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Summary

A comprehensive mathematical model of neutrophil production in normal man is presented, The
model incorporates three control elements which regulate homeostatically the rates of release of
marrow cells to proliferation, maturation, and to the blood. The steady state properties of the model
are demonstrated analytically. The basic equations of the model, which are nonlinear, have been
integrated numerically. The solutions so obtained display graphically the dynamical response of the
system to various perturbations, which simulate experimental investigations that have been made
in the past of granulocytopoiesis. By an appropriate choice of values of the parameters characterizing
the system, it is shown how most of the principal kinetic properties of the neutrophil production and
control system are represented in a quantitative manner.

1. Introduction

The introduction of radioactive tracers as cell labels has led, inter alia, to a
rapid accumulation of knowledge during the past 20 years or so of the kinetic
behavior of the neutrophil and its precursors in the blood and marrow of man.
Many investigations, too numerous to mention here, have contributed to this
knowledge, and several excellent reviews of this subject may be found in the
literature [1, 2, 3, 4]. The process of production of neutrophils is rather compli-
cated, and many details of the process are as yet unknown. However, a fairly good
qualitative or semi-quantitative description of the life history of the neutrophil
exists. Concomitant with the study of particular aspects of this life history,
there have been a number of attempts to describe such aspects theoretically in
quantitative terms. Examples of mathematical models of this nature are those
related to the distribution in number of neutrophil precursors in the marrow [5],
the blood-granulocyte-specific-activity curve which follows the labeling of all
neutrophils and their precursors [6], and the homeostatic regulation of blood
neutrophil levels [7]. However, up to the present time, there does not exist a
single comprehensive quantitative model representing both the steady state and
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the dynamical behavior of the neutrophil production system. By dynamical
behavior, we mean the response of the production system to perturbations.

The purpose of the present work is to propose such a comprehensive mathe-
matical model of the natural history of the neutrophil and its precursors which
will simulate, more or less, all of the known kinetic aspects of this history. In
developing our model, we make many idealized assumptions. These are made
for the most part in the interest of simplicity, and because of the lack of quantified
data. However, sometimes, as in the representation of the proliferative precursors
of the mature neutrophil, we are forced to simplify the model because the data is
not consistent with any simple proliferative scheme. Nevertheless, we believe
that these simplifications do not invalidate the general utility of our model.

We first review, in section 2, the known quantified facts of granulocytopoiesis.
Because the neutrophil is the most common granulocyte, the terms neutrophil
and granulocyte are often used interchangeably in the literature, and we shall do
so here. In section 3 we describe our model, which consists of five compartments,
two, proliferative, and three, nonproliferative. Associated with each compartment
is a partial differential equation for the cell density function, which describes the
population in the compartment as a function of the variables age (or maturity)
and time. The model also contains three feedback control elements which regulate
homeostatically the rate of release of cells from the marrow to the blood, the
rate of production, and the rate of release to maturation of cells in the proliferative
pool.

Because of the control elements in the model, the model equations are nonlinear,
and therefore cannot be solved in an analytic manner, in general. However, the
steady state solution can be found, as shown in section 4. The steady state
solution is useful for deducing many properties of the system, and is utilized in
section 6, in conjunction with the known experimental facts, to determine the
values of seven of the parameters. These seven parameters characterize the steady
state behavior of the system.

A partial integration of the model equations can be achieved, so as to reduce the
equation system to ordinary differential equations. This reduction is demonstra-
ted in section 5. Numerical solutions of these equations, performed on a com-
puter, which yield the populations in the compartments as functions of the time,
following a given disturbance of the system, are displayed in section 7. A compari-
son of these solutions is made with the known semiquantitative behavior of the
neutrophil production system, following a disturbance. This comparison provides
information concerning the dynamical parameters of the system. The latter
parameters serve to determine the dynamical response of the system to pertur-
bations of the steady state cell populations.

We find that our model, although it oversimplifies certain essential details of the
neutrophil production scheme, can be made to successfully simulate the significant
quantitative details of granulocytopoiesis. The model forms the basis of a
mathematical representative of the natural kinetic history of the leukemic state,
which will be presented in a subsequent work.
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2. Granulocytopoiesis

We shall present a succinet summary of most of the known facts about neutrophil
production and control in a normal man. The entire production scheme is
schematically illustrated in Fig. 1. There is believed to exist in the marrow a

STEM CELL MYELOBLAST PROMYELOCYTE  MYELOCYTE MATURATION BLOOD
: RANDOM
DEATH
MARGINAL
POOL

Fig. 1. The normal neutrophil production scheme is schematically illustrated. The stem cell has not

been identified, although it is usually assumed to exist. The myeloblast, promyelocyte, and myelocyte

are proliferative. The maturation compartment consists of metamyelocytes, band forms, and
segmented neutrophils, all nonproliferative

stem cell from which all granulocytes found in the blood are derived. Indirect

“evidence for its existence comes from observations indicating that abnormally
large production of one type of blood cell leads to a concurrent decrease in
production of the other types [8, 91. Further evidence comes from the observation
that spleen colonies derived from irradiated mice, and presumably arising from a
single precursor cell, sometimes contain erythroid, granulocytic, and megakaryo-
cytic cells [10]. The identification of the stem cell in the marrow has yet to be
made. Recent evidence suggests that a lymphocyte-like cell functions as the stem
cell [11].

The earliest cytologically identifiable neutrophil precursor normally found in the
bone marrow is the myeloblast. The myeloblast is a proliferative cell, and perhaps
functions as an additional stem cell for the production of granulocytes only. It most
likely produces the promyelocyte [12], likewise a proliferative cell. The pro-
myelocyte in turn most likely produces the myelocyte, which is the most abundant
proliferative neutrophil precursor found in the marrow. Myelocytes give rise to a
maturing and nonproliferating pool of precursor cells. These cells are cytologi-
cally and morphologically distinguishable, in the order of their maturation, as
metamyelocytes, band forms, and segmented neutrophils. A certain portion, per-
haps one half, of the more mature nonproliferating granulocytes constitute a
“mature granulocyte reserve” compartment of the bone marrow. From here, they
are released into the blood by an unknown mechanism.

When granulocytes are taken from a donor’s blood, labeled with DFP*?, and
transfused back again, only 50% of the labeled- cells can be accounted for in the
circulating blood [13]. This has been interpreted to mean that the total blood
granulocyte pool consists of two subcompartments, a circulating granulocyte
compartment and a marginal granulocyte compartment, which contain approxi-
mately equal numbers of cells, and which equilibrate rapidly with each other.

13*
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Granulocytes have been observed adhering to walls of blood vessels, and such
cells are presumed to be part of the marginal granulocyte compartment. The
cells in the marginal compartment are rapidly mobilized to join the circulating
compartment by means of exercise or the injection of adrenaline into the blood.
From the observed rate of disappearance of labeled cells from the blood, it has
been determined that the granulocyte loss from the blood is a random process,
and that the half-time for granulocyte disappearance from the blood is 6.7 hours
[14]. Only a negligible number of cells are presumed to die because of senescence,
as deduced by the scarcity of pyknotic cells in the blood [15].

In a normal marrow, the relative number of cells of each type that have been
observed by different investigators is somewhat variable, as shown in Table 1. In
this table, the relative numbers are reported relative to the observed number of
myelocytes, which has been set equal to unity. It can be seen that the myeloblast,
the earliest and least common granulocyte precursor, is subject to the greatest
variation in observed number, followed by the promyelocyte. Even the ratio of
non-proliferative to proliferative cells, calculated in the last column in Table 1,
has a range of variation extending from 1.27 to 7.57. There is some belief that
this ratio is approximately 3 [16].

Based on the labeling of proliferating cells in S-phase with tritiated thymidine,
the mean time of S-phase, or DNA synthesis time of proliferating cells has been
estimated to be 13.5 hr [17] or 16 hr [18] The earliest transit time for
myelocytes labeled in S-phase to appear as metamyelocytes is 3 hr [19].

The data on mitotic indices of the proliferative cells is shown in Table 2. The
preponderance of investigators find a mean mitotic index in the proliferative
pool of approximately 1. The mean generation time of all the proliferating
cells is approximately 48 hr based on the decay of intensity of radioactively
labeled cells [19], and based on mitotic indices and relative numbers of cell

Table 1. Relative Number of Marrow Granulocytes in Normal Man. Normalization: Myelocyte Number =1

Proliferative Cells Nonproliferative Cells |Ratio of Non-
proliferative
Pro- Meta- Se- Cells to Source
Ngi? myelo- Mc};izo myelo Band gment- | Proliferative
cyte ed Cells
0.10 0.33 1 1.55 5.7 3.57 7.57 Osgood & Seaman [47]
0.15 1 0.99 2.69 2.08 5.01 Vaughan & Brockmyre [48]
0.16 0.43 1 1.28 2.28 1.90 343 Miale [49]
0.17 0.42 1 1.83 2.20 Wintrobe [50]
0.07*  0.26* 1 1.04 1.38 0.96 2.54 Donohue et al. [26];
Athens [S1]*
0.06 0.07 i 0.45 0.50 0.49 1.27 Lala et al. [52]
0.06 0.21 l 1.74 Killman et al. [53]
0.11 0.23 l Rondanelli et al. [ 54]
0.02 0.06 1 0.92 1.63 1.67 3.91 Cronkite et al. [55]
0.02 0.06 i 0.80 1.32 1.90 3.72 Cronkite & Vincent [3]
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types in the marrow [20, 5]. The interdivision time of myelocytes observed in

vitro is approximately 30 hr [21].

Generation times can also be inferred from the labeling index (L. I.), the fraction
of proliferative cells which are radioactively labeled following a pulse exposure
to tritiated thymidine. Most of the available data regarding labeling indices-is
summarized in Table 3. However, as will be shown in the appendix, the inferences

regarding the mean generation times of the myeloblast, promyelocyte, and myelo-
cyte that are inferred from the relative marrow counts combined with the
labeling index data are decidedly not in agreement with the estimates of these

times that are inferred from the relative marrow counts when combined with the

mitotic index data.

Table 2. Observed Miotic Indices of Marrow Proliferative Cells in Normal Man

Pro-

Mean Mitatic Index

Myeloblast myelocyte Myelocyte of Proliferative Cells Source
0.11 0.11 0.052 0.059 Lala et al. [52]
0.025 0.015 0.011 0.012 Killman et al. [53]
0.0236 0.0133 0.0079 0.010 Rondanelli et al. [54]
0.008* Videbaek [56]
0.0077* Begemann & Hemmerle [57]
0.011 Boll & Ganséen [58]

* Promyelocytes and Myelocytes only.

Table 3. Initial Labeling Index of Marrow Proliferative Cells in Normal Man

Pro- Mean Labeling Index
Myeloblast myelocyte Myelocyte of Proliferative Cells Source
0.85 0.65 0.23 0.27 Cronkite et al. [55]
0.15 0.59 0.22 0.24 Cronkite & Vincent [3]
0.32* 0.25* 0.28* Lundmark [59]
0.46 0.45 0.13 Gavosto [60]
0.69 0.58 0.32 Mauri et al. [61]
0.65 0.20 Kuroyanai & Saito [62]
0.40—0.501 |0.40—0.50% | 0.15—0.20 Mauri [63]
0.35--0.38 Lin & Bouroncle [64]
0.50 Alfrey et al. [65]
0.35 Schmid et al, [66]
0.63 0.38 Ogawa [67]

* Infants and children.
T Myeloblasts and promyelocytes combined.

When proliferating cells are exposed to pulse labeling with tritiated thymidine,
labeled cells appear in the blood four days later [22] (see Fig. 2). This has been
interpreted to mean that there is a minimum obligatory transit time of pro-
liferating cells through the metamyelocyte and band compartments [3], with a
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Fig. 2. The appearance of labeled granulocytes in the blood in three normal individuals, following
the administration of tritiatcd thymidine on day 0, from Perry et al, [22]

magnitude of approximately 4 days. The segmented neutrophils and some of the
band cells in the marrow are believed to constitute the marrow reserve compart-
ment, but estimates of the number of cells in this compartment are very
variable. Perhaps the best quantitative information regarding it is contained in
the blood-granulocyte-specific-activity (BGSA) curves [23] (see Fig. 3), obtained
by measuring the radioactivity of granulocytes in the blood following the intra-
venous administration of the radioactive label DFP32, The latter substance
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Fig. 3. The blood-granulocyte-serum-activity curve following labeling of all granulocytes and their
precursors at time zero with DFP32. The experimental points shown represent the mean data for 18 sub-
. jects, from Warner & Athens [6]
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labels all myelocytes, nonproliferative marrow precursors, and cells in the blood,
with the relative labeling values 1, 2, and 4, respectively. Based on a mathematical
model of granulocyte production, the mean time in 21 normal subjects for a myelo-
cyte to divide, mature, and enter the blood was inferred to be 11.4 days [6].
Contrariwise, on the basis of tritiated thymidine pulse labeling investigations as
illustrated in Fig. 2, it has been estimated that the mean transit time of granulocyte
precursors through the marrow following the DNA synthesis phase is 8.5 days
[24] and 6.3 days [25].

The mean number of granulocytes in the blood of a normal 70 kgm man is found
to be 4.555/mm?> [23]. Assuming a mean blood volume of 4.76 liters, it is
inferred that the mean number of blood granulocytes is 2.17 . 10'° cells in a normal
man, or 3.1.10% cells/kgm of body weight. The number of cells in the marginal
granulocytic compartment is 3.9. 10® cells/kgm [23]. Based on the latter two
values, the number of cells in the total blood granulocyte compartment which is
the sum of the circulating granulocyte compartment and the marginal granulocytic
compartment is 4.9 . 10'° cells, in a normal 70 kgm man. The total number of
granulocytes in the body, inferred from measurements of iron uptake in erythro-
cyte precursors, was found to be 1.14.10'%/kgm [26], or 0.80.10'? cells in a
normal 70-kgm man.

The dynamical response of the granulocyte production system to perturbations has
been studied in a number of different ways. Ordinarily, the steady state behavior of
the system requires that the production rate equals the disappearance rate, and also
equals the rate of release of cells from the marrow. In leukopheresis, granulocytes
are removed from the blood artificially over a short span of time. Following such
an acute depletion of the neutrophil blood count in dog or man, referred to asa state
of neutropenia (or alternatively as granulocytopenia or leukopenia), neutrophils
rapidly enter the blood from the marrow and produce an abnormally large number
of neutrophils in the blood, or a state of neutrophilia [27—30]. The magnitude of
the white blood count seen in such a state is about 2—3 times normal. The time it
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Fig. 4. The granulocyte count in the blood of the dog following induced pneumococcal pneumonia,
The solid line represents the normal granulocyte count, from Marsh et al. [34]
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takes for the blood to become neutrophilic following leukopheresis is a few hours.
A leukocyte inducing factor (LIF) has been detected in rats which causes the
release of granulocytes from the marrow to the blood [31]. Such a humoral
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Fig. 5. The change in the mean neutrophil count in mice following total body irradiation with the
hindlimb shielded. Each point represents the mean of a group of mice. The shaded area represents the
mean neutrophil count in a control group. From Morley & Stohlman [39]
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mice following total body irradiation, from reference [39]
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factor is a suggested mechanism for regulating the release of marrow granulocytes
in response to the number of granulocytes circulating in the blood [32, 33].

Speaking qualitatively, the same kind of neutrophilia observed in response to
leukopheresis has been observed as a response to other stresses such as infection
[34—36], bacterial endotoxin [13], and administration of adrenal corticosteroids
[14, 30] or etiocholanolone [37]. An interesting feature of the response to
infection in dogs, shown in Fig. 4, which has not been reported in the response
to leukopheresis, is the oscillating nature of the leukocyte count.

Another means of strongly perturbing the blood cell production system has been
x-irradiation. Red blood cells recover rapidly and attain a state of “overproduction”
following such a stress [38]. Total body x-irradiation of mice with a shielded
hindlimb was performed, in order to be able to study the response to such stress in
the shielded marrow [39]. Presumably, any changes seen there are a consequence
of the induced neutropenia and not the direct consequence of marrow irradiation.
The irradiation destroys a majority of the neutrophils and their precursors in
the body. The results of such studies are illustrated by Figs. 5 to 7. Fig. 5 shows the
time course of the concentration of neutrophils in the blood for a period of 20 days
following the total body irradiation. The figure shows that the concentration is
below normal for about 12 days following irradiation, when it returns to normal
and then “overshoots” the normal range. During the neutropenic interval in the
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Fig. 7. The mean levels of nonproliferative cells of the marrow in the shielded marrow of mice following
total body irradiation, from reference [39]
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blood and following it, the concentration of proliferative cells in the marrow (of
the shielded limb)is shown in Fig. 6. The concentration of younger nonproliferative
cells, such as the metamyelocytes and band cells, also is higher than normal
during the entire course of the experiment, as shown in Fig, 7. However, the con-
centration of segmented neutrophils in the marrow, initially below normal,
subsequently overshoots to a large abnormal value. This overshoot anticipates
the overshoot seen in the blood by several says.

The results of such x-ray studies provide qualitative evidence of the homeostatic
control of the total neutrophil population in the body, and show how the neutro-
phil production system attempts to maintain the blood population constant at a
desired level, in two ways. It does so first, by regulating the number of mature
cells sent from the marrow to the blood, and second, by increasing the production
of new cells, when neutropenia develops. Furthermore, the serum of mice
following irradiation display an enhanced ability to stimulate the growth of
granulocytic colonies in vitro [40]. This relationship has been interpreted to
indicate the existence of a humoral factor, a “granulopoietin”, which regulates
granulocyte production.

Many investigators have sought for the mechanism by which granulocyte pro-
duction is regulated. A notable recent proposal is that mature granulocytes
contain and produce a feedback inhibitor of cell production, a granulocytic chalone
[41]. There is some evidence that an anti-chalone is also made which regulates
granulocyte production [41].

A phenomenon that relates to the existence of a granulocytic production regulator
is the relatively infrequent observation of a cyclic fluctuation in the granulocyte
4000
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Results of neutrophil-counts in subject no. 2.
Fig. 8. Cyclic variation of the neutrophil of the neutrophil count seen in a normal individual, from
the work of Morley [42). The appearance of periodicity is not borne out by an objective statistical test
(personal communication, David. W. Alling)

count of normal individuals [42, 43]. Such oscillations were originally reported
as occuring in eight out of eleven individuals [42] (see Fig.8), with periods varying
between 14 and 23 days, but reexamination of the data has reduced the claim to
two individuals [43]. A more recent examination of eight normal individuals
and two patients with Wegener’s granulomatosis who were receiving cyclo-
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phosphamide revealed periodic variation in only one subject, one of the two patients
[43]. The period was estimated to be 5.7 days. It has been suggested, on the
basis of a computer model simulating granulopoiesis, that this periodic behavior
is a manifestation of feedback-control in the granulopoietic system [44]. Similar
cyclic oscillations have been observed in patients with chronic granulocytic
leukemia [45], and in some cases of cyclic neutropenia [46].

3. Model of Neutrophil Production

The presumed mode or sequence of development of mature neutrophils from
their possible inception from a stem cell is illustrated in Fig. 1. The major
problem encountered in representing mathematically this proliferative scheme is
in the mathematical representation of the proliferative compartments. One
difficulty is the lack of precise knowledge of either the mean generation time
or the mean transit time of cells in the proliferative compartments. Another diffi-
culty is the lack of knowledge of the cell types of the daughters of a dividing cell.
Perhaps the simplest and most appealing assumption in regard to the latter
problem is the following scheme of proliferation: The stem cell is a self-main-
taining compartment which produces myeloblasts. The myeloblast produces two
promyelocytes when it divides. The promyelocyte in turn produces two myelocytes
when it divides and the myelocyte, after one or two divisions in which the
daughters are both myelocytes, divides again and produces two metamyelocytes
[30].

However, the difficulty with the above model, or other simple models of pro-
liferation that can be devised, is that mean generation times and other parameters
can not be assigned to each of the proliferative compartments, which are consistent
with the known observations regarding them, such as mitotic indices, DNA
synthesis times, grain-count halving data, etc. The inconsistencies and inadequacies
arising from one simple class of models, which includes the above-mentioned one,
is discussed at length in the appendix. We conclude that it is premature, at the
present time, to put forth a detailed model of the proliferative compartments which
includes distinct stem, myeloblast, promyelocyte, and myelocyte compartments.

Until better quantified information regarding neutrophil precursors is forthcoming,
we believe for modeling purposes, it is best to accept the view that there is a
single self-maintaining proliferative pool [2, 23]. The cells in this pool can be

THE NORMAL STATE

Fig. 9. The model of the neutrophil production system in normal man is illustrated schematically.

The active compartment A and the resting compartment G, comprise the proliferative pool. The

compartments labeled M, R, and B represent states of maturation, reserve, and circulating blood,

respectively. The blood compartment includes the marginal granulocytes. The release rates o, B, and

y, which control the release of cells along the indicated pathways, depend on the total number of
cells in the system (in the case of ¢ and p) or in the blood (in the case of y)
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thought of as either representing myelocytes, the most common proliferative cell,
or as representing the mean behavior, in some sense, of all the proliferative cells.
As we will show, such a model is adequate to explain virtually all the known
kinetic observations of cells in the blood (but not, of course, direct observations
of the individual proliferative compartments).

The model we have introduced to represent neutrophil production system isillustra-
ted in Fig. 9. The model consists of five pools or compartments, The proliferative
pool is assumed to consist of two compartments, an active compartment A and
a resting compartment G,. The latter was originally introduced in order to show
how the proliferative pool can respond dynamically to depletions in blood
cells caused by unfavorable events, so as to renew itself rapidly [38]. The G,
compartment fulfills the same function in our model. Thus, the specific nature
of the granulopoietin story is not relevant to our model. The only biological
assumption that is utilized in our model is that the control mechanism for cell
production, whatever its complexities, is able to recognize the total number of
neutrophils and their precursors.

By contrast, in the model of King-Smith and Morley [44], it is assumed that
production is controlled by the number of mature neutrophils in the blood. We
feel that it is more plausible to believe that, if the marrow was artificially
depleted of granulocyte precursors, the production rate would immediately increase,
rather than delay its response to this depletion until it reached the blood pool, many
days later. In addition, because cells in G, leave at random, the time spent in the
G, compartment is different for different cells. Furthermore, G, cells are acknow-
ledged to be indistinguishable from G, cells, which are cells in the pre-synthetic
phase of the fixed generation time interval characterizing the active compartment.
Hence, the existence of the G, compartment also serves to make for a variable
transit time of individual cells in the proliferating state, which is more in keeping
with experience.

A cell which enters the active phase has a commitment to undergo cell division a
fixed time T, later. The generation time 7, is assumed to consist of four
phases, G, the pre-synthetic phase, S the DNA synthetic phase, G, the post-
synthetic phase, and M the mitotic phase. After mitosis, the two daughter cells
produced by division enter the G, phase. In the G, phase, a certain portion of the
cells leave at random to reenter the active compartment at a fractional rate o
per unit time. Similarly, a certain portion of the cells leave at random to enter
the maturation compartment at a fractional rate f per unit time.

The maturation compartment M is considered to be a “pipeline”, in which all
cells mature for a fixed time Ty, and then enter the marrow reserve compartment R.
The latter compartment is not a pipeline, but rather is, like G,, a “random”
compartment, because all cells are treated equivalently and can leave at random
to enter the blood. The fractional rate at which cells leave the reserve compartment
to enter the blood is y. The reserve compartment contains the second control
element in our model, namely, the ability of the marrow to release cells into
the blood stream on demand. Here, too, we do not require any detailed nature
of this leukocyte inducing or releasing factor. We assume only that the mechanism,
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whatever its nature, is able to detect and respond to the number of neutrophils
in the total blood granulocyte pool.

Because the interaction of cells in the blood with cells in the blood granulocyte
reserve is largely unknown, and because the indications are that the rate of
equilibration between these two pools is rapid, we have combined them into a
single blood compartment. The latter is also a random compartment, from which
cells disappear on die at random at a fractional rate per unit time 4.

To each compartment we assign a cell density function, which is assumed to be a
function of either maturity and time, or age and time. The distinction is purely
didactic, and we prefer to characterize the cell density functions for the pipeline
compartments, namely the active compartment and the maturation compartment,
as depending on maturity and time. In them, cells undergo maturation. The random
compartments which comprise the G,, reserve, and blood compartments, have
associated with them cell density functions dependent on the age and time. In them,
cells merely age without maturing, and they can in principle remain there a very
long time. In distinction to the non-random compartments which have a fixed life-
time associated with them, the random compartments have associated with them
half-life times or mean lifetimes.

Let g represent age, p represent maturity, and ¢ represent time. The equations
satisfied by the cell density functions are age-time equations of the form first
suggested by Scherbaum and Rasch [68] and von Foerster [69], as follows.

on(u,t)  on(ut) <
TR =0 O<pus=Ty,
0g(a,1)  Og(at)
T + 2a = (Oﬂ+ﬂ)g(a> t)5 O<a>
om(u, t)+ om(p, 1) -0, 0<pu< Ty, (1)
ot op
or(a,t)  Or(at)
Tt L (a, 1), 0<a,
ob(a,t)  0b(at)
ot + aa - lb(aat)s 0<a.

Here n (4, t), g (a, £), m (i, 1), ¥ (a, 1), and b (a, t) are the cell density functions in the
active, G,, maturation, reserve, and blood compartments, respectively. The age a
or maturity p characterizes each compartment separately, but the time ¢ is the
same variable in all compartments. For example, a=0 or p=0always characterizes
cells which are just entering a given compartment. The right hand side in these
equations always represents cell loss. In order to represent leukopheresis experi-
ments and other experiments in which external agents are introduced which cause
cell loss or disappearance from a given compartment, a term —D (y,1) (or
— D (a, 1)) must be added to the right hand side of a given compartment equation.
Such a term represents the rate at which cells in the interval y to p+du (or a
to a+da) disappear at time ¢.
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We assume that at any time ¢, the fractional loss rates « and f depend on the
total population in all the compartments, N (). The specific functional depen-
dence of @ and f on N (¢) is taken to be as follows,

N Y
OC([)=050+061 l:(N—(t)> —1:‘, (2)

po=ot s, | (51) 1] o

Here «y, oy, f;, N, and v are positive constants, and o, > f8,. The dependence of o
and f on N is shown quantitatively in Fig. 10. We will show later that in the
steady state of the system, N=N, and a=f=0, The choice of the same
exponent v in equations (2) and (3) is made in the interest of simplicity, to reduce
the number of free parameters appearing in the model. The functional dependence
chosen permits the resting compartment to respond to depletions in the total
population by increasing production, and by sending more cells to mature:
a>ay and f>a, when N (t)<N. Contrariwise, if a state of overpopulation is
for some reason achieved so that N (£)> N, then less cells are produced or sent
to maturity. The fact that o, > f, insures mathematically that the population is
stable about the value N = N, but we will not show this here.

The fractional loss rate in the blood 1 is assumed to be a constant. The
control of release of cells from the marrow reserve compartment to the blood is
achieved in the model by permitting the reserve release rate y to depend on the
number of cells in the blood compartment N (£), as follows,

N ’ _
Caa ) Yoty |:<—‘"LL—‘> —1} Ng(t—tg)<Np,
y=7(t) {Vo Ng(t—tg) . Ny(t—t)=N,. )
Here y,, y1, Np, p and tg are positive constants. The existence of a time delay #, is
indicated by various experiments, for example, the response to leukopheresis Np
represents the steady state value of the population in the blood compartment, so
thatin the steady state, y=y,. According to equation (4), the release rate is increased
whenever the blood population falls below its steady state value. However, if the
blood is neutrophilic, then the marrow compartment releases cells at its minimum

rate y,.

The cell density functions satisfy the following boundary conditions, which re-
present the manner in which new cells enter each compartment,

n0,0=aNy@®), g0 0)=2n(T4t), m@O)=p4N,(),

(5)
PO, )=m(Tys 8), b(0,0)=7 Ng (D).

Here N, (t) represents the total population in the resting compartment, and

Ny (t) represents the total population in the marrow reserve compartment, The

factor 2 is present in the second equation in (5) to represent the fact that two cells

are produced by division of the cells in the active compartment when they reach

the age T,.
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In addition, the density functions satisfy an initial condition which specifies the
initial state of the system,

n (/J’ 0) :fA (.“')a g(a, 0) :fG ((l), m (i, O)ZfM (#),
r(a,0)=fr(a), b(a,0)=/p(a),

where the functions appearing on the right hand side above are all given.

(6)

The total compartment populations at any time are defined in terms of the cell
density functions as follows,

Ty ) Ty
N,)={ n(wtydy, No@®=[ g(ada, Ny@)=[ mdp,

Ne()=[r(@t)da, Ng()=[,ba0da
The total population N (¢) is defined as the sum of the compartment populations,
N (H)=N,4(t)+ No () + Np () + N () + N (1). ®)
Because a time delay appears in the expression for 7y, equation (4), we need
to know Ny (t — tg) for 0=t < tz. That information is given as follows,
Ng(t—tr)=Fg(1), 0=t<ty, )
where Fy () is a prescribed function.

Equations (1) in conjunction with the boundary conditions (5) and the initial
conditions (6) and (9) constitute the mathematical formulation of the model.

To represent experiments in which a label such as tritiated thymidine is intro-
duced into those cells in the active compartment which are in S-phase, it is
convenient to partition the active compartment into three compartments consisting
of the G, cells, the S-phase cells, and the G,+ M cells. (I cells in mitosis need
to be distinguished, the G,+M cells can be subdivided further in the same
manner.) Then the first equation appearing in (1) is replaced by the three
equations

anl (/“l'a t) + anl (lu> t)

= <
T o 0, O<u=sT,
ong(u,0) | Ong(u, 1)
=0 O<pu=sT 10
o o ) <usTs, (10)
6172 (,Lt, t) 5”2 (/1, t)
= <
5t + a,l,l 0> 0<)U’:T2,

Here n, (1, t), n, (1, 1), and n, (u, t) are the cell density functions for the G, S, and
G,+M phases, and T,, T, and T, are the respective transit times of cells in
these phases, where

T1+TS+T2:TA. (11)

The first two boundary conditions in (5) are replaced by the set of boundary
conditions,
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ny (0> t)=O( NO (t)a U (0> t):nl (Tla t)a
”2 (O> t)=71s (];5 t)> g (O> t)=2 ”2 (TZa t)'

(12) -

In addition, the first initial condition in (6) is replaced by the set of initial conditions

ny (1, 0)=f1 (1), A (:u> O):fs (:u)a ny (4, 0)=f2 (W), (13)

where f|, f,, and f, are prescribed functions of x. The populations N, N, and N,
of the subcompartments Gy, S, and G, + M of the active compartment, respectively,
are defined as

No@O=[m @ dy,  NoO=[on0dy, Ny @=lym @ode  (14)

4. The Steady State Behavior of the System

It is possible to obtain the solution to the model equations when the system is in
a steady state. Then the initial conditions (6) and the time derivatives appearing
in equations (1) are disregarded, and the following steady state solutions, denoted
by an overbar, can be found readily,
A(w=ng, OSusT,,
= . ~2apa
gla)=goe , 0=q,
_( )= 15)
m(/‘):mo, Oé,u:<:TM>
Fla)=rqge "9, b(a)=bye *, 0=aq,
where ny, go, Mo, o, and b, are constants. The solutions for g, r, and b depended
on the provisional assumption that Nz and N were equal to Ny and N, respectively.
We find in fact by substituting (15) into (7) and integrating, that the compartment
populations are constant, and we denote the constant steady state values so
derived with an overbar. Thus,

N =no T, No=go/2 o, Ny=mg Ty,
Ng=ro/v0, Nyp=by/A.

Hence, the total population N (¢) is also a constant denoted by N, and given by
the expression

(16)

N=NA+N0+NM+NR+NB. (17)

The solution (15) must satisfy the boundary conditions (5). Note that in the
latter equations, the fractional loss rates «, f, and y assume the constant
values, according to equations (2)—(4),

A=0p, B=0a,, Y=7o- (18)
The result is

Jo=2ny, Mo =go/2 =1y, ro=4go/2=ny, bo=ro=ng. (19)




A Mathematical Model of Neutrophil Production 203

If we substitute this set of equations into (16), we find that the compartment
populations can all be expressed in terms of the single constant n,, which
represents the steady state production rate of the system:

Ny=ng Ty, No=no/n, Ny=ng Ty,
Ng=n4/70, NB:nO//l'

The last equation above expresses the fact that the steady state production
rate n, equals the steady state loss from the blood compartment A N. From (17)
and (20) total population can also be expressed in terms of n, as

N=no(T 4oy + Ta+70 " +471). (21)

From equation (21) and the last of equations (20) (any one of them will do)
we can eliminate n, and so deduce the following compatibility condition which
the parameters of the system must satisfy,

N=Nph(T +ogt+Toy+ys +A7h. (22)

If the subcompartments of N, are introduced and equations (10) replace the
first of equations (1), then the steady state solutions for it are as follows,

(20)

Hy =Hg=M, =T, Ny=ny, T,

(23)

Ni=ny T, Ny=nyT,.
Of course, Ny,=N,+N,+N,.

5. Integration of the Kinetic Equations

Because of the assumed dependence of «, f, and y on N (t) and Ny(t), the
equation system (1) is nonlinear, and so we can not expect to obtain an analytical
solution of it. However, it is possible to derive the equations that the total
compartmental populations N, (f), N, (t), etc. must satisfy, by integration of
equations (1) over age or maturity, as needed. We illustrate this procedure in
detail for the active compartment.

Integrating the first equation in (1) over y, and utilizing (7), we find that

dN 4 (1)

T +n (T4 t)—n(0,t)=0. (24)

The general solution of the cell density equation without regard to the initial
condition or the boundary condition is an arbitrary function of ¢t — u. Therefore,

n(ﬂ’t)=n(,u_t:0)a té}l,
n(w )=nO,t—p),  t>p

(25)

For t <y, in view of the initial condition (6),
n(p)=fau—-t, t=p (26)
Hence, the function n (T, t) appearing in (24) is given by the expression

Journ. Math. Biol. 1/3 14
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Ja(Ty—1), =Ty,
Ty t)=
"(Tw 1) {n(O,t—TA), t>T,.
Substituting (27) and the boundary condition (5) into (24) leads to the following
difference-differential equation that N , () must satisfy,
dN4 Ja(T4—0), 0<t=Ty,
dt a(t—TY)No(t—T,), t>T,.
In a similar manner, we readily derive the following equations that the other
compartmental populations satisfy,

27)

=0 (t) N, (t)—{ (28)

dNy fa(T4—0), 0<t=Ty,
dt [a(t)+ﬁ(t)]N0(t)+2{(X(t—TA)NO(t—TA), t>T,,
dNy _ ) I (T =), 0<t=typ,
dt =PONo®) {:B(t'—TM)NO(t—tM), t> Ty, @)
dNg Ju (Tye—1), 0<t=Ty,
dt y(t)NR(t)-l—{ﬁ(t_TM)No(t_TM)a t> Ty,
dN
dtB=—/1NB(t)+v(t)NR(t),
where y (¢) is given by (4) for t =t and by the expression
Nz \ _
Vo+)’1 |:<M> _1:15 Fﬂ(t)<NB>
)= Fglt . 30
ve) {Vw s() Fg(t)2Np, G0)
for 0=t <tg.

When three subcompartments replace the active compartment as in (10), equation
(28) and the first equation in (29) gets replaced by the following three equations,
obtained by integrating (10) over the maturation and/or age variables,

dN,
dt

=0((t) NO (t)—‘lla

dN,
dt ”'JI—sz

dN, _
df _Js J2>

=2J,—[a(®)+ B ] N, (1),

(1)

AN,
dt

where

V(T =), 0<t=Ty,

Y lat—=TYNo (= Ty),  t>Ty,
fs(Ts_t)a 0<t§Ts>

Js= fl (T1+Ts_t)5 Ts<t§T1+Ts5 (32)
(=T —TYNo(t—T,—T), t>T+ T,
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2 (T =), . O0<t=T,,

J,= fs(Ts+T2_t)a T2<t§T2+TS,
P i (Ta-t), T+ Ty<t=Ty,
a(t—TgNo(t—Tp), t>T,.

In (31), the right hand side is always the difference between cell influx and cell
outflux. The factor 2 in the last equation in (31) accounts for cell division that
takes place when cells leave compartment 2.

The set of equations (28) and (29) can be readily integrated numerically with the
aid of a computer. This integration requires the initial values of the compartment
populations N 4(0), Ng (0), N (0), Ng (0), N (0), the function Fy(t) appearing in
(9), and the initial maturity distribution functions f, (u), and fy (u). When
equations (31) are to be utilized, the initial maturity distribution f,(x) must
be partitioned into f; (), f; (1), and f, (u). This partitioning also implies the
values of N, (0), N, (0), and N, (0), which are needed. Furthermore, the values
of the 13 parameters T4, Tap trs %o %15 B1s Yo» V1> 4 N, Np, v and p must be
specified, subject to the equation of constraint (22). When the equation system is
enlarged so that G,, S, and G, + M compartments replace the active compartment,
we must specify in place of T, the compartmental transit times 7, T, and T3,
respectively.

6. Determinations of the Values of the Parameters

One of the principal purposes in constructing our model was to determine
whether the known facts of neutrophil production and control could be organized
and understood within the framework of a single comprehensive quantitative
mathematical model. As we have just seen, the model contains 13, or in its aug-
mented form, 15 disposable parameters. Nevertheless, there is a large body of
information with which the system must be shown to be consistent. We indicate
here how the parameter determination was made.

We shall assume that the observations reported in section 1, unless otherwise noted,
are representative of the steady state behavior of the neutrophil production
system of a normal 70 kgm man. Therefore the following quantitative inferences
are more or less fixed by observation.

In the steady state:

1. Labeling index (L.1.) of marrow proliferative cells = 0.3

2. Mean transit time in marrow proliferative pool = 50 hr.

3. Synthesis time of proliferative cells T,=15 hr.

4. Earliest time for entry of labeled synthesis cells into maturation compartment
=3hr=7T,.

Obligatory transit time of nonproliferating marrow cells =4 days = T).

6. Half-life of blood cells T}, =6.7 hr or A=0.103/hr.

w

14+
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7. Total number of cells in the circulating blood plus marginal granulocyte pool
is Ny=4.9.10° cells/70 kgm man.
8. Ratio of nonproliferating to proliferating cells in the marrow =3.72.

From these observations, we see that the parameters T, T,, Ty, A, and N are
relatively unambiguously determined. The theoretical values of some of the other
observed quantities are as follows. The labeling index is the fraction of all pro-
liferative cells which take up tritiated thymidine. Assuming all cells in S-phase and
no other cells become labeled, then the labeling index in the steady state is
given as

_ N T
—NA"I‘NO - TA+]./ao '

Here, we have introduced the steady state values of the compartment populations
from equations (20) and (23).

L.L (33)

The mean age of a cell in the G, compartment in the steady state is given with
the aid of equation (15) as

(34)

This mean age is also the mean age at which a cell leaves the G, compartment, or
the mean transit time of a cell entering G,,.

The mean lifetime of a cell in the proliferative pool in the steady state can be
defined as the mean time that a cell persists through many divisions in the
proliferative pool. For this purpose, one of the daughters resulting from a cell
division must be identified as the original cell. Thus, a cell that has just entered
the G, compartment persists in it for a mean time 1/(2 ). Then, with probability
1/2, it goes through the active compartment for a period T, and again persists
in the G, compartment for a mean time 1/(2 &,). Therefore, the contribution of
this sojourn to its lifetime in proliferation is [ 7,4 1/(2 a,)]. Then, with prob-
ability 1/2, it repeats this cycle, contributing (3) [T, +1/2 ] to its mean lifetime.
By summation, the total mean lifetime in proliferation is given as

1 (1Y 1 1
— T,+——|=T,+—. 35
20(0—'—Z <2> [ A+2ao] A+<x0 (35)

n=1

Mean lifetime in proliferation =

An alternative concept that has been introduced is the mean cell transit time,
defined as the total population divided by the production rate. According to
this definition,

NeBo 1 a0
%o

Mean cell transit time in proliferation =
Hy

with the aid of (20). Hence, the mean life time and the cell transit time are
equal, in the present model.

A related quantity of interest is the interdivision time, defined as the mean
time that a cell spends in the proliferative pool between its birth and the time it
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divides. This time is the sum of the mean times it spends in G, and the active
compartment, respectively, or,
1

204 37

Mean interdivision time= 74+

It is by no means a trivial matter to decide which of the above defined times a
given experiment is measuring, if any. The observations numbered 1.—3. above
are all consistent with a mean life time in the proliferative pool of 50 hrs. This
is so whether mean generation time is interpreted as mean cell transit time as in
equation (35) and inferred from relative marrow populations in the proliferative
pool and mitotic indices [5,20], or from the half-life of radioactively labeled
proliferative cells as inferred from the decay time of their average grain count [19].
This decay time may be expected to equal approximately the mean cell transit
time.

In principle, the interdivision times could be determined from the labeled mitosis
curves. If we knew both the interdivision time and the mean generation time, we
could infer the values of both T, and «, uniquely. Unfortunately, the few
available observations [17] are not sufficiently quantified to permit an unambi-
guous interpretation in this regard. Furthermore, the interpretation is obscured
by the fact that three types of proliferative cells, myeloblasts, promyelocytes, and
myelocytes, are represented in the labeled mitosis curves. Consequently, it is
difficult to determine the relative contributions of T and 1/o, to their sum. The
only direct determination of the interdivision time of myelocytes was made in
vitro [21], and found to be 30 hrs. At first sight, it would appear that we should

=30 hr. This implies that 1/aq=

set the theoretical interdivision time 7'+ o
0

=40 hr, and T ;= 10 hr. However, the minimum value of 7', possible is 18 hr, based
on the values 7,=15hr, T, =3hr (see observation 4 above), and an assumed
minimum value 7, =0 for cells in G, phase. Therefore, it appears more plausible
to assume that this observation represents a determination of the minimum

possible cell transit time, or 7,. Based on this interpretation and the inferred

1
value of TA+oc_=50 hr, we infer that 1/a,=20 hr, and o,=0.05/hr. It should
0
be noted that the maximum value T, could approach is 50 hr. However, this
would be at the expense of making o very large. The latter in turn would make
the population in G, very small, and would probably seriously compromize the
ability of the system to maintain homeostatic control of the total population.

The ratio of nonproliferating to proliferating marrow cells in the steady state is,
with the aid of equations (20), given by the expression

Non-proliferating marrow cells Ny +Ngx Ty +1/70

=M R . 38
Proliferating marrow cells N,+Ny T, +1/ag (38)

When this ratio is set equal to 3.72, and combined with T+ 1/0o= 50 hr and
T, =96 hr, we find that 1/y,=90hr. For some calculations this value was in-
creased to 1/y, =96 hr, so that 1/, = Ty Alonger marrow transit time is suggested
by the BGSA curve reported in Fig. 3. Choosing 1/y, =96 hr makes the populations
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in the reserve compartment and the maturation compartment exactly equal, and
suggests, on the basis of the relative population of the marrow cell types, that all
the segmented granulocytes plus a small portion of the band cells constitute the
marrow reserve compartment.

From the known values of Ny, T,+1/0tg, Ty, 1/74, and A, the total neutrophil
population is deduced from the steady state compatibility relation (22) to be
N=124.10"? cells, which is not too different from the observed number [26].
Thus, the steady state parameters of the system, namely, Ny, N, T, 1/ty, Thp
1/yo, and A are all determined in a more or less consistent and unambiguous
manner from experiment, with the possible exception of the values of 7, and

1/0.

To summarize, the production rate, transit times, and populations in the various
compartments in the steady state are inferred or deduced to be as shown in
Table 4.

Table 4. Values of the Steady State Parameters

Inferred from Experiments Deduced

T,=3hr, 1=>5.0. 10° cells/hr,

T =15 hr,

T,=30hr, N,=151.10" cells,

1/erg =20 hr, No=1.01.10"! cells,

Ty =96 hr, Ny=4.85.10'" cells,
1/y4=90hr, Ny=4.54.10"" cells,
1/A=9.7 hr, N=1.24.10'2 cells,
Ny=049. 10! cells, Total transit time =246 hr

The deduced production rate n, is equivalent to a production rate of 1.68 - 10° cells
(kgm/day).

There still remains the problem of determining what may be called the dynamic
parameters of systems, oy, By, y,, v, p, and . These parameters enter into the
homoestatic control elements «, 8, and y. Hence, these values can be inferred only
from experiments which perturb the steady state behavior of the system. The
observations of such behavior are qualitative or at best semi-quantitative.
Therefore, we resorted to numerical solution of the governing differential equa-
tions, for various choices of these parameters, and relied on qualitative agreement
with the known observations to determine their values.

In order to simplify this determination, we made the following arbitrary assump-
tions, :

%y =0, ﬁ1=%ao, Y1=%o0 p=Vv. (39)

Note that stability of the system requires that B, <«; and that «, is a fairly
small quantity. In the absence of any information regarding it, f, =1 o, seemed
to be a plausible first guess. The assumption that p =v implies that the dynamical
response to LIF which controls the maintenance of the normal blood neutrophil
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population at the level N is the same as the dynamical response of the system
to granulopoietin which maintains the total neutrophil populations at the normal
level N. There is no biological reason for making this assumption. By making it,
however, we are left with only two dynamical parameters to determine, ¢z and v.

7. Results and Discussion

The theoretical blood-granulocyte-specific-activity curve was calculated by sol-
ving equations (29) and (31) numerically. We assumed that at t=0, the cells were
in a steady state, and that all cells in S-phase were labeled with a label value of 1,

Fig. 10. The release rates o and § are shown as a function of N (1)/N, according to equations (2) and (3),
with v=4 and o, /0y =2 B,/0;;= 1. The ordinate unit is o

]

]

b
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Fig. 11. The theoretical tritium blood-granulocyte-specific-activity (BGSA) curves are shown for
five different assumed values of the obligatory transit time of nonproliferative marrow cells, Ty, =96.
108, 120, 132, and 148 hr. Successively larger values of Ty, correspond to the successively later
onsets of appearance of labeled cells. Other parameter values are as shown in Table 4. Compare the
experimentally observed curves shown in Fig, 2
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an arbitrary unit of activity. Following division, it was assumed that a cell
contributes half of its label value to each of its daughters. All cells with a label
value of 1/4 or more were followed. The resulting value of the label value or
activity of blood cells, called the tritium BGSA, was determined as a function of
the time, by summing the total number of labeled cells in the blood compartment,
multiplied by their appropriate label value. The result is shown in Fig. 11 for
several assumed values of T, The curve for T3,=96 hr is in qualitative agreement
with the experimental curve shown in Fig. 2. The fact that the theoretical curve
begins approximately four days after the initial labeling time is in quantitative agree-
ment with experiment. Of course, this anticipated agreement formed the basis of
the selection of the value of Ty, In the same manner, a theoretical BGSA curve
following exposure to DFP3? label was calculated: numerically from equations
(28) and (29). It was assumed that at =0, the population was in a steady state
and that all cells in the blood, proliferating compartments (G, and active), and
nonproliferating compartments (maturation and reserve), were labeled with label
values 4, 2, and 1, respectively.

The resulting computer generated curves are shown in Fig. 12, for three assumed
values of the mean transit time in the maturation compartment, T,,=4, 5, and
6 days, and 1/y,=96 hr. These values correspond to a total transit time in the
marrow nonproliferating pool of 8, 9, and 10 days, respectively. The ordinate
represents the activity of cells in the blood, normalized to its initial value, in
arbitrary units. The curves display a good qualitative agreement with the experi-
mental results of Fig. 3. There is a “bump” in the theoretical curve following the

NORMALIZED BGSA
150 200 250 300 350 400 450 500

100

®
§
0.00 200 400 600 800 1000 1200 100 16.00
TiME DAYS

Fig. 12. The theoretical BGSA curve following DFP3? labeling is shown for the three different

values T, =96, 120, and 148 hr. The more extended curves correspond to the larger values of T,

in sequence. Other parameter values are as shown in Table 4 with the exception that 1/y,=96 hr,
Compare the experimental points shown in Fig. 3



A Mathematical Model of Neutrophil Production 211

horizontal portion of the curve, which is present because of the appearance of
some proliferative cells from the G, compartment with label value 2. Such a bump
is perhaps also present in the curve shown in Fig. 3. The theoretical curves of
Fig. 11 and others that we calculated, show that the horizontal portion of the
curve is extended by increasing the assumed value of T}y, but not extended parti-
cularly by increasing 1/y,. The experimental curves do have a horizontal
portion of the curve that is more extended than that produced by the model.
However, the value of T, can not be altered greatly without disturbing the
agreement of the theory with the experimental curves of Fig. 2. We conclude
from this comparison that the reserve compartment is more complicated than we
have assumed, i.e., it appears to possess both “pipeline” and “random” characte-
ristics. It probably behaves more like a “pipeline” compartment in steady state,
and exhibits more of its “random” releasing properties in response to demand.

The mean transit time of cells through the system, which weinferred to be 10 1/4 days,
tends to agree with the larger estimate of 11.4 days inferred from Fig. 3 [6], than
with the other shorter estimates which were cited [24, 25]. In fact, a comparison
of the .theoretical curves shown in Figs. 11 and 12 corresponding to T =96 hr
(curves on the extreme left). indicate that the peak in the tritium BGSA curve
(Fig. 11) should appear at approximately the same place that BGSA curve
(Fig. 12) begins to fall below unity. Although such coincidence is observed in
the dog [2], it is not observed in humans, as Figs.2 and 3 show. This lack of
coincidence has already been noted, with the suggestion that DFP*? data is
more representative of normal transit times [2].

To simulate the effect of leukopheretic studies, a death term —D (£) b(a, t) was
added to the last equation appearing in equations (1). The function D (t) was
assumed to be

DOy 3. 6(—G-1to), (0)

where & is the Dirac delta function, f, and t, are constants, and K is an integer.
This term represents the removal of a fraction of cells f, per unit time from the
blood population at equal intervals t, starting at t=0, and ending, after K
removals, at time t=(K—1)t,. The introduction of this term leads to the
appearance of a loss term — D (£) N (t) on the right hand side of the last equation in
(29). Equations (28) and (29) were then integrated numerically, as before.

The value of t,=3 hr was chosen to represent the rapid recovery seen in leuko-
pheretic experiments [27—297]. Figs. 13 and 14 show the theoretical response of
the normalized blood cell population Ny (f)/Np to a single leukopheresis at ¢=0.
In Fig. 13, f, was chosen to be 0.25, representing a removal of 25% of the total
population in the blood compartment at t=0, and v=3,4. Fig. 13 a shows the
short term population response during the first 3 days, and Fig. 13 b shows the
long term response over a period of 200 days. For Fig. 14, the curves were
repeated with f, =0.50 representing a removal of 50%; of the total blood population
at t=0. The initial peak of recovery of the cell population observed in the blood
was found to depend sensitively on the choice of v. Larger values of v intensify
the response and produce larger peak or overshoot values, as expected.
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Fig. 13. The theoretical dependence of the normalized blood celi population Ny (t)/Ny on the time ¢

following a single leukopheresis of 25% of the blood neutrophils at t=0. The blood cells were
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Also, as can be seen by comparing Figs. 13 a and 14 a, a larger value of the
leukopheretic parameter f, produced a larger overshoot response. This over-
shoot response is a feature that is to be expected of the nonlinear control
feature of the model represented by the function y (£).

A characteristic of the predicted response of the system is the cyclic variation
or “ringing” of the blood cell population, which persists. for a fairly long time.
However, it is seen in Figs. 13b and 14 b that these oscillations have a small
amplitude compared to the unperturbed level.

This oscillation is presumably due to the presence of the total neutrophil
population control element, as represented by o (£) and f (¢). No such oscillations
of either type have been reported in leukopheretic experiments, although neither
has the quantitative dependence of the cell population as a function of the time
been reported. One quantitative report of the initial response only of the blood
cell population of the dog in response to acute infection [31] does show an
initial oscillatory behavior, of rather large amplitude, with a period of about
two days (see Fig. 4).

Tt seems important to determine whether such oscillations do in fact occur, and
what their quantitative behavior is, because such behavior has an important
bearing on the nature of the regulatory mechanism controlling the blood neutro-
phil population. Our calculations, based on large perturbations of the system,
suggest that such oscillation should be very difficult to observe. It is important
to bear in mind that actual observations may reflect a dynamic exchange of cells
between the circulating blood cells and the marginal granulocyte pool. The model
does not permit any such exchange, and we are aware of this shortcoming of the
model. The simplification of our model in this manner was dictated by the
absence of any quantitative experimental information to guide us in suitably
constructing a more complicated model.

As previously mentioned, long term cyclic variations of the neutrophil blood
population have been occasionally observed in normal subjects [42, 43], as
illustrated in Fig. 8. They are also a feature of the disease state cyclic neutro-
penia. Our calculations suggest that such observations are manifestations of dis-
turbances in the control elements of the neutrophil production system.

Our model has some features in common with the computer model of King-Smith
and Morley [44], which contains control elements regulating the rate of release
of marrow reserve cells to the blood, and the rate of production of new cells. The
principal purpose of their model, however, was not to simulate the entire
production scheme of neutrophils, but to show how a feed back control system
simulated, in a qualitative manner, the periodicities believed to have been seen in
granulopoiesis.

There are some significant differences between the model of King-Smith and Morley
and the present model which should be remarked upon, even though a complete
description of the model of these authors has not been reported yet. In their
model, the production rate apparently depends on the blood neutrophil con-
centration, while in our model it is governed by the total population of the
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neutrophils. It seemed more plausible to us that if, say, marrow cells alone were
destroyed at a given time, the system would immediately start to replenish itself
without waiting for a deficit to appear in the blood. Such a response is perhaps
suggested by the recovery of blood neutrophils of the dou seen in response to
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Fig. 15. The theoretical dependence of the normalized marrow reserve population Ny (t)/Ny on the
time ¢ for the same case as in Fig. 14
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marrow depressing drugs [30]. King-Smith and Morley found that a stable
small aplitude oscillation was established in response to marrow failure. We find
that although the long term oscillation is present, it is of small amplitude and
damps out slowly. This finding suggests a possible reason why cyclic oscillations
of the neutrophil count is only rarely (if ever) observed in healthy individuals —
it is only detectable when the neutrophil production system has been strongly
perturbed in some manner, and the time of perturbation is sufficiently recent to
the time of observation.

Fig. 15 displays the behavior of the normalized marrow reserve population
Ny (t)/N in response to a single leukopheresis of 50% of the blood cells. It is seen
that the small amplitude oscillatory behavior of the blood population is common
to this population too. Fig. 16 shows the result of multiple leukopheresis of the
normalized blood population Ny (t)/N 5, amounting to 509, of the blood neutro-
phils, and carried out once a day for five days. The figure shows that an
immediate overshoot phenomenon occurs in response to each leukopheresis.

a TOTAL BODY IRRADIATION a TOTAL BODY IRRADIATION
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Fig. 17. The theoretical dependence of the normalized blood population Ny (t)/Ny on the time ¢,

in response to a total body irradiation which eliminates 25% of the total neutrophil population,

uniformly in each compartment. The behavior for the first 5 days is shown in a), and for 200 days

in b). The parameter values are the same as for Fig, 16. A temporary neutrophilia develops in
the blood in spite of the large initial depletion of the total neutrophil population

Total body irradiation experiments were simulated by assuming that a steady
state population was suddenly decreased by a fixed fraction in all compartments
at t=0. Fig. 17 shows the response of the normalized blood population to a
depletion of 25% of the population in each compartment. In Figs. 17a and 17 b
the near term and long term behavior, respectively, is displayed. These results
are very similar to the response of the system to a single leukopheresis. The long
term oscillatory behavior of the blood population and its gradual decay is
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Fig. 18. The theoretical response of the normalized populations a) N, (t)/N 4, b} N (8)/No, ©) Ny (t)/ Ny,

and d) Ng (f) /Ny, in the active, resting, maturation, and reserve compartments, respectively, as a function

of the time, following a total body elimination of 259, of the population, uniformly in each

compartment, at ¢t=0. Parameter values are as for Fig. 16. The response is shown for the first
five days

already in evidence. Perhaps the most notable difference between the two cases
is that the amplitude of the oscillation and the initial amount of overshoot is
somewhat larger in the case of total body irradiation, when the total cell loss is much
larger.
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Figs. 18 a—18d display the near term response of the marrow proliferative and
nonproliferative populations N, (1)/N 4, No (1)/No, Ny (0)/Ny, and Ng (t)Ng,
respectively, for a period of 5 days. We see in Fig. 18 a that the active compartment
population increases immediately because o (t) is increased. In Fig. 18 b it is seen
that the resting compartment decreases drastically because it must send additional
cells to both the active compartment and the maturation compartment. The
transient peaks in it are the result of cell influxes from the active state. Fig, 18 ¢
shows that the maturation population is the first compartment to detect the

3 TOTAL BODY IRRADIATION § TOTAL BODY IRRAOIATION
% 8
9 3
b2 Q
bl X
I3 2
3 28
g
Z "Q S § || - _
8 8
§ 8
8 S
R R
R 8
0,00 2500 5000 .0 0@ 12500 15000 7500 20000 0.00 2500 5000 75 00.00 12500 150.00 175.00 200.00
T DAYS T DAYS
a) b)
§ TOTAL BODY IRRAGIATION 3 TOTAL BOGY IRRACIATION
N &
2. -
3 N
© 8
N} gLk - _
2 N
N =3
S g
2s 8
8 R
3 &
8 ]
8 Q
R S
0@ 2500 DO 7500 10000 2500 15000 1A® 2m@ 000 20 50.00 750 1000 12500 15000 17500 200.00
7 DAYS o) T DAYS d4)

Fig. 19. The same responses as in Fig. 18, for a period of 200 days
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increase in population due to the increased proliferation rate, after about 4 days.
Fig. 18 d shows that the reserve compartment does not share in this population
increase because of the demands made on it by the blood compartment,

In Figs. 19 a—19 d we see the long term behavior of these same populations
over a period of 200 days. These curves indicate that the long term small
amplitude oscillatory behavior of the blood cell population is likewise a feature
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Fig. 20. The theoretical dependence of the total normalized neutrophil population N (t)/N on the
time ¢ following a total body elimination of 25% of the population, uniformly in each compartment,
at t=0. Parameter values are as for Fig, 16
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Fig. 21. The theoretical dependence of the normalized blood population Ny (f)/N; on the time t,

in response to an elimination of 509 of the total neutrophil population, uniformly in each compart-
ment. The parameter values are the same as for Fig. 16, with the exception that 1/y,=96 hr
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of every compartment. It is noteworthy that it takes a long time, approximately
15 days, for the reserve compartment to first achieve its steady state value, as
is seen in Fig. 19 ¢. This is a much longer time interval than is needed by any of the
other compartments. Such an inference is also suggested by the shielded hindlimb
irradiation experiments in mice, quoted in Figs. 5—7. In Fig. 20 is shown a plot
of the total normalized neutrophil population N (t)/N. The long-term behavior
of the normalized blood population in response to a theoretical total body
depletion of 50%; is shown in Fig, 21. In contrast to the curve of Fig, 17 b correspon-
ding to an initial depletion of 25%, the long term oscillations are of greater
amplitude and decay more slow.

8. Conclusions

A mathematical model of the total neutrophil production system has been intro-
duced which consists of five compartments, an active compartment and a resting
compartment which comprise the proliferative pool, and maturation, reserve,
and blood compartments comprising the nonproliferative pool. These appear
to be the minimum number of compartments necessary to simulate the principal
features of the neutrophil system. The nonlinear control elements which are
introduced regulate homeostatically the total number of neutrophils in the blood
and the total number of cells characterizing the system. The model contains
13 parameters in its simplest formulation, of which 7 can be characterized as
steady state parameters, and 6 can be characterized as dynamical parameters
which determine the dynamical response of the system to perturbations. Because
there is so little quantitative information regarding the dynamical response of
the system, these parameters are for the most part arbitrary, with the exception of
perhaps two of them.

We have solved our model equations for various initial conditions, so as to
represent different experimental observations that have been made in the past
of the neutrophil production system. We find that we are able to reproduce the
known behavior of the neutrophil production system in a comprehensive
manner, with an appropriate choice of the values of the parameters. Most of the
values we inferred for the steady state parameters and other quantitative properties
of the system are not qualitatively different from those made by one or another
investigator. Rather, we stress that what is novel is the comprehensive and
quantitative nature of our model. By simulating most of the experimental facts,
we impose contraints of consistency upon the inferences made about the entire
system that are not revealed in the examination of the production system in a
piece-wise fashion. Thus, we find that there is little leeway in the determination of
most of the steady state parameters.

The dynamical aspect of our model are somewhat new. The most notable feature
of the dynamical response of the system to large perturbations in the number of
blood cells or in the total number of cells of the production system is that the
system “rings”, displaying an oscillatory behavior in the number of cells in the
blood and other compartments of the system, as a function of the time. Such large

Journ. Math. Biol. 1/3 15
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perturbations are produced by leukopheresis or exposure of the system to disease,
which deplete the number of blood cells, and in total body irradiation experiments
or some drug treatments, wich deplete the total number of cells in the production
system. However, the calculated amplitude of oscillation is rather small, and
the oscillation is damped, which may explain why the reports of such oscillations
in the blood of some apparently normal individuals are rare. Their natural
occurrence, of course, would require a large initial perturbation of the system,
or a significant alteration of some of the normal steady state parameters of the
systems. Such an alteration presumably occurs in the disease state cyclic neutro-
penia.

This work has been supported in part by the National Cancer Institute, grant no. NCI R-5ROICA-
12124-03.

Appendix

Here we follow the method of calculation introduced by Rubinow [5]. We assign
a cell density function »; to each compartment i with the notation i= 1 for myelo-
blasts, i=2 for promyelocytes, i=3 for myelocytes, and i=4 for metamyelo-
cytes. In the steady state, n; is constant within each compartment. The mean
generation time in each compartment is denoted by T}, i=1, 2,3, 4. The total
population N; in the i-th compartment is given by the formula

N;=n; T, i=1,2,3,4. Al

The transition from one compartment to the next is assumed to be proceeded by
cell division. Let r; denote the fraction of daughter cells of the i-th compartment
which are of the same type as their parents. Then r;=1 means that all the
daughters are of the same type as their parent. ;=0 means that all the daughters
are of the succeeding cell type. A value of r; between these two extremes
represents the condition that cell division produces a mixture of these two
outcomes. Such a condition can arise because cell division is asymmetric in its
outcome, or because there are two different outcomes of cell division. For example,
a myelocyte may first divide to form two daughter myelocytes, and the daughters
(with the same mean generation time as the parent) then divide to produce two
metamyelocytes. We shall, for simplicity, assume here that all cells in a compart-
ment i undergo division after a time 7} spent in the compartment, following birth.
Then, as shown in reference 5, the following equations representing conservation
of cell flux relate the various compartments:

ny (1—=2r)=s,, ny (1—2r,)=8q+ny,

ny (1—=2r3)=s0+n; +n,, Hy=Sg+n; +n,+n;.

(A2)

Here, s, is the hypothetical (constant) stem cell flux into the myeloblast compart-
ment, We note here that n; also represents the cell production rate in the i-th
compartment.
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In this model, the mitotic index fy;, the fraction of cells in the i-th compartment
in mitosis, is expressed simply as the ratio of the mitotic time Ty, to the
generation time T, or,

fM,:T', i=1,2,3. (A3)

Similarly, the labeling index fy;, in the i-th compartment, the fraction of cells
in S-phase (which is labeled with tritiated thymidine following a pulse exposure),
is expressed in terms of the S-phase duration T; as
T

fu= ]f i=1,2,3. (A 4)
In reference 5, we assumed that so=0, Tyy = Tyo = Tira, While fy; and N; were
as given by Killman et al. [53] (see Tables | and 2). It was inferred there that
(11, s 1) =(.50, .75, 71, (T, Ty, T5)=(25, 42, 57) hr, and T}, =0.62 hr. The in-
ferred generation times are in excellent agreement with the observed [19] grain-
count halving times (T, T, T5)=(31, 24—60, 54—58) hr. The derived labeling
indices, assuming T, = Ts, = T's3 =15 hr, become (fy.1, f12, f13)=(.60, .36, .26).
These values are perhaps in tolerable agreement with observation, as shown in
Table 3. However, the inferred mitotic times are not in agreement with the
direct observations of average mitotic times of Rondanelli et al. [54]: (T1, Tara,
Tyr2)=(0.75, 0.90. 1.07) hr. It is seen that the mitotic times in the proliferative
compartments are unequal, and their average is 0.91 hr.

Let us apply equations (A 1 —A 3) to the extensive data of Rondanelli et al. [54]
concerning mitotic indices. These indices, quoted in Table 2, were obtained by
counting 10,000 marrow proliferative cells in each of 10 normal donors. These
investigators also found that (N, N,, N3)=(1, 2.15, 9.15), where N has been
arbitrarily chosen to be unity. Under the assumption that the stem cell flux ratio
s, is negligible, it is readily found that r, =1 ry~ry~0, and (T, T,, T5)=(32, 68,
135) hr. Assuming now that Tg, = Ts, = Ts3 =15 hr we infer that labeling indices
should be (f1, fra, f1.3)=(47,.22, .11). While the labeling index for the myeloblast
is perhaps in tolerable agreement with observations, the labeling indices for the
promyelocytes and myelocytes are not. Also, the generation time assigned to
myelocytes appears to be too large. Hence, the mitotic index data of Rondanelli
et al., on the basis of the above model, is not consistent with either the labeling
index data, or the generally accepted generation time estimates for myelocytes.

Cronkite and Vincent [3], in their model of steady state proliferation, assumed
that the proliferative pool consisted of a sequence of subpools, each with the
property that cell division in one subpool produced two new cells of the next
subpool type. They also assumed that s,#0, one subpool each makes up the
myeloblast and promyelocyte compartments, and that the myelocyte compart-
ment consists of two subpools. They accepted, for the values of N, the data of
Cronkite et al. [55] (see Table I).

We shall utilize the present formalism in order to reproduce the results of their
calculation, and to draw some further inferences. To do so, identify i=1 as the

15*
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myeloblast compartment, i=2 as the promyelocyte compartment, and i=3 plus
i=4 as the myelocyte compartment. Thus, the total number of myelocytes is

N3+N4=n3 T3+n4 T4. (AS)

The assumption of serial division requires that ;=0 in equations (A 2), i=1, 2, 3.
These authors further assumed that T, = T,. and accepted for the experimentally
determined values of the labeling index and S-phase interval in the myelocyte
compartment, 0.234 and 12 hr respectively. Thus, with

_(”3+"4) Tss_ T3
Jra= = ,

it is immediately inferred that 7, =51.3 hr. We make use of equations A1—A3)
with r,=0, and the assumed values of the relative number of cells in each
proliferative compartment, with N arbitrarily set equal to 100 cells. It is readily
found that

(A6)

(So, nl, nz, n3 +n4):(7.64, 7.64, 15.3, 9.17) hI‘_l, (A 7)

and that the efflux rate to the metamylecyte compartment ng=2 n, = 122/hr.

As Cronkite and Vincent indicated, the latter value is close to the observed
number of cells entering the metamyelocyte compartment of 147 cells/hr/100
myeloblasts. Furthermore, it is found, assuming the labeling indices- are as
given by Cronkite et al. [55], that Ty, =11.1 hr, and Tg,=12.4hr. Hence, the
DNA synthesis time is virtually the same in all compartments, which is perhaps
an appealing conclusion. However, as these authors also point out, with s, =
7.6 cells/hr/100 myeloblasts, if the value of Ty in stem cells is 12 hr, there would
be 91 labeled stem cells/85 labeled myeloblasts following flash labeling, and “one
must wonder why a cell in this apparent abundance is not recognized”. The
authors of this model do not comment on the fact that the inferred values of
T, and T, are 13.1hr, and 19.0 hr, respectively. These values are in glaring
disagreement with the observed grain-count halving estimates for these generation
times [19]. Furthermore, accepting the Rondanelli et al. [54] values of the
mitotic indices, it is inferred with the aid of equation (43) that the mitotic times
(Tt Taras Taes)=(0.31, 0.25, 0.41) hr. These, too, are in serious disagreement
with the observations of mitotic times quoted previously [54].

We conclude that the present day estimates of the kinetic parameters of the
proliferative neutrophil precursor pools are not consistent with any given
theoretical scheme of proliferation.
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