mixing we must have,

pan o= pw = [pw]®

so that }&(A\ = 0 or /ACA) 1 which, since it holds for sll
invariant sets, implies ergodicity as was noted earlier,

i}

)

The mathematical definition of mixing was introduced by John
von Neumann in 1932 and developed by E. Hopf, but goes back to J.
Willard Gibbs, who discusses it by means of an analogy: "... the
effect of stirring an incompressible liquid .... Let us suppose the
liquid to contain a certesin smount of colouring metter which does not
affect its hydrqdynamic properties ... (and) that the colouring matter
is distributed with variable density. If we give the liquid any motion
whatever ... the density of the colouring matter at any same point of
the liquid will be unchanged ... Yet... stirring tends to bring a
liquid to s state of uniform mixture."

Gibbs saw clearly that the ensemble density Q. of 8 mixing
system does not approach its 1imit in the usual "fine-grasined" or
"pointwise" sense of Qt(x) approéching a limit as t —»o for
each fixed x. Rather, it is a "ecoarse-grained" or "wesk" limit,
in which the sverage of ?t(x) over a region R in S approaches s
1imit ss t —so00 for each fixed R. (A similar distinction spplies
in defining the entropy. The fine-grained entropy —kji?t(x)logf%(x)dx,
where Xk is Boltzmann’s constant, retains its initial value forever,
but the coarse-grained entropy -~k j ?;(x)[IOg'§t (Xbldx,' where
?t (x} is 8 coarse-grained ensemble density obtained by avgraging
?t(x) over cells in phase space, does change for a non-egquilibrium
ensemble, and spproaches as its limit the equilibrium entropy value
k log { o ax ). | | | )

‘Tt is .sometimes argued that one cannot have a8 proper approach to
equilibrium for any finite mechsnical system because‘of.a theorem, due
to Poincaré, that every such system eventually returns arbitrarily
cloge to its initisl state. (The time involved, however, will be
“enormously large for s mscroscopic system. Boltzmann, for example,
estimeted & typical Poincaré period for 100 cm’ of gas to be enor-
mously long compared to 1O raised to the power 10 raised to the power
10 years.) Here, however, we are considering ensembles, not individual
' systoma, and the mixing condition guarantees.that'theﬂensemble density

eventually becomes indistinguishable from the microcanonical density




«

s emsing co Lorever after.  IU is Lrue that individual systems in
Lite cnsemble will return Lo their initial dynawical states, ag roquir-
cd by Poincaré?s theorem, but this will happen at different times for
difterent systems, so that at any particular time only a very small
fraction of the systems in the ensemble are close to-their initial
dynamical states.

 The reason for the irrelevance of Poincaré recurrences in mixing
systems is that the motion of the phase point is very unstable.

Dynamical states that start very close to each other in phase space

7S

Before

A familiar example of "mixing".

According to V,I, Arnold and A, Avez, the two
liquids are rum (twenty percent) and cola (eighty
per cent), with the result of the mixing process
known as a "Cubs libre'. ‘

Pig, 4,

become widely separated as time progresses, so that the recurrence
time depends extremely sensitively on the initial conditions of the
motion, (The importance of this instability in statistical mechanics
was first recognized by N.S. Krylov, a Russian physicist who died in _
his twenties in 1947.) This type of instability appears t60 be charac-—
teristic of real physical systems, and leads to one sort of irreversi-
bility: even if we could reverse the velocities of every particle in
8 resl system that hos been evolving towards equilibrium, the system
would{ﬁgt:necessarily return or even come close to itsﬁiﬁiﬁiél'dyha—
mical:stéﬁé-with the velocities reversed because the unavoidable small
external perturbations would be magnified, This instability is notice-
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if we numerically integrate the equations of motion from time O to

time t and then try to recover the initisl state by integrating
bockwards from time +t to time O, we obtain instead s completely
new state. This is because the numerical integration is unstable to
small rounding-off errors made during the computation, which play the
same role as external perturbations in s real system.

Only a few physical systems have been proven so far to be mixing.
The most important is the hard-sphere gas, mentioned above., Sinai’s
proof thatlthis system is ergodic also gives the stronger result that
. it is mixing. Roughly, Sinai’s method of proving mixing is to show
that the hard-sphere system is unstable in the sense discussed above.
Physically this instability comes from the fact that a8 slight change
in direction of motion of any particle is magnified at each collision
with the convex 'surface of another particle. The full proof for the
simplest case of a '"single" particle moving among fixed convex
scatterers is already quite complicated and the proof for moving hard
sphere has not yet appeared., That is why I put a question mark next
to this system in Table 1. T have some private informetion however
(from G. Gallavotti) that Sinai is in the process of writing up the
proof and has alreedy finished 2 hundred pages of manuscript. As
indicated in Table 1 the proof will actually be that this system is

a K-system. -

| A very simple model system with ’collisions’ which 1s mixing was
considered by Goldstein, Lanford and Lebowitz. This will be described

in the Appendix.

4.1 Time correlations and: transport coefficients

AS‘indicated by 8ll the speskers here, the study of time corre-
‘l‘a’t'ibn' fu'x_ictio_ns of the form <g(t)f> plays a central role in the
'statistical-mechaniCalvtheory'of non—equilibrium‘phenomena. When a
systém is mixing then.these'functions will certainly épproach their
uncorrelsted values as 1t ==, provided thet g snd f are
- square iﬁtegra‘ble, <g2> < o, < f? > < w, i.e.

gty - 8> (fty — O as  |t]—» o . (o)

A system ig said to be weskly mixing if, under the ssme conditions

on square integrability

/&
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T
Tl—iin 7% j ](g(t)f>_<‘g>(f>[dt——.o as T—+*t o .
00 0
» (4.5,

This is clearly a weaker requirement then (4.4). It is however still
stronger than ergodicity which can be shown to be equivalent to the
requirement that

. T
'l‘ljinoo —{]-i,- [O [(g(t)f) - (&) (f)] dt —>» 0 gs T —pi ©
| (4.6)

In many cases one is interested in the time integraels of these corre-
lations. This sfems from the fact, pointed out by many of the lectur-
ers here (indeed Professor Kubo is the modern father of this subject:)
that linear transport coefficients, such as heat conductivity, vis—
cosity etc., may be expressed as integrals over time (from t = O to
t = o) of the time correlation of appropriate dynamicasl functions
(Einstein-Green-Kubo'. These functions represent the "fluxes’ as-
socliated with the transport processes in question. A well known ex-
ample of such a "formula® is the Einstein relation between the self-
diffusion constant D and the integral of the velocity suto-correla-
tion function of a specifiéd particle, say particle one,

<V4E(t) v1> ,( (v = 0).

It might sppear that for mixing systems these transport coeffi-
cients could be defined meaningfully, without going to the thermo-
dynamic limit of an infinite size system, as long as[(g(t)f) - (g)(ﬁﬂ
approached zero sufficiently rapidly to be integrable. Such is, how-
ever, not the case, as indeed it should not be on physical grounds.
Fdrmally this occurs because the flux functions whose time correlations
are of interest for transport @oefficients can generally be written
as Poisson brackets with the]Hamiltonian H?, i.e. £ = (F,H),

g = (G,H), and for mixing systems it cen be shown that when f, g,
F, G are 81l square integrable, then ‘ IR

T
lim I (f(‘t)8> at = <(F’H>G> )

T vy 00 o




11
o

i
1im S {£()E) at

T e OO o

Phus for a finite mixing system confined by 8 wall,

4 D | |
lim [. {vy(E)vy) at =  lim (ql(T)vl> = 0 (4.7)
T —p o | T —>»wm ,
since '
v = (g4 ,H) and v2 dx < o 2 dx <
1 = \%p 1 U b ] @ .

Note that when .ql is an angle variable, e.g., in the case of
periodic boundsry conditions, then v; # (ql,H) and (4.7) need not
nold. We would still have, however, {vy(t)vy)-»0 3if the system is
mixing. ‘ _

When the system is not mixing, the limit T —» o in the above
integrals need not exist. It is still true'however that for Eﬂi

finite system

1

lim g<f‘(t)f > dt

T e OO

lim [~a%<F(T)F>]; 0, if it

T w00 exists.

This is so since,

'(F(T)F)5<F(T)F(T)>%(F2>% - (FF)

so that when F is square integrable d/dt«(F(T)F) can either os-
cillate. or approach ZETO0 . |

" These time correlatlon integrals will therefore, if they exist, .
at 8ll, be equal to zero 1n any finite system. (The interesting fact

ts,ls thst they do exist for mixing systems). The Einstein-Kubo type

formulae for transport coefficients can therefore be mathematically
meanlngful only in the thermodynamic limit. 1t ig of course poss1ble,
and even llkely, that for macroscopic systems there BXlStu values of
T for which the integral in (%,7) is ‘close "to the diffusion constant.

PE———




- nical probability for each new observation depends on what has been ob-

a deterministic behaviour of successive measurements is impossible

V. K- AND BERNOUILLI SYSTEMS

- In order to give a physical definition of these systems we de-
fine a finite partition of the energy surface' S of our dynamical
system as any finite collection of n non-overlapping regions
Rys ..., R which together cover the whole of S (see Fig. 5).

Zr‘<Ri> = 1, l‘\(Ri n R/J) = 0.

Fl‘aure g.

Suppose now that an experiment is made that will determine which of
these regions the phase point is in at any time, but gives no informa-
tion whatever sbout which part of the region it is in. That is, every
time we use this measuring device we obtsin an autcome that is s posi-
tive integer -~ the label of the region the phase point of the system
is in at that time.  As an example we may consider s system of k
particles in & box and the experiment consists of messuring the number
of particles in one half of the box.

Suppose we use the device repeatedly st intervals of, say,tseconds.
Its outcome will be & sequence of positive integers from the set
{O, ooy k} , which can be extended indefinitely. In genersl, we
would expect these integers to be correlated; +that is, the microcano-

served before (as in a Markov process, for example). This correlation
comes sbout because the dynamical states of the system at different
times are deterministically related, through the equatlons of motion,
Indeed, it may be p0331b1e to choose the partltlon and the time inter-
vals between measuremehtsbin‘sudh:avway that the outcome of later
measurements'is completely detérmined‘by’the outcome of the earlier
ones. That this is pOSSlble even in the ‘case of ergodlc systems may
be seen easml/ by considering the simple. ‘harmonic osclllator consider-
ed earlier and meking the intervel between measurements equal to the

period 7T . The oscillator will then be found esch time in the same
set Ry , since 4, Rj = Rj for a system with period ¢ .
It should be clesr however from our earlier discussion that such




partition, or T is. TFor a system which is only mixing there will

‘e partitions for which €(n) — O as n—>o. It is, in this

~call the system a Bernoulll system, i.e. @ Bernoulli system permits

 of course no requlrement, and indeed no p0951b111ty, that all parti-

- ted with K-systems which we dlscussed earlier.

' tlons) 13 8 Bernoulll system, (More precisely & Bernoulli flow,

i

for a mixing system. For in a mixing system cach set Ry will 522
CVentudll" pecome uniformly spread out over the whole energy surface,

]'.e‘

i

lim }k[(ﬁnz(Ri)f\RL]

0 0o }“(R‘ ))‘\GR:) )
for every value of © -« It might still be pOSSlble howeverT that
gsuccessive measurements prov1de more and more information so that
eventually' one "really knowJ what ‘the result of the next messurement -
will be. Somewhat more formally we may let &(n) be the uncertainty
in the outcome of the n-th measurement (given the results of the

first n-l measurements). A K-8 vstem is then 8 system for which

E(n)>€ > 0 no matter how large n is and no matter what the

sense, that K-systems have an essential randomness in them.

This will be made more precise in the next section when we dis-—
cuss the Kolmogorov—Sinai entropy of a flow. First however I shell
discuss the last and highest member of our hierarchy: the Bernoulli
system. This will also give me the opportunity to introduce to you
the paradigm of Bernou111 systems; the baker’s transformation.

A Bernoulll system is one for which it is possible %o choose
the regions Ro’ ooy Rh—l in such a way that the observations made
at different times are completely uncorrelated, just like the numbers
shown 3% dlfferent times by a roulette wheel. At the same time, the
regions so chosen give enough informetion to discriminate between
dynamical states: if two systems have different dynamical states
at some time, then the observations made on them cannot yield identi-

cal results for the observations at every time. Such @ partition is

N

g < g e e T e

called 8 generaflng partition. When such regions can be chosen, we '
the constructlon of an 1ndependent generatlng partition . There is

tions be of ‘this type. Since however a Bernoulli system is slso a
K—system, everv partition will have the inherent randomness assocla—

Receptly Gallavottl and Ornsteln showed that a pomnt partlcle

mov1ng (in two or higher dlmens1ons) among fixed convex scatterers
(in a box with rigid wells or on a torus; periodic boundary condi=-

which mesns that there exists an jndependent generating partition




for every T >0). "The proof of Gsllavotti snd Ornstein utilizes the
results of Sinei that this system is a8 K-system as well ss the tech-

niques developed by Ornstein and Weiss who showed thst the geodesic
flow on a space of constant negative curveture is Bornoulli.

5.1 The bsker’s transformstion

As an illustration of a simple Bernoulli system, consider a sys—
tem whose phase spasce is the square 0 { p £ 1, 0<£g<£ 1l shown
in Figure 6, snd whosei(non-Hamiltonian) law of motion is given by & --
mapping known ss the baker's transformstion because it recaslls the
kneading of s piece of dough., |

4 Wy HA sty = e
It}g S Ry

) }
ﬁﬂ
‘;‘:‘i

Fig. 6. The baker’s transformation recalls the kneading of
,a piece of dough.

We first squash the. square to half its orlglnal
“height snd twice its original width, and then
cut the resulting rectangle in half end move the
rlght half of the rectancle above the lefb.

N If the phese point ig (p,q) at time 3%, then 8t time t o+ 1
it is st the point obtained by squashlng ‘the gqusre to 8 (1/2 x 2)
rectangle, then cuttlng end reassembling to form 8 new: equare as
shown in the diagram. The formyle for this trensformstion is

(2p,q/2) if 04 51/2

e ' (5.1)
[2p - 1, q/2 + 1/2] ii‘ 1/2 < p< 1.

ﬁ<p9Q) =




If p end g are written in binary notation (1/8 in binary nota- 02%1
tion is 0.0C100 ee., 1/4 is 0,01000, and so on), the tronsformation |

removes the first digit after the binary point from p and attaches
it to q, so that

ﬁ(o.plpe OO., O.q:]-qg oao) = .(O.pgp-ﬁ 00.’ O.plqlqa...)

where the p; and a take on the values O eand 1., This transfor- !
mation is invertible snd from it we can define ¢_, as the inverse
of g4 and ﬁit as the +t-th iteration of ¢il‘ (Only integer values
of the time are used here, rather than all resl values, as in our dis~
cussion of dynemics earlier in this &slk - , but we do not regard this
distinction as important.) Moreover, the trensformation preserves
geometrical area, and so the analog of the microcanonical distribu-
tion is just a uniform density. |

To see how this completely deterministic system can at the same
time behave like a roulette wheel, we take the regions R, and Ry

0
to be the two rectangles O £p £1/2, 1/2&£p<1 as shown in

Fig. 7.

NN
P |

Fig. 7. Definition of the regions R, and R, used
' to show that the baker’s transformation is a
Bernoulli system.

Suppose the phase point at time O is

(p’Q) = (O’plp2 o8 0y OoquE aoo) .

If py; ds zero, the system at time 0 is in Ry; if py is one,
~ the system st time O dis in Ry. At time 1 +the phase point is Co
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and so we observe the phase point in region R . At time 2 it
ig in Rp3 and so on. Likewise, at time -1 1t is in Rq,, 8t

time -2 1in R, , and so on. Iach observation is determined by a ~

q
different digit %n the binasry representation of the number psir (p,q).

Since thqwanalog of the microcanonical ensemble for this system
hes 8 uniform density in the square it is not difficult to see that
the microcenonical probability of each of these digits in the binéry
expression for (p,q) is 1/2, 8and is uncorrelated with all the other
digits. The observations made at different times t (= integer) are
therefore uncorrelated, and so the baker’s transformation model is a
Bernoulli systen.

The baker’s transformation is an example of a Bernoulli shift.
Let "E denote a point in the space of doubly infinite sequences
'§j_ & (0, 1), with i an integer (positive, negative od zero).
We set %; =P, for i > O, and ¥ =49y for i <€ 0.
The ¢ specifies a8 point in the unit square

7
5 = cer 81, go,gl,

and the baker’s transformation is simply the shift

$5);, =  Bia -

Possibly one should not read too much physical meaning into this
type of result, for with a more complicated dynamical system the
regions R, , Ry, Ryy -vvy R deuld probably be exceedingly complica-
ted sets in phase spsce, but from a "philosophical"” point of view it
is very interesting to see how the same dynamical system can show
berfect determinism on the microscopic level and at the same time

perfect randomness on a "macroscopic" level.,
It is the 1nterplay of these two apparently 1ncompat1ble levels

of description that give the foundatlons of statlstlcal mechanics

their fasscination.

5.2 The Kolmogorov~8inai entropy

We consider ss before a partition of the encrgy surface S
into "k disjoint cells Ay, 1 = 1,000y X . (This is @ slight




" chonge in notation)., This collection of setls {Ai} is called a
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partition 4, & = {A;} 5 the A; ore the ‘atoms' of M. Since
}*<Ai) is the probability (in the nicrocanonical ensemble) of finding
the system in Ay, Kolmogorov defined the 'entropy' (not to be con-
fused with the thermodynamic entropy) of this partition h(L), in
anslogy with information theory entropy, as

n() = -Zpy) o g

Clearly, h(d) = O, with the equality holding if and only if

f%<A3> -1, for some j, i.e., there is complete certainty that

x ¢ A.. (We shall generally ignore sets of measure zero, setting
ﬂO(C)Qnﬂb(C) =0 if ﬁb(C) = 0, and writing Aj = 8, when
}xo(Aj) = 1.) 'The maximim value which h(A) cen teke is {nk cor-

responding to ﬂb(Ai) = k™" forall i =1, ..., k.

Given two partitions A = {Ai}, i =1, ..., k 8nd B = {B}.,
=1, +s., m, we denote the ‘sum' of the partitions A end B by
A v B AvB is the partition whose atoms sre all (non-zero
messure) sets A; N By. The entropy of A V3B is,

h(AVB) = 17_:_5 M.y 0By o p(a; 0By -

The 'conditional entropy! of a partition .A, relstive to a .partition

B is defined as

n(h/m = S pmo{F pa/ep) tnpay /sl
where ’

CWA/B) = A B/ B
PR A 377 M5

For 8 giVen.flow operator .ﬁt’ snd some fixed ‘time interval T ,
snd define gy A &s the —

we construct the sets g Ajy B Agy eer |
g " Kolmogorov then sets .

partition WhOse-aﬁoms are the sets {ﬁc.Ai},
: -1 ‘ :
. v . 1 n
nl,g. ) = 1Llim Lncv 4. 8 -
<’f' neso % j=0 Je

It can be Shown thaet h(ﬂ,djz) = jh(A,de). The K-S entropy of the

flow ¢, 1is defined ss (8 for Sinai)

n(dy) = sup n(hgg) = BT,
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where h 1is now an intrinsgic property of the flow. It wos shown by
Sinsi that a system is s K-system iff h(f,fz) > O for sll non-
trivial partitions A, i.e., for partitions whose otoms are not nll
of measurec zero or one. '

We csn now specify the precise sense in which K-systems are
‘random' even when the flow is entirely deterministic, As indicated
earlier the stoms of the partition A, {A;} , i =1,..., k, corres-
pond to different possible outcomes of the measurement of some dyna-—
mical function f(x), i.e. if x & A; ‘then the result of the
measurement will be «;, etc. (Since the set of outcomes of the
measurement is finite, being equal to k, k < oo, the measurement
is 8 'gross' one. It need now however be restricted to measuring
just one property of the system; we can replace f(x) by a finite
set of functions.) The probability (in the microcsnonicsl ensemble)
of an outcome &; is M (Ay) = p( ;). Now if these dynomical
functions were measured first at +t = -t , sand then st t = O, the
joint probability thst the result of the first measurement is dj
sand the result of the second is oy, is equal to the probsbility
that the dynamical state of the system x at the time of the pre-
sent measurement t = O 1s in the set Ay N Fg Aj’ i.e., p(xy, xj) =
(A N g, Aj). The conditional probability of finding the value
o i» 1if the result of the previous messurement was «., 1is
P(o(i/“JJ = ﬂ(Ai N ¢z AJ>/ ﬂ(ﬂf-c AJ) = /*(Ai N fj.c AJ>/ /"-(Aa>-
In 8 similsr way the probability of finding the result «;, at =0,
given that the results of the previous measurements at times

-¢, -2¢, ..., =-nC were il,o(ia, EEEY) Kin ’

oL, /s ' \ '
PO/ e, in)’E)“Q‘i“"‘““il~--”“‘«r‘*i)/

. )40(¢t n plt‘\'l oo N ¢nz Ay b-

It can be resdily shown that

h(A ﬁa) = lim h(A/ V ﬂkt‘é) = lim E"Zp(o(iia(’(iea-'n °(i )

n—»oo » . Nep® - n.

k v
X [Z p(o(.i/ Iy xin) lnp(o(i/o(il,..., xin)]}.

i=1

Hence  h(f, #,) > 0 for all non-trivial partitions implies




ftpnt no matter how‘many measurcments of the values ol 1(x) we make 025>

on o system al times, =T, ..., ~NT, the outcome of the next. \

|

“t

meacurement is still uncertain., (N.B. the messurements are 'coarse’

since )*(Ai>‘>, 0).

VI, ERGODIC PROPERTIES AND SPECTRUM OF THE INDUCED UNITARY

TRANSFORMATION

It is possible, and.fof‘ﬁany‘purposes useful, to consider the
Hilbert space L of square integrable functions on the energy sur-
face S (Xoopman). The integration here 1is agoin with respect to
the microcanonical ensemble density dx ;j Y(x) € L is a complex
velued function of x & 8, such that '

J; IVP ax < o .

The time evolution ﬁt then induces a trensformation Uy in L2,

N CENEN Y el

which is unitary.

»j‘lUtwgdx - ‘fl\}'Jgdx :

We may therefore write Uy = €exp [itL] where i is the generator
of Ug. For s Hemiltonian flow with H'= H(gy,+«ey Qs Pps =< pn)
i, is the Liouville operator or Poisson bracket ‘

.lLf (£, H) | 9 op; P43 )
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There is an intimaté connection between the érgodio properties
of the flow.énd the spectrum of Uy which is of the form exp( it4d) ,
with A in the spectrum of L. Clearly A= O is slways & discrete
eigenvalue of I, corresponding to the eigenfunction ‘V = const.

The following equivalences and implications can be shown to hold:
K~property ={r sbsolute continuity of the spectrum of L with
respect to Lebesgue measure (on the spasce orthogonal to the con-

S e e sk andby of the spectrum aztheak nixing =%




ergodicity =P A= 0O 15 a simple elgenvalue. )
This may be 8 good place tio note thal, due to the discrete nasturc
of the energy spectrum for finite quantum systems confined to o
bounded domsin V, there will be no mixing (decay of correlations)
in such & system. For such quantum syStems we do not therefore gain
anything from the use of ensembles and we are forced to look at the
infinite volume limit for signs of long time irreversibility. The
remerkable thing about Sinai’s result for hard spheres is that it
shows that finite classical systems can snd do have purely continuous
spectra. (Note that when Planck’s constant h =>0 the number of.
energy levels between some fixed E and E + AE becomes infinite.)

VII. INFINITE SYSTEMS

Since the number of particles contained in a typical macroscopic
system is very large (-Vl026) there is great interest from the point
of view of statistical mechanics in the ergodic properties of infinite

'systems (corresponding to the thermodynsmic limit in equilibrium sta-

tistical mechanics). As I indicated in the introduction, there are -—

there sre still some serious conceptual problems sbout the nature of
the ingredients, in addition to ergodic theory, which are necessary
to get the right physics. I shall therefore be extremely brief here.

The natural setting for this discussion is the more sbstract
form of ergodic theory. This thecry deals typically with the triplet
X, M, ¢t), X 1is a space equipped with a measure M which is left
invarisnt by g,. (I have left out explicit mention of ¥ the col-
lection of messurable sets). ﬂt is a flow if t is & real variable
and a discrete transformation if +t is an integer (in which case
ﬁn = ¢ and we can write the triplet as _(X,}A, ‘ﬁ)). The triplet
(X,f&, ¢t) is usually referred to as the dynamical system.

In our discussion of finite Hemiltonian systems we had X ”-SE’
‘M = microcsnonicel measure (ensemble), and g ‘the time,evolution
given by the solution of the Hamiltonian equations,of,motion. All our
enalysis can be easily translated to the more geﬁeral setting. Thus
we say that the dynemicel system (X,,&; #y) is ergodic if fox eny
set A C X, which is left invariant by g M(4) = 0 or ')A(A) = 1,
Equivalently (X, M, #) is ergodic if there does not exist snother
measurev)ﬁ , which is absolutely continuous with respect to A, and
ig also invariant under ﬁt‘




1. yle ssy that )A is absolutely continuous with respect to M ifl
}&(A) = 0 =P }\(A) = 0. When /U is absolutely continuous
with respect to M we can write d/ﬂ = @(x)d}A , i.e. /U has
an 'ensemble density' with respect to dm .

, /
Tt should now be clear what is involved .in the ergodic theory

of infinite systems: X will be the spsce of infinite configurations

(locally finite), M will be some stationary measure under the time
‘evolutlon ¢t assuming this can be suitably deflned. It may now

be much more difficult to justify a priori the use of the Gibbs
messure @t a given tempersature and chemical potentisl) and those
absolutely continuous with respect to it as the only physically

2o

sultsble measures (assuming there are also other stetionary measures . . '

avallable) then it was to srgue in the finite system for the use of
ensembles with ensemble densities. I will leave the discussion of
this to Professor Hasag and only refer you now to Table 1 for some
of the results known for infinite systems.
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Appendix: Ergodlc propertiss of simple model sysbem w1th co]llolonu‘

We are interested in the ergodic propertles of dilute gas sys-—
tems. These may be thought of as Hemiltonian dynamical systems in
which the partlcles move freely except during binazxy "collisions"

In @ collision the velocities of the colliding particles undergo a
transformation with "good' mixing properties (cf. Sinsi's study of
the billisrd problem) To gain &n understandinngf such systems wo
“have studled the following gimple discrete time model The system
'bcon31sts of a 81ngle perticle with coordinate ; (x,y) in & two-
"dlmen31onal torus with sides of length (Lx, L ), send "velocity"

= (Vg Yy ), in the unit square Vi & [o, l] vy ¢ [0, 1] . The
phase space N is thus a direct product of the torus snd the unit
square.. The transformatnon T which takes the system from & dyna-
mical stete (x, v) 8% ngime" 5 to @ new dynamiocsl state T(r V)
at time J+1 may be pictured as resulting from the particle moving
freely durlng the unit time interval between J and J+1 and then

,.—

. —
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undergoing & "collision" in which its velocity changes sccording to
‘the bsker’s transformation, i.e.
™r,v) = (x + ¥, Bv)

S—

with B +he bsker's transformation defined in Section 5,

: (2vys vy, 0 &£ v, & % _
B(vx,vy) =
§2vx—l, %vy+%), T L v, &£ 1.
The normalized Lebesgue measure d,« = dxdydv'dv /L Ly =

dr av/L, Ly in [V is left invariant by T. We call U the uni-
tary transforma?ion induced by T on L (am), Td = ¢ o T, Our
interest lies then in the ergodic properties of T- and in the spec-
trum of Up. '

We note first that the transformation B on the velocities is,
when taken by itself as a transformation of the unit square with
measure dv, well known to be isomorphic to a Bernoulli shift. It
therefore has very good nixing properties. |

The ergodic properties of our system which combines B with

free motion turn out to depend on whether L;l and L;l‘ satisfy
the independence condition (I),
n. L -1 + L":L §é Z for n, end n ‘integers -
x X oy x ¥
unless n, = n, = 0. (I)

Theorem 1:  When (I) koids, the spectrum of Up,, on the complement
of the'one-dimenqional s:tspace .generated by the constents, ig absolute-
ly contlnuous with respest 1o Lebesgue measure and hes infinite multi-

p11c1ty
It follows from Trzamea 1 bhat when (I) holds the dynamical
- systenm (r, n,mn) is ev e ast lelng. Ve do not know et present

whether it is also & Eer::.lll shift or at lesst a K system.

[

Theorem 2: When (I) ¢-zz not hold the system ([, T,f&) is not
ergbdic.
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