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We carried out Monte Carlo simulations of phase separation in a three-dimensional binary allov
with misfitting phases subjected to uniaxial external stress. A lattice of cylindrical or plate-like
precipitates is formed at the mesoscale, as obselved in real alloys. The rate of precipitate growth
is much slower than the conventional R(t) ~ t% behavior in systems with no elastic misfit. Once
a well-defined precipitate microstructure is formed, the reversal of external applied load has only a

small effect.
Keywords: homogeneous phase transformations; nickel alloys; theory and modeling: thermody-
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I. INTRODUCTION

The structural and mechanical properties of high-performance alloys are greatly influenced by the morphological
arrangements of the different phases formed during phase separation following a quench from high temperature into the
miscibility gap. A crucial factor controlling the composition and geometry of these phases at the mesoscale are colierent
elastic strains between misfitting phases, e.g., between the v and ”y' phases in Ni-base superalloys [1,2]. The influence
of such long-range elastic interactions on the morphology of a single coherent precipitate, the mutual arrangements
of the precipitates and the coarsening kinetics of the microstructure has been investigated both experimentally and
theoretically [3,4]. These studies found that the shape of the precipitates tends to be non-spherical, e.g. cuboidal
[1,5-7], that the precipitates align themselves into regular arrays [8,9], and that their growth can be considerably
slowed down compared to the case where there is no elastic stress [10,11]. The presence of an external stress during
phase separation breaks the cubic symmetry and arrays of cylindrical precipitates parallel to, or plate-like precipitates
perpendicular to the direction of external load are formed (directional coarsening or rafting) [12-18]. The type of
topology depends on the signs of the external load (tensile or compressive) and of the misfit, and on the difference
between the elastic constants in matrix and precipitates [19,20].

In this paper we use a conceptually simple microscopic model to study rafting in a face-centered cubic {fec) binary
alloy. This model has been used previously in two-dimensional sinulations [14,20-22] where however the different
tvpes of precipitate microstructure (cylinders or plates) appear as striped patterns differing only in orientation. In
the present three-diniensional simulations we observe regular arrays of cvlindrical or plate-like precipitates, and the
structure fimiction reveals a higher degree of precipitate alignment than observed in two dimensions. Still. both the
shape of the precipitates and their arrangement are far from perfect, with the mesoscopic lattice of the precipitates
exhibiting the analog of defects found in atomic lattices, like dislocations or stacking-faults. The dynamics of these
defects play an important role in the coarsening process [23].

The stability of the obtained microstructure was tested by reversal of the applied stress and was found fairly
nietastable in agreement with experiments. Another remarkable effect found in the simulations and known from some
alloys with coherency strains, is a slowing down of the precipitate growth compared to the conventional R(#) x t3
beliavior holding for alloys with no elastic interactions [24].

II. THE MODEL

The model consists of a coherent fee lattice with periodic boundary conditions and cubic lattice constant a, cou-
taining N atoms of two types - A and B - with radii R4 and Rg, R4 > Rpg. The A atoms have a concentration
¢ = N4y/N.where N, is the number of A atoms in the system. The associated spin variable v(r) at lattice site r takes
the value +1 for an A atom and —1 for a B atom. The elastic forces due to the size misimnatch between A and B atouus
are modeled by connecting nearest neighbor atoms with springs [25], which can be compressed or stretched either



longitudinally or transversely. The three spring stiffnesses associated with these modes are L, T} and Ts respectively,
The addition of an external stress creates a homogeneous strain field [¢%], such that the atom at site v is displaced
by an amouut €°.r + v(r), where v(r) is the displacement due to the compositional variations in the vicinity of the
site r. The uniformly stretched lattice is taken as a reference and all displacements v are measured with respect o ir.
The effect of this uniform extension or contraction of the reference lattice is to change the distances between nearest
neighbors by a constant. In addition, at least a small elastic inhomogeneity hetween the A and B phases has to he
present to include external stress effects in a nontrivial manner [20].

Under the assumption that the relaxation time of the lattice distortions is much smaller than the diffusion time of
the atoms, and the homogeneous strain displacement is much larger than the displacements v(r), we can minimize
the energy over the atomic displacements v [20,26,27,29]. The full elastic Hamiltonian may then be written as
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where T'(k) is the Fourier transform of y(r), I'(k) = 3. v(r)e™T, and (R4 — Rp)*®(k) is the elastic potential in
Fourier space [20] (for the functional form of ®(k) see equations (19) - (22) in the Appendix). Figure 1 shows two-
dimensional cross sections of ®(k) for tensile, compressive and zero stress. The potential is highly anisotropic. the
cubic symmetry being broken by the application of external stress. In addition to the elastic interaction we also
include a nearest neighbor “chemical” interaction —Jy(r)v(rl), chosen to induce phase separation (J > 0 and r.1
are nearest neighbor lattice sites). The total Hamiltonian can be written in a form similar to equation (1)
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where the new ¥(k) is defined in equation (25) of the Appendix. The pairwise interaction ¢ (r — r') now includes
both short range chemical as well as long range elastic interactions.

A. Numerical values

For our simulations we took an fec lattice with 482 cubic unit cells, i.e., N = 442368. Two different concentrations
of A atoms, ¢ = 0.2 and 0.5, were chosen. Given the Born-von Karman coupling constants {<I>j’j} parameterizing the
experimental phonon dispersion curves of metals, the microscopic spring stiffnesses L, T, and T» are then deterniined
by the following relations

L=l + el
T = ;% — o)
Tg — @lelo] (3)

For typical fec metals (three are listed in Table 1), the longitudinal stiffness is an order of magnitude larger than the
transverse stiffness. In principle, springs between further neighbors could also be considered, but normally the nearest
neighbor coupling dominates [30], so we did not include this extra complication. For our simulations we used the
Born-von Karman coupling constants for Cu. The long-wave relations between L, Ty, Ty and the bulk elastic moduli
crr, e and egp are [27]

(lC“‘ = 2L+ 2T,
acyg = L - 3T1 - 2T~2
acgy = L+ T, + 2T, (+)

Here a denotes the cubic lattice constant. Due to our parameter choice, the model has negative elastic anisotropy.
i.e. (c11 — €12 — 2e4q)/caa < 0, which is found in metals like Al, Cu, Fe, and Ni, and the elastically soft directious are
the cubic (100)-axes [3].

The relative strength of the elastic and chemical interactions is given by the dimensionless “elastic misfit parameter”
A, which is defined for our model as



(R4 — Rp)2L
J

A is related to the lattice misfit § = (ay — ap)/a4, where a4 and ap are the unstressed lattice constants for a pure
A phase or B phase respectively, as A = Md°L/a [22]. Ao = 30 is a dimensionless prefactor and ¢ is the interfacial
energy. Assuining a typical valne for o & 1072Jm ™2, X\ = 4.2 corresponding to § ~ 1 % was chosen. Choosing a wetal
different from Cu in Table 1, results in just a slight change of the lattice misfit. To include uniaxial external stress.
we chose e}, = £0.1, with + for tensile and — for compressive stress (for the definition of «v see Appendix, equation
(18)), which results in lateral strains of €3y = €35 ~ F0.42¢9,. With these parameters for the lattice mismatch and
elastic inhomogeneity the formation of cylindrical precipitates under tensile stress and plate-like precipitates under
compressive stress was expected [19,20]. Simulations were carried out at a temperature 7' = 5.0J/kp below the
critical temperature T, ~ 12.5J/kp determined approximately from a series of MC runs (A mean-field calculation
for the critical temperature, discussed below, gives a slightly higher value of 14J/kp). No new features, compared
to the simulations at lower T" = 5.0J/kp, were observed in simulations at a higher T' = 8.0.J/kp and are therefore
not reported here. Atomic configurations on the lattice evolved by the Metropolis algorithin with Kawasaki exchange
dynamics of nearest-neighbor atoms [28]. The time unit is one Monte Carlo step (MCS), i.e. one attempted exchange
per site. Starting from a configuration of randomly distributed A and B atoms corresponding to the high-temperature
phase of the alloy, the system was quenched into the miscibility gap, and annealed at fixed temperature for a maximum
of 6000 MCS under compressive or tensile uniaxial load, and for comparison, without external load. In a second series
of simulations, the system was evolved under a given load for 3000 MCS, at which point the load was reversed. The
system evolved under the reversed load for another 3000 MCS.

| A= (3)

B. Mean Field approximation

Following the approach in [21], the total mean fleld free energy of our model equals
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where T(k) = 3", e**(r) and F(r) is the mean value of the occupation variable at r, and Fg?" depends only on ¢.
For large T' the coefficient of | T'(k) |? is positive for all k, so the uniform state (J(r) = 2¢—1, T(k) = 0 for k # 0) is
stable. As the temperature decreases, the coefficient of | T(k) |?> may become negative for some k* # 0, creating an
instability in the system with concentration waves at k*. Since the maximum value of 1/4¢(1 —¢) is 1, for # = 1/2.
such an instability can occur if and only if T < TMF | where

ke Te"" = max[1(0) — T (k)] (7)

To show the dependence of TMF on external stress, Figure 2 shows TM¥ as a function of the homogeneous strain
field arising from the external stress (i.e. as a function of ae?;) at different values of the elastic misfit A\. The elastic
nisfit raises the critical temperature TM ¥ but the increase is less for positive (tensile) stress than compressive stress.
The difference between the tensile and compressive cases comes from the different structure of ®(k) in Figure 1 lor
the two cases. The elastic potential ®(k) under tensile and compressive stress appear identical and rotated by 90°.
but in fact the minima of the potential in the tensile case lies in two identical pairs of lobes along the two cubic
axes perpendicular to the external stress axis, while it lies along a single pair of lobes along the stress axis in the
compressive case. The difference in the nature and depth of the elastic minima in the tensile and compressive cases for
the same absolute value of the external load parameter ae?; results in the asymmetry of the M plot as a function

of external stress.

III. RESULTS & DISCUSSION

A. Precipitate morphology

Figure 3 shows snapshots of the configurations with ¢ = 0.2 evolved at kpT/.J = 5.0 under tensile load, at 400
ACS, where the depicted box comprises about % of the whole system. The figure on top shows schematically the



expected cylindrical precipitate morphology and their regular arrangement, and is subdivided into three vertical
columns containing three cylinders each. For clarity, the cylinders in each vertical column are shown with different
shades of grey. Following this subdivision, the snapshots (below) of the actual precipitate morphology show the whole
box, but each vertical column of precipitates is plotted separately to avoid obstructing the view of precipitates in oue
column by the adjacent one. Sites occupied by A atoms are represented by cubes and sites occupied by B atoms are left
empty. The form of the precipitates in the snapshots is roughly cylindrical with the axes aligned approximately along
the direction of the external stress. These cylinders are far from perfect, some being incomplete, as in the leftmost
figure, others connected to neighboring ones. Moreover, the cylinder axes wiggle along the direction of external stress
with varying cross-sections. However, the cylindrical precipitates are quite regularly spaced and clearly aligned with
respect to each other. This fairly regular, nearly periodic arrangement corresponds to a meso-lattice. Its dynamics
and the effect on coarsening under applied load were investigated in [23).

In Figure 4, a similar plot shows the case of compressive stress. The figure on top shows schematically the plate-
like precipitates aligned perpendicular to the external stress axis, forming a linear array of plates. Again, the real
precipitates are far from perfectly homogeneous plates. In fact, while a sideways view (right bottom figure) shows
precipitates arranged regularly along the stress axis, an oblique view (left bottom) shows that the precipitate structures
are in fact highly fragmented parts of plates, which lie in a plane normal to the external stress axis.

B. Structure function
The time dependent structure function S(k,t) of the precipitate microstructure

S(k,f) = = 1 Zeik-r'y(r,t) |2E o 1 F(k,f) 12 (8)

can be directly compared with the results of small angle scattering experiments. The elastic misfit strain (A # 0)
arising from the different size of 4 and B atoms breaks the spherical symmetry of S(k, ), producing a flower shaped
pattern with branches along the reciprocal (100) directions. This has been shown in two-dimensional simulations
[20,22] as well as in small-angle scattering experiments, e.g. for Ni-Al-Mo alloys [31].

Alloys under external load have shown a further symmetry breaking; the [100] direction corresponding to the
external load direction behaves differently from the (normally equivalent) other (100) directions [33]. Figure 5 shows
S(k,t) for the case of tensile, zero, and compressive external stress simulations (¢ = 0.2 and T = 5.0.J/kg), at 4000
MCS. Under zero external stress (Figure 5, (B)), S(k, ¢) has lobes of equal intensity along the (100) directions. Under
tensile stress S(k,t) is flattened from a three-dimensional to a two-dimensional structure, with lobes along the two
axes normal to the external stress axis, and very little intensity parallel to it (Figure 5, (A)). When compressive stress
is applied, the concentration inhomogeneity occurs almost exclusively along the external stress direction, resulting in a
one-dimensional streak of intensity parallel to the [100] direction (Figure 5, (C)). In addition to changes in symmetry
of S(k,t) when compressive or tensile load is applied, there is another quite remarkable feature. Looking at Figure
5 (C), for instance, there is not just a single pair of lobes left and right of the origin at k = 0. In fact, there is a
whole series of lobes corresponding to several orders of diffraction from the parallel array of plates. This indicates
a substantially higher degree of order in the arrangement of precipitates than the corresponding two-dimensional
model [20.22] where only the first order appeared in S(k,t). Figures 5 (A) and (B) allow similar conclusions for the
precipitate arrangement under tensile and zero load. In all cases, the several lobes visible along the reciprocal (100)
directions indicate a very high degree of ordering in the arrangement of precipitates. However, the two and three
dimensional simulations are not exactly comparable, since no experimental data are available for the surface tension
o in two dimensions.

C. Anisotropy

In order to get a cuantitative measure of the kinetics of symmetry breaking and precipitate formation, we defined
two different parameters. The first is the anisotropy (t) of the structure function S(k,t), defined in the following
way. Points in the Brillouin zone are partitioned into groups according to which of the 26 unit vector directions
({(100), (110), or (111)) they are closest to. The average value of the structure function in the {(100) group is denotecl



(S(k,t))(100y- and the analog for the remaining off-axis directions is (S(k\#))(110yu(i11y. The anisotropy () is then
defined as :

(S(k, 1)) o0y = (S(k, 1) 110yu111)
(S(k, )} 100y + (S(k, 1)) 110yu111)

x(t) is 0 for a random or spherically symmetric configuration, and 1 when S(k,t) is nonzero only along the (100)
directions. Figure 6 shows the behavior of x(t) on the time scale t5 for both concentrations, starting from a random
configuration up to 6000 MCS. Starting from the expected value of k(t = 0) ~ 0 for a random configuration, ~(#)
increases smoothly for tensile, compressive and zero external stresses to approximately 0.75 by 6000 MCS. The
evolution of k(t) is basically similar for different external stress conditions, and the overlap of the r(t) plots for
different conditions of external load is greater for & = 0.5. The main conclusion from this analysis is that the degree
of alignment of the precipitates along (100) directions, as defined by k(t), is controlled by the anisotropy of the elastic
misfit (i.e., the value of A) but not by the direction and amount of external stress (i.e., ae?;). This is in agreement
with previous results in two dimensions [14,20,22]. Also in agreement with the 2-D case, we observe higher values
of k(t) for & = 0.5 than for ¢ = 0.2, corresponding to a more pronounced alignment of the domains at the higher
concentration.

The inset in the left subfigure of Figure 6 shows the effect of reversal of load direction (filled symbols) after 3000
MCS. For the compressive case, x(t) decreases by about 15 % over a period of 10% MCS. In contrast, s(t) for the
tensile configuration initially decreases by only 5 %, and starts increasing very slowly by 6000 MCS. All these changes
are rather small, probably because (t) is not much influenced by external load, as already mentioned.

K(t) = (9)

D. Asymmetry

Since the anisotropy does not provide insight into the symmetry breaking induced by external load or the stability of
the microstructure to changes in load, we define a second parameter, the asymmetry N[00} () along the [100] direction
as

(S(k, t)){100]

1001 = TS, Btr00; + (S0, DYforo) + (50K, Dpoor -

and analogously for the [010] and [001] directions. Now the angular brackets denote averaging over the [100] direction
only. In Figure 7, the time evolution of the asymmetry components is plotted for £ = 0.2 and 0.5. The component
parallel to the external stress axis are marked by '+’ in the symbols. For compressive load along the [100], 7100} (?)
approaches 1 and both other components go to 0 as time increases. For tensile stress, the two components normal
to the load axis increase and the parallel component decreases. The two components perpendicular to the load axis
are not equal, but this difference is probably a spontaneous symmetry breaking occurring in a random fashion, as
can be reasoned from the cross over of these perpendicular components for ¢ = 0.5 at ~ 2000 MCS. For zero load. a
svmmetry breaking is also observed. For high concentration (¢ = 0.5), the magnitude of this splitting is quite large.
i.e.. even when no external stress is applied, precipitates can join together locally, forming a microstructure similar to
those observed in samples annealed under external load, with the difference that the orientation of the precipitates
varies across the specimen. Similar effects have also been found in experiments [33]. Clearly, the symmetry breaking
induced by external load occurs much earlier (~ 10 MCS) and is much larger compared to the case of no load (~ 500
MCS).

The inset figures (again, filled symbols) at ¢ = 0.2 shows the effect of reversing the external stress direction at
3000 MCS. On changing the load from compressive to tensile, the asymmetry parallel to the load axis decreases, and
the components perpendicular to the stress increase, with a rate approximately half of the decrease of the parallel
component. On changing from tensile to compressive load, the effects are much smaller; the parallel component of
the load increases only slightly after the change. Generally speaking, the reversal of external load has only a small
effect on the domain structure. Certainly, the parallel cylinder morphology is not transformed into an arrangement
of parallel plates or vice-versa during the simulations. This indicates that the arrangements obtained after symmetry
breaking are fairly metastable. This is not surprising since the intermediate structures that would have to forn1 in the
transformation from cylinders to plates perpendicular to the cylinder axis (or vice versa) would correspond to higher
elastic energies. Similar effects are observed in experiments on Ni-base alloys [34], in which pre-strained alloys evolved
under stress-free conditions showed rafted morphologies similar to those obtained by annealing under external stress.
The effects in [34] were interpreted on the basis of misfit dislocations, which are excluded in the present model.

(&2}



E. Precipitate Size and Coarsening

The typical size of precipitates can be estimated from the total interface present in the system. For coherent
precipitates of A atoms embedded in a matrix of B atoms, the total number of A-B honds N g can he related to the
amount of interface between precipitates and matrix. Nap is given by

6
1

Nap =5 > [1=v(0(r +a)] (11)

r =l
where the vectors a;, defined at the beginning of the Appendix, connect the site r with its nearest neighbors. We
define an average linear dimension of the precipitates by Rs = 6—;4— where V" and S are the total volume and surface of
the domains. For cubic precipitates, Rs would just be their edge length. If we assume that the interfaces are {100}
planes, then each surface atom has 4 4B bonds and corresponds to an area of a?/2 and S = N4 pa®/8. For an alloy

with composition &, 1~ = Néa®/4, which leads us to the expression
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A plot of R,(t) versus t% is given in Figure 8. For comparison, the solid line represents the mean precipitate size
for a fcc Ising model at the same values of T/T., when elastic effects are neglected. Typical precipitate sizes are
smaller for lower concentrations due to a higher supersaturation of solute (A) atoms in the matrix (B) phase. The
Lifshitz-Slvozov-Wagner (LSW) theory [24] predicts that in the absence of elastic interactions, the precipitate size
R(#) follows a power law R(t) ~ t3, which is certainly not the case for our simulations.

Several striking features are visible in Figure 8. First, R, evolves in a very similar way, regardless of whether
external load is applied or not, and completely differently from the Ising model with no elastic misfit interactions.
The insensitivity of R, to external stress is similar to what was found in two dimensions [14,20]. What is completely
different, however, is that the growth of Ry cannot be described by a law of the type R ~ RO+ (Dt)é as found in the
2-D case. After about 600 MCS (when the precipitate structure has fully developed), the growth of R, is considerably
slowed down and - at & = 0.5 - it almost comes to a stand-still. In contrast, Rs for the Ising model grows nearly
linearly in t3 after about 1000 MCS, consistent with much theoretical and simulation work [37-40] on the kinetics
of phase separation and precipitate growth for alloys where the only driving force for coarsening is the reduction of
surface energy. ‘

At this time, we can only speculate about the possible origin of the slowing down in the presence of elastic
interactions. First, finite size effects cannot be completely excluded. Though R; is always much smaller than the
system size (by about a factor of 4), the cylindrical or plate-like precipitates extend practically to infinity considering
the periodic boundary conditions, which can cause a stabilizing effect. 1n addition, it becomes energetically favourable
for the spacing between precipitate rows or columns to be an integral fraction of the system size, to maintain the
same spacing between precipitate row or columns in adjacent simulation cells. This may hinder the coarsening process
if the number of rows or columns is small. To check the effect the finite size of the system has on our results. we
have performed simulations at smaller system sizes with 328 unit cells, i.e 131072 atoms. We find no difference in
the magnitude of the slowing down of coarsening or the time at which it starts becoming significant. The most
likelvy explanation for the slow coarsening, however, is the highly ordered arrangement of precipitates found in the
present simulations. As clearly visible in S(k,t) (see subsection III B), the alignment of precipitates is much more
pronounced in 3-D than in 2-D, and it is probable that the third dimension favors a higher degree of alignment.
Periodic arrangements of cylinders or plates are, however, quite resistant to coarsening since an increase in domain
size must be accompanied by an increase in the spacing between domains which is not possible continuously if the
precipitates are arranged on a lattice. In fact, the mechanisms by which coarsening can proceed is the movenent of
defects, like the analogs of dislocations, interstitials and vacancies, in the mesoscopic lattice of precipitates [23]. It
is not surprising that this leads to a slower coarsening process [10,11] than in alloys where precipitates are randomly
distributed.

To compare with experimental results on the anisotropy for Ni-base superalloys, we also looked at how the anisotropy
K varies as a function of R,. The results are plotted in Fig. 9 for low (¢ = 0.2) and high (¢ = 0.5) concentration of
A atoms. For the lower concentration of A atoms, x varies almost linearly for small values of R,. An experimental
study of the variation of x as a function of R in Ni-base superalloys showed a similar behavior [31].



IV. CONCLUSION

We have studied a fully microscopic model for phase separation and rafting in three dimensions in a binary alloy
with misfitting phases leading to long ranged coherent elastic strains. The internal coherency strains and external
homogeneous stresses applied during phase separation are found to have a dramatic effect on the precipitate mor-
phology and the topology of the microstructure. It is very surprising that despite the complete neglect of dislocations
and plasticity effects in our model, which are always present in directional coarsening [32,33], our rafted precipitate
morphologies bear a striking resemblance to the experimental X-ray scattering and transmission electron niicroscopy
data on materials like the Ni-base alloys. The main results of our investigations are as follows:

e Depending on the product of the sign of the external uniaxial stress and lattice inhomogeneity (i.e.. on the sign
of ael), the precipitate morphology consists of an array of plate-like precipitates perpendicular to or cylindrical
precipitates parallel to the external stress axis. These structures are, however, far from perfect [23].

e The structure function shows both the breaking of spherical symmetry due to elastic interactions as well as the
breaking of cubic symmetry due to the application of external stress, as observed in experiments [31,33]. However.
a higher degree of alignment of precipitates is observed in our three dimensional precipitate morplologies in
comparison with simulations on a similar system in two dimensions [20,22].

e The anisotropy of the structure function behaves as found in the two-dimensional simulations [20,22] i.e.. it is
strongly affected by the elastic misfit but only weakly by the external load. The breaking of cubic svmmetry
due to the application of external stress is described by the asyminetry of the structure function, which shows
that after symmetry breaking, the precipitate microstructure is resistant against load reversal. This bears some
similarities with the stress-free evolution behavior of pre-strained Ni-base alloys [34], which were, however,
explained on the basis of misfit dislocations.

e Doniain growth slows down considerably from the power law Rs(t) ~ t5 observed in the two-dimensional
siimulations [20,22]. It is possible that the high degree of alignment seen in three dimensions stabilizes the
microstructure against coarsening. The slowing down of precipitate growth from a Rg(t) ~ ¢35 behavior has
been observed experimentally, for example in Ni-Cu-Si [35] and Ti-Mo alloys (36].
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V1. APPENDIX

Given a harmonic coupling between neighboring atoms on an fec lattice, interactions with only half of the nearest
neighbors have to be considered since a spring always connects two atoms. For an atom near the lattice site r. the
neighbors are indexed by 4, r + a; being the position of the neighboring site, where

1 0 1

alzg 1 ,ag:g 1 ,agzg 0,
0 1 1
a 1 a 0 a -1
a4:§ -1 ,a5:—2- 1 ,a6:§ 0
0 -1 1

The distortion caused by the different sizes of atoms is measured by n(r),

o(x) = £(Ra — Ru)p(x) - (26— 1), (13

where the constant term makes the average value of 7(r) over the whole lattice zero. The following abbreviations are
useful

' (r) = n(r +a;) + n(r), (14)

AvtD (r) = vj(r +a;) — v (x). (15)

with vj(r) being the Cartesian components of v. The elastic Hamiltonian He;, for the case of zero external load. is
then )

6
Ha =313 ;{émvﬁ”m + ol (1) = V2[A (1) 4+ pdol ()] (0] + 7 (0]}

6 6
1 1 i i ; 1 i .
+5T1 5 :§[Av§”(r) — pAolV ()] + 5T S A, ), (16)
r =l r =1

where the indices here and in the equations below have to be taken modulo 3 and y is defined as

(=]



As shown in [20]. if a constant external stress is present, the internal and external strains are coupled only when
the elastic moduli are taken inhomogeneous and composition dependent, while for homogeneous elastic moduli the
external stress modifies the Hamiltonian only by the addition of a constant term. Hence, the longitudinal spring
stiffness L coupling atoms at sites r and r + a; is made weakly dependent on the local atomic configuration in the
following way

L n(r),n(r +an)) = L1+ ant (1)) (s

where a(R4 — Rp) < 1 (weak coupling). On minimizing the elastic energy with respect to the atomic displacements
v. H, takes the form of equation (1) where the elastic potential in Fourier space ®(k) is given by
a(k) = Qk) - Y Gilk)D; (k)G (k) (19)

where the different terms are

3 3 3
1
Qk)=1L {3 — V2aa E € + E {1 — —zaa (€ + E(i)+1i+l)} cicip1 + V2aa E 5?i+13i3i+1} (20)
i=1 i=1 i=1

V2
3 1 '
Gik) = ’LLZ { [—\/54— ga (e(}j + e?i)] sicj + aae?jci.sj} : (21)
J#
D;j(k) = (5,'J' {2 (L + Tl) [2 — G (C,'.H + C,‘+g)] + 4Ty (1 - Cj+1Cj+2)} + (1 - 5ij) {2 (L —-T1) .S‘,'Sj} (22)
kia kia

with s; = sin (42), ¢; = cos (%2).

Inclusion of a nearest neighbor ferromagnetic Ising-type interaction between nearest neighbor atoms leads to an
additional “chemical” term Hp in the Hamiltonian for the system. '

6
Hen = —J D Y v(e)v(r +a), J >0 (23)
r i=l
The total Hamiltonian for the system is then
1 9 '
oy [ — “ ¢ 4
Hiot He[ + Hch IN ; \I”(k) | r(k) I (2 )
where
3
T(k) = (Ra — Rp)*®(k) —4J D _ cicip1. (25)
i=1

which can be written in real space as a pairwise interaction Hamiltonian

Hior = 5 32 0 =1 y(e)(x) | (26)

with ¢(r) = & 3, ¥(k)e ™7, and the sum over r and r taken over all lattice sites.
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Cu Al Ni

oM 131 9.8 17.3
ol 118 114 19.1
U1 14 216 -04
L 27.021.2 36.4
T, -1.7 -16 -1.8
T, -14 -1.6 -04

Table 1: Born-von Karman parameters @7 and spring stiffnesses L, Ty, T for three different fec metals at room
temperature [30], in units of N.m™".
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FIGURE CAPTIONS

FIG. 1. Plots of two-dimensional cross sections of the interaction potential $(k) in the (001) plane, with lighter regions
indicating regions of larger elastic potential. The external stiess along the [100] axis breaks the cubic symmetry, with the
minima of the elastic potential lying along the external stress axis for the compressive case and perpendicular to it for the

tensile case. The horizontal axis corresponds to the direction of applied stress ([{100]).

FIG. 2. Variation of the mean field critical temperature TMF(A, aely). The increase in TMF with nonzero stress is asymmetric

about zero, with a larger increase for negative (compressive) stress.

FIG. 3. Snapshots of the precipitate configuration for an alloy evolved from a random configuration at 4000 MCS for external
tensile stress (¢ =02 and T = 5.0.J/kg). Lattice sites occupied by 4 atoms are represented by cubes (A4 atoms in the matrix
are neglected), and sites containing B atoms are left empty. The schematic figare on top shows the direction of external stress.
and divides the box into vertical columns each containing a colimn of three cylindrical precipitates. For clarity, each vertical
column of precipitates is colored a different shade of grey, with the nearest column shown the darkest. In the three sub-figures

showing the actual morphology, each column is pictured separately to avoid obscuring precipitates in the columns further back.

FIG. 4. Snapshots of the precipitate configuration for an alloy evolved from a random configuration at 4000 \CS for external
compressive stress (¢ = 0.2 and T = 5.0J/kp). The schematic figure on top indicates the formation of plate-like precipitates
normal to the external stress axis (indicated), and the right sub-figure views the precipitates at right angles to the stress axis,
showing their regular arrangement along the axis. The left sub-figure shows the same configuration viewed at an oblique angle,

showing the fragmented nature of the plates.

FIC. 5. Three-dimensional plot of structure function Sk, t) (€ =02and T = 5.0J/kp) for tensile. zero, and compressive
stress simulations at 4000 MCS, showing points with S(k,t) > 120.0 as cuboids, the remaining sites being left empty. The

anisotropic leaf-like structure is due to the elastic anisotropy, the breaking of the cubic symmetry due to the external stress.

FIG. 6. Time evolution of x(t) on a t% scale for & = 0.2 (left) and ¢ = 0.5 (right) at T' = 5.0.J/kp. Tensile (O), compressive
(O) and zero external stress (A) are shown by different symbols. The inset fignre in the & = 0.2 plot shows the behavior on
reversal of external stress direction (filled symbols). Both curves show a decrease, but the magnitude of the change is larger -

for the compressive — tensile case than in the tensile — compressive case.

FIG. 7. Time evolution of 7n:(t) on a +% scale for & = 0.2 (left) and ¢ = 0.5 (right) at T = 5.0J/ks. The component parallel
to the external stress axis is denoted by a '+’ sign in the symbol. Inset figures in the left column show the behavior on reversal
of external stress (filled symbols). In the tensile — compressive case the larger component of the asymmetry perpendicular to

the external stress axis continues to increase with the same rate after reversal of external stress direction.

FIG. 8. Time evolution of Rs(t) on a t% scale. Tensile (0), compressive (O) and zero external stress (A) are plotted on
the same graph for fixed concentration and temperature T = 5.0J/ks. The solid line shows Rs(t) for a nearest neighbor

ferromagnetic Ising model on an fec lattice.
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FIG. 9. The anisotropy & is shown as a function of precipitate size Rs. for tensile (O), compressive (O) and zero external

stress (A) on the same plot for low (¢=0.2) and high (¢= 0.5) concentrations of A atoms.
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