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1. Introduction and Results

We consider a ferromagnetic Ising spin system in a lattice domain D of the
form Z? x L, where T,,, is the set {-m/2,~m/2+1,...,m/2} and m > 1is a
fixed positive integer. A point & of D is represented by a pair @ = (z, z) where
v = (21,...,284) € Z? and z is integer for m even and half-integer for m odd,
between —m /2 and m/2 (inclusive). A spin at site = is denoted by o,; it takes
values +1. In most parts of the paper we consider the case d = 2, but all results
can be straightforwardly extended to the case of a general d > 2.

Putting “~" boundary condition on the bottom layer 9" = Z% x {—m/2 -1}
and “+” on the top layer tD = Z¢ x {m/2 + 1} we consider the Gibbs ensemble,
in a finite volume V = V x I,,,, where V is a finite subset of Z¢, with ‘additional’
boundary condition on 8tV = 9V xI,,. Here, dV = {x € Z%: €V, at least one
n.n. of @ is in V}. The ‘whole’ boundary condition is denoted by oy ; here, 9V =
ItVUIVUITV, and 9%V =V x {m/2 £ 1}. A spin configuration in volume
V is denoted by ov = {5 =%1: * € V}.

The Gibbs ensemble is determined by the Hamiltonian

H\/(lecrav) = — Z OpOgpt — Z OxeOg! , (1.1)
(2@ YCV (v.2'): mEV
w/cav

where (@, z') are nearest neighbor sites, via the standard formula

! __exp (=fHy(ov|oav))
Prgyv(ovi|ogy) = s (Vioay) ) (1.2)
where Zg(V]|oav) is the partition function with boundary condition ogv.

A boundary condition osiy is said to be regular if the set of the dual unit
plaquettes separating the nearest neighbor sites z,2' € 8-V with spin values of
the opposite sign is connected. For any configuration oy with regular boundary
condition opy consider the complete separating surface which is a set of the unit d-
dimensional plaquettes of the dual lattice D = Z<x1T,, (here Z¢ = Z4+(1/2,... ,1/2)
andI,, = I,n+1) separating neighboring sites of VUJV occupied by spins of opposite
signs. This surface is partitioned into connected components: it is clear that each
connected component but one is a closed surface (in the Euclidean space Rt1).
Denote by Vgai1 a closed domain in R¥t! given by uniting the ‘standard’ closed
unit cubes in R¥t! centered at the sites € V. The intersection of any closed
connected component of the complete separating surface with Vga+1 is denoted by
wi(ov,091v), wa(ov,os1v ), etc, and called a bulk contour. The intersection with
VRga+: of the remaining connected component (more precisely, the corresponding
surface in R%*1) is denoted by Q(ov,o51v) and called an interface (in V).

A special role is played by the simplest regular boundary conditions oy, s €
Iny1 determined by o = 1 when @ = (,2), z € 9V and z > s and 0(;,) = —1
when @ = (z,2), € 8V and z < s.
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T,z + —z .
o-(v)\/;(mv ) 1f2>0
DT Tt (4.2)
) Hz=0
and o e
o) — Zwmz) 7 @22 4, 50
o) T\ Oy — 0@ . (43)
— S ifz=0.

N

Then (4.1) can be rewritten as
(8@,2)8(ar,2) + L)t 21)

z,2),(2'2')) CV*, 22! #0

> s (80 + o) (4.4)
(@) (o) CVe

Hy(ov,ev|oav,pov) = —

-~
—

|
SR

and according to Ginibre’s inequality [19] for any A, B € V*

+
< Il seo II t(m,z>> 2 0. (4.5)
(

z,z)EA (z,z)EB 8

Taking A = 0 and B = (0,0) one gets

(to,00)5 = 0 (4.6)

The last inequality implies
(c,0)} = (va)f, (4.7)
which proves Theorem 1.2. O
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The probability distribution Prg v( - |osv) induces a probability distribution on
the set of interfaces compatible with opv and we are interested in the asymptotic
behavior of the random interface in the thermodynamic limit, V * Z¢ with m
kept fixed. More precisely, we consider the structure of the family of limit Gibbs
states Prg( - |oov) and we study where the “typical” interface is located for given
Prﬁ( . 'Uav).

The first rigorous results in this direction were obtaned by Dobrushin [1] and
Gallavotti [2]. In [1] it was shown that, for d > 2 and G large enough, in the
limit V 7 Z¢ x Z' (that is, V ' Z% and m — oo, m odd), the random interface
compatible with boundary condition o3y, is asymptotically rigid. This means that
its probability distribution is obtained by the so-called polymer expansion, about
a ‘ground state’ represented by the flat interface that consists of the horizontal
plaquettes centered at points (z,Z), with € Z¢ and 7 = 0. [A consequence of
that fact is that the random interface possesses an expomnential decay of space-
correlations.] This result was later partially extended in [3] to all 8 > ., the
inverse critical temperature of the d-dimensional Ising model. For d = 1 and S
large enongh [2] showed that a similar limit leads to a non-rigid interface (which is
a broken line along the bonds of 22) The latter means that the probability, for a
given lattice site @, to be ‘above’ or ‘below’ the interface line tends to 1/2.

In our situation (where V' Z¢ while m is kept fixed), a natural conjecture is
that if B > e, the interface becomes, for all b.c. on 8+V, rigid around the middle
plane Z = 0 for m odd, and around one of the two middle planes Z = £1/2 for m even
(in the last case, the interface chooses one of the planes with probability 1/2; as a
result, the distribution of the interface does not have a decay of space-correlations).
In this paper we prove the above assertion under the stronger condition that 5 >
const - m, i.e. at very low temperature depending on m. This phenomenon of
an ‘irregular’ behavior of an interface in an Ising ferromagnet between oppositely
charged parallel planes was discussed in the physical literature, e.g., [4], and the
references therein. To be precise set Pri,( - ) = Prgv( - |o5y), Pry( - ) =

Pr\i,l/ 2( - ) and define a symmetry transformation

*

oo, with o(, ) =—0(,—y), (z,2) €D. (1.3)
A state invariant with respect to this transformation is called symmetric.

Theorem 1.1. There exists a value [y = const m such that, for any 8 > o,
the following holds.

(i) If m is odd, there exists a unique limit Gibbs state Pr® = limy_p Pry,. State
Pr® is ergodic and symmetric.

(ii) If m is even, there ewxist precisely two translation-periodic extremal limit
G1ibbs states, Prt = limv_p Pr%,. States Pr* are ergodic and taken to each other
by the symmetry transformation (1.3).

Remarks. 1. For m odd and 8 > f, the uniqueness of state Pr® is under-
stood in the class of all limit Gibbs states not just translation-periodic states such
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as is usually established at low temperatures, e.g., by the Pirogov—Sinai theory
([5, 6]). The stronger uniqueness property requires, in a general situation, an in-
volved techunique from [7,8]. However, in our case the proof is simplified by using
the FKG inequality.

2. Similarly, for m even, 8 > [y and d = 2 the states Pr* in Theorem 1.1 are
the only extremal limit Gibbs states. This may be proved by combining the method
of this paper with those of [2] and [9]. For d > 3 (and m even) there exist other
(non translation-periodic) states.

3. As was noted before, a problem of an interface in the three-dimensional
Ising ferromagnet without constraints was studied in [1]. Our Theorem 1.1 does
not follow from [1]: the presence of the constraints makes the whole picture more
complicated. Another simplified version of the model under consideration, i.e. the
SOS model with the constraints, was discussed in [10, 11].

4. Thearem 1.1 deals with the system where the bulk external magnetic field
equals zero. Introducing a constant external magnetic field will clearly shift the
separating interface in the direction of the field. More precisely, we believe that it
can be shown (although we have not done so explicitly) that there exists a sequence
0= pim/2-1 < p{m/2} « | < pm/2-1/2 < pm/2+1/2 = &6 such that

(i) if the value of the magnetic field h € (A™/2+1/2-3 pm/243/2-3) j =1,...,
[m—jl] + 1, then there exists a unique limit Gibbs state that coincides with
Ppr™/2+3/2-14, .

(ii) for b = h™/2+1/2=3 5 =1,..., [™£L] + 1 limit Gibbs states Pr™/2+1/2=J
and Pr™/2t3/2-3 coexist,

Here {-} and [] are the fractional and integer parts respectively. The case of the
negative A is obtained by symmetry.

This behavior of our model is closely related to the layering transition or Basuev
phenomenon in the semi-infinite Ising model. In the last case the top layer 97D
is shifted to infinity, i.e. there exists only one wall 0D which is fixed at the
origin. The phase diagram of the model consists of the infinite number of curves
h = hi(B), k =1,2,... such that on hj(8) two limit Gibbs states coexist: one
with the separating interface fluctuating around the flat surface at the level k and
another with the separating interface fluctuating around the flat surface at the level
k+ 1. It is a natural conjecture that the lines hj(f) exist for # > f.. but our
methods give A} () only for f > (i with 8, — oo as k is growing. The proof
is similar to the one presented here with minor technical modifications in treating
of bulk phase. By another method based on correlation inequalities the existence
of the curve hj(B) was proven in [12]. For the simplified version of the model,
namely for the SOS interface fluctuating above the rigid wall in the presence of
the attracting force, a detailed investigation of the low-temperature phase diagram
was carried out in the papers [13], [14] and [15] where a similar phase diagram was
verified with 3, < ° < 0.

As was already noted a natural conjecture is that the value 5 in Theorem 1.1
does not depend on m. To support this conjecture we are able to prove the following
theorem.
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Remark. All estimates used in the proof of Lemma 3.2 are rather rough and
by making them more accurate one can prove this lemma (and hence Theorem 1.1)
for § > const logm. To get the estimate for 8 not depending on m one faces the
principal difficulty of the polymer expansion method. Namely, trying to compare
two different polymer series we took (calculated “by hand”) contributions given
by some particular polymers (unit spikes) and verified that these contributions
dominate the series constructed from the absolute values of the statistical weights
of all other polymers. It is not hard to see that for given § one can always find m
so large that the series of absolute values will dominate the contribution of the unit
spikes. Hence to improve the result up to the S not depending on m one should
compare two different polymer series term by term taking into account the sign of
the statistical weights of the polymers which seems to be a very hard task.

Now Lemma 3.2 allows us to prove the existence of state Pr® in Theorem 1.1 (i)
and of states Pr¥ in Theorem 1.1 (ii), and their uniqueness in the class of
translation-periodic Gibbs states, by using a general theory of dominant ground
states (see [16]). Reference [16] contains a general theorem (Theorem B [16]) de-
scribing low-temperature phase diagrams for the wide class of models. The key
condition of this theorem, namely generalized Peierls condition (2.9) of [16], is ver-
ified by Lemma 3.2. Other two conditions of Theorem B [16]: the retouch property
and Condition £ are obviously true for our model which makes the application of
Theorem B [16] straightforward. In fact a simpler Theorem A [16] is also applicable
to our model. What is not covered by the theorems of [16] is the uniqueness of Pr?
in the class of all Gibbs states. The additional argument is the following,.

It follows from [16] that for m odd and 8 > [, the translation-periodic limit
Gibbs states Pr(™/2t1/2) corresponding to the boundary conditions o (m/2+1/2)
coincide with each other and with Pr’. On the other hand, the FKG inequality
guarantees that any limit Gibbs state is between Prt(m/2+1/2) apq pr—(m/2+1/2)
(see [17]). This completes the proof of Theorem 1.1 (i). 0

4. Proof of Theorem 1.2

Similarly to [3] consider model (1.1) in the volume V =V x L, where V is a
d-dimensional cube of linear size 2N + 1, with the boundary condition o~1/2 on
OV. Take also an independent d-dimensional Ising model in the volume V' with
“+” boundary condition on V. We denote by ¢, the spin variable of this model.
The Hamiltonian of the joint system is given by

HV(UV, (PVlaav,(Pi‘)V) = Z OxOx — Z OxOx!
(x,x')CV (x,x'): xEV,
x'eav
- Z PaPa’ — Z PzPar (41)
(z,2x')CV (z,0'): zEV
z'eav

Set V* = {x = (2,2) € V: z > 0} and introduce for x € V* new variables
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of the statistical weights of all labeled polymers (¢°, L(¢*)) passing through a given
point and having L{¢*) = 0 and ||¢°||**" > n is less than

Z Z i+ t)e H't)(3_2('8_C2_c‘*)ie_('@_c“)’f < exp(—2(8 — cg)n), (3.31)
i=n t=0

where cg is a sufficiently large absolute constant, § > cg and we used (3.2).

The contribution to the right-hand side of (3.27) coming from noun-canceled
labeled polymers which are not shorter than (m + 5)/2 — |s| (and have at least
4(m + 5)/2 — 4|s| vertical plaquettes) does not exceed

o0

\4 > exp(=8(8 - cs)h). (3.32)

h=(m+5)/2—|s|

Non-canceled labeled polymers which have the height (m + 3)/2 — |s| and are
not counted in (3.29) have at least 4(m + 3)/2 — 4|s| + 1 vertical plaquettes. Thus
the absolute value of their contribution to (3.27) does not exceed

V] exp(—2(8 — cg)(4(m + 3)/2 — 4]s| + 1). (3.33)

If the height, &, of non-canceled labeled polymer is less than (m+3)/2—|s| then
at least one small generalized cylinder ¢; from this polymer has the corresponding
label L(eg;) = 1 and enters the statistical weight of the labeled polymer with the
factor wi (g;) satislying

fn (0] < Bfw(en)] [Int(efe 30 (m2)/2-max(iECO I D)

< fo(er)|e=38 ((ma9)/2h) 40/, (3.34)

For other small generalized cylinders ¢ having L(ey) = 1 we use even rougher
estimates

lwi(e))] < 3lw(e)| IInt(El)Ie—SB((m+3)/2—max(lE(€z)I:IIj(Ez)I)) < Jw(e)|e P14, (3.35)

Applying (3.31) one easily gets that the absolute value of the coniribution to (3.27)
given by non-canceled polymers of the just described type does not exceed

\4 i exp(—8(8 — cg)h) exp (— 88((m + 3)/2 — b)) + B/4). (3.36)

Combining (3.29), (3.32), (3.33) and (3.36) and taking c4 such that for 8 > eym
cs 8(m +5)/2 < B/3

one gets (3.17). O
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Theorem 1.2. For § > (B, and m even there exist at least two different limit
Gibbs states Pr™ and Pr™ taken to each other by the symmetry transformation
(1.3). The spontaneous magnetization (0'(0’0))2; s not less than the spontaneous
magnetization of the d-dimensional Ising model.

To conclude this section, we comment on the statements made and their proofs.
Pictorially speaking, the mechanism behind our Theorem 1.1 is an entropic ‘repul-
sion’ from the constraint surfaces 8D : the interface tends to stay in the middle
of D where it has the most freedom for random fluctuations. This is similar to the
case of the SOS model considered in [11]. However, unlike the SOS model, we now
have to deal with a ‘bulk’ phase living between the interface and the constraint
surfaces O*D. The presence of the bulk phase creates a sort of entropic ‘attraction’
towards 9D, approximately of the same size as the entropic repulsion. In physical
terms, an interface forbids the contours of the bulk phase (bulk contours) to exist
in its vicinity. The closer the interface is to a constraint surface, the more space
is available for the bulk contours: this is the source of an entropic attraction. The
balance is quite delicate, but in the end the repulsion prevails. Unfortunately we
are able to proof this only for 3 > const - m.

The main tool used in the proof of Theorem 1.1 is a polymer expansion technique
combined with the theory of dominant ground states (cf. [16]). The whole argument
resembles the one given in [11] but is technically different in view of the presence of
the bulk phase. The uniqueness statement of Theorem 1.1(i) and Theorem 1.2 are
proven via correlation inequalities similar to the ones used in [17] and [3].

2. The Reduction to Statistics of Generalized Interfaces

Irom now on we concentrate on the case d = 2; as a rule, the modifications
needed for the general case d > 2 are immediate, and we omit them from the
paper. Given a configuration oy and boundary condition oy.y we denote by
|Q(ov,051v)| and |wi(ov,05:y)| the total number of the plaquettes in
Q(ov,051y) and w;(ov, 051y ), respectively. Then for the regular boundary con-
dition ogLvy

Hy(ov|oav) = 2(|Q(UV,Ualv)| + Z }wi(UV,UaLV)D —§(v), (2.1)

where the term (V) = tl{ z,2'): @' € V} does not depend on ov, o5y and may
be omitted. Furthermore, any collection {{wi},ﬂ} of disjoint plaquette surfaces
in Vga, where

(i) each w; is closed and connected and belongs to Vys,

(i) € is connected and has a connected boundary 9€2 that belongs to 8+ Vgs,

uniquely determines a configuration oy with a regular boundary condition oa.+;.
Here, 8+ Vs is a ‘vertical’ cylinder surface in R® which is the vertical part of
the boundary 0Vgs. It is worth noting that ea.y is determined by Q only. Any
collection { {w;}, Q} with the properties listed in this paragraph is called compatible.
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The one-to-one correspondence, between the compatible collections {{wi},ﬂ}
in Vgs and the configurations ov with regular boundary conditions aiv,
together with formula (2.1), enables us to represent the partition function

E(Vl]earv) ZGXP {— BHv (ov|oory) — ﬁﬁ(V)] (2.2)

in the following form

Z(Vl]eary) = > w(Q)H'w(wi). (2.3)

{{wi}vn}CVR3

Here, o5y is a regular boundary condition and the sum is extended to the
compatible collections {{wi},ﬂ}, with interface §2 corresponding to og1y. The

statistical weight w(-) is given by
w(Q) = exp (—26]2), w(w) =exp (-28w]). (2.4)

Note that it is invariant with respect to space translations of € and w.

The strategy of the proof of Theorem 1.1 is as follows. First, we construct a
polymer expansion, for the partition function EO(V) = E(Vl]ed.y ), for m odd,
and for the partition functions Z+(V) = H(V|a'0 ¢V) for m even. The existence
of such an expansion immediately implies, via a standard argument, the existence
of the limit Gibbs states Pr’ and Pr™ mentioned in Theorem 1.1. The proof of
the unqueness requires some additional standard constructions based again on the
polymer expansion (see [6, 16]) and the FKG inequality (see [17]).

To derive the polymer expansion we proceed in several steps. To begin with we
write the partition functions Z°(V) and Z*(V) in the form

(2.5)

where Z*(V) denotes any of Z°(V) or E+(V) and ZP(V) is a partition function for
an ensemble of bulk contours:

V)= > J[wlws. (2.6)
{w;}CV 1

A well-known fact (see, e.g., [18]) is that, for 8 > ; where 31 does not depend on
m, the logarithm of the partition function ZP(V) admits a polymer expansion

log E2(V) = > w(m). (2.7)
TCV
Here, the sum Z is over the so-called polymers, i.e. collections (wy,... ,ws)

TCV
S

of bulk contours (possibly, with repetitions), in V, such that the union ij forms
=1
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Labeled polymers have a nice property that for L( ) = 0 (ie. L{g) = 0 for all
g1 € ¢°) the corresponding statistical weight w( L(g® ) is invariant under the
vertical shifts of ¢°. Indeed, define AT (0*) = max; h+(£1) ~(0*) = min; h~(g;) and
suppose that ht(o°)+(s—s') < (m+1)/2, b~ (¢°)+(s—5") > —(m+1)/2. Then the
vertical shift on the vector (0,0, s — s') maps ¢° into ¢* and for L(0®) = L(o® V=0
dlearly w((e*, L(e*))) = w((e*', L(e*))).

Suppose for the definiteness that e = 0 (the cases ¢ = 1/2 and ¢ = —1/2 can be
considered in the similar way). We need to estimate

ZS/b(V) — e (o ({0 \
Z/b(V) =ex] <(9 ,L(ZQ;))C‘/I(Q ) ((Q , Lo )))

- 2 '7’(98)w((9°,L(Q')))>- (3.27)

(e*\L(e*))CV

The correspondence between p° and ¢°* given by the vertical shift on the vector
(0,0, — s) allows us to cancel some number of common terms in the difference
above.

Among non-canceled (¢*,L{0*)) a special role is played by labeled polymers
consisting of a single small generalized cylinder ¢ = (27, {nf}) such that E(e) =0,
L(e) = 0, € has an empty collection {7} and Q¢ is a unit spike of height h(e) >
(m + 3)/2 — |s|. The last means that ¢ can be constructed as follows. Take a
vertical cylinder in R® of height h(e) with the vertical projection on Z? being a unit
plaquette. Put the horizontal surfaces of this cylinder at levels h~(¢) and h*(e).
Then ¢ contains all the plaguettes of this cylinder except the horizontal plaquette
at level 0 (remember that either h*(e) = 0 or b~ () = 0). For the polymers consist-
ing from a single generalized cylinder the corresponding combinatorial coeflicient is
equal to 1 (see [18]). Hence the polymers (¢°*, L(¢*)), just constructed have

r(0®)w((e*, L(e%))) = w(e) = w(e) = =) (3.28)
and the total contribution to (3.24) coming from such polymers is equal

(m+3)/2
v S e (3.29)

t=(m+3)/2—|s|

Now we will show that for B3 > const m the absolute value of the contribution
coming from the rest of non canceled polymers in both sums in (3.27) is less than

|V |em 88 ((m+8)/2-1s])-p/3 (3.30)

and this will imply Lemma 3.2,
Observe that the number of connected sets consisting of n vertical and ¢ hori-
zontal plaguettes and passing through a given point is less than (n + t)c7”+t) with

¢y > 0 depending on the dimension only. Hence the sum, Sy, of the absolute values
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for all ¢ with ] < N and for all V' with |V| < N. Take any e with || = N. In
view of (3.8)
[Int(e)} < (cam)?. (3.19)

Hence there exists an absolute constant ¢s such that for 8 > e5logm
,Int(e)Ie—Sﬂ((m+3)/2—maX(lE(E)I,Ifj(E)I)) <1. (3.20)

As |Int}(e)] < N one can use bound (3.17) to estimate the product in (3.12).
Together with the elementary inequality

e’ <142J2| for |z|<1 (3.21)

and (3.2) this reproduces for € bound (3.16).

Take now the volume V' with |V| = N. To reproduce (3.17) we use a polymer
expansion for log Z*/>(V), s € Lny1. As |¢| < N for any e contributing to Z°/*(V)
bounds, (3.16) and (3.2) imply the convergence of the following polymer expansion
(see [18]).

log Z°/°(V) = > r(e")w(e®), (3.22)
o*CV
wlere
(i) a polymer ¢° is a collection (&1,&2,...,&x) (possibly, with repetitions), of

small generalized cylinders in V, such that the union g° = U}":IEI forms a
connected set and E(e;) = s for any ¢; from the collection;
(ii) 7(+) is a combinatorial coefficient (see [18]) satisfying the estimate

k
()] < explesllo®ll), 6 >0, (oIl =D lfell; (3.23)
=1

(iii) the statistical weight of the polymer is equal to
k
w(o®) = [ [ wle). (3.24)
=1

Define a function L(¢®) which assigns to every e € ¢° a label L(e) taking the
values 0 and 1. The pair (¢*,L{0%)) is called a labeled polymer. Substituting the
representation w(e) = (wo(e) + w1 (e)) in (3.24) and opening all brackets one can
rewrite (3.22) as the sum over labeled polymers

log2°/*(V)y =" > r(e*)w((e*, L(e))) (3.25)
(e*,L(e*))CV

where

k
w((e® L(e°))) = [ [ wriey (er). (3.26)
=1
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a connected set of plaquettes. The statistical weight, w(7), of a polymer =, is
invariant with respect to space translations and satisfies the bound

lw(r)| < exp (—2(8 —c1)in]) (2.8)

where |7| is the total number of the plaquettes in 7: |7| = lej], andc; >0isa
Jj=1
coustant.”
We now write representation (2.3), for 2*(V), in the form

2(V) = 3% w(@)=P (Vir() 2k (V) . (2.9)

QCVvV

Here, the sum Z. is over all interfaces Q compatible with the corresponding
Qcv
boundary condition (ag 1y for m odd and agjg for m even). Tle sub-volume
VUP(§2) C 'V consists of the sites  lying above €2, at least distance one apart
(which means that the sites adjacent to £ are not included). Similarly, V() c V
cousists of the sites @ lying below €2, again at least distance one apart.
Using representation (2.7) and a similar representation for log ZP(VuP/1°), we

can write the ratio E;EX; as
E;(V) = Z. w(N)exp | — Z w(7)
- (V) QCcv m: TNRZP, mEV
=3 we) [ a+w)
QCv m: mNQAD, TEV
= Z. w(§2) H W(n;)
{eir3}cv i
= S w(D). (2.10)
rcv

Here, T is a collection {Q, {m}} where €2 is an interface in 'V compatible with the
corresponding boundary condition and {m;} is a set of bulk polymers in V which
intersect 2. Below we call I' a generalized interface. The statistical weights W (r)
and w(T") are defined as

W(r)=e ™ —1 < exp(—2(8 — c2)|7|) (2.11)

and
w(T) = w() [[W(r). (2.12)

*All constants ¢; used here do not depend on M.
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Returning to (2.5), one can see that the problem is reduced to constructing an
expansion for the partition function

2o (V) = 3 tw(T). (2.13)
rcv
To construct this new polymer expansion one needs a detailed knowledge of the
geometry of a generalized interface. Following an idea going back to [1], we treat the
generalized interfaces as an ensemble of more elementary geometrical objects called
cylinders (=walls in [1]). The cylinders describe deviations from a flat surface.
Observe that all flat interfaces have the same (and maximally possible) statistical
weight exp (=28|V|). However, they differ in the total weight carried by the
cylinder ensembles built around them: the flat surfaces at height 0, for m odd, and
around +1/2, for m even, are dominant (see [16]). To verify this fact, we partition
the cylinders into small and large ones. Comparing the free energies of the ensembles
of the small cylinders, we first check that the above surfaces dominate the others at
the level of the small cylinders, and then apply the dominant ground states theory
to show that the large cylinders do not destroy this picture.

3. Statistics of Generalized Interface

We begin with studying the geometry of a generalized interface I' = {Q, {m}}.
Tt is convenient to extract from I' the so-called free plaqueties. A plaquette £ from
Q U (Ui m) is called free (in T') if

(i) & is horizontal (i.e., parallel to Z?),

(ii) there is no other horizontal plaguette, from €2 U (Ui m), which is projected

to K.

It is plain that x € Q and the number of free plaquettes is not greater than
|V|, the area of the base of V (recall, V=V X I,,). The set of non-free plaquettes
(vertical or horizontal) from U ( U; wi) is partitioned into connected components
denoted by #1,...,7,. Plaquettes from I' may enter the set ¥; with multiplicities
(the interface Q2 plus some contour(s) from some polymer(s) m; may pass through
the same plaquette). We denote by nj, the positive integer function whose value
ns, (k) indicates the multiplicity assigned to a plaquette x € ¥;. Observe that if a
plaquette of a bulk polymer 7 belongs to ¥ then the whole 7 belongs to 7. This
allows us to define a generalized cylinder as a collection v = (QA’, {W;’}), where 27
= QN% and 7r;’ are the bulk polymers from 5. The statistical weight w(y) of a
generalized cylinder v is denoted

— HW(W?)e—wlmle?BIﬂ;’nl , (3.1)

where |€27,| denotes the area of the vertical projection €27, (on Z?) of 7. Note
that W () may take negative values, and, for 8 > 4ca,

)] < exp (—208 - el = BIIIP) < exp (<BIHID,  (32)
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Then
25/°(V) = exp (—28|V)) Z s H w(e;) HEI"‘(E")/b(Intzei)
{les){vi}}ecy i k
XH w(vy) HE 1)/P(Int} vy)
=exp (—208|V]) Z H w(e HE D/P (Intfe;)
{le:){vi}pecv 4 k
X H w(v;) HEI’("f)/b(I7ztfz/j) (3.14)
i l
where the sum Z s is taken over all strictly compatible collections of

{leil{vs}}ecv
mutually external generalized cylinders (small and large) belonging to V. = V X
L. As Intfe;, Intjv; C V one can substitute in the right-hand side of (3.14) the
expressions for 2P/ (Intke;) and Z1#)/P(Intfy;) coming from (3.13). After
regrouping terms this gives Lemma (3.1). O

Define the restricted partition functions (see [16]) as
AL Z Hw i), (3.15)
[eiJcV 2

where the sum extends over weakly compatible collections of small generalized cylin-
ders [¢;] with E(e;) = s. Set wo(e) = w(e) and wy(e) = w(e) — w(e). The key role
in the proof of Theorem 1.1 is played by Lemma 3.2 below which verifies that o
(for odd m) and o* (for even m) are the dominant ground states.

Lemma 3.2. There exist a constant c4 > 0 such that for > cam
o (e)] < 3w(e)| |Int(5)|e—w(<m+3)/2—max<|E<s)|,|1j(em) (3.16)

and for any $ € g1, s F£ ®

31 —88((m+3)/2—]s Z:/P(V) 1o o antimes) /2 ls
exp <_§|V|e 86((m+8)/2-| |)> < 'ZTEV) < exp <_§|V|e 86((m+3)/2—| |)> ,

(3.17)

where for m odd e = 0 and for m even either « =1/2 or e = —1/2.

Proof. According to definition (3.8) all small cylinders imbedded into the inte-
rior of given small cylinder are also small. Hence for any small cylinder €

g2/ (Inthe) = Z7E) P (Inte), ENO/P(Inte) = 25 P(Intfe).  (3.18)

Now we proceed by induction in volume. Clearly (3.16) is valid for e with |g] =1
and (3.17) is valid for V with |V| = 1. Suppose that (3.16) and (3.17) were verified
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The whole collection is called mixed-compatible if any pair of distinct generalized
cylinders +/, v from the collection, not separated by any third generalized cylinder
from the same collection, is mixed-compatible. We use the notation [ - } for the
mixed compatible collections of generalized cylinders.

Observe that for the partition function Z°(V) = Z(V|ojLy) (see (2.3)), with
s ==1,..., £(m+1)/2,for m odd and s = :1:3/2 +(m+1)/2, for m even, one can
obtain a representation analogous to (3.7): = (Vlaalv) E3(V) = EP(V)Z/>(V),
where

=) = exp (-20V]) 3¢ [Jwi). (310)

{vitcv 4

Here, the sum ZS is over the strongly compatible collections of generalized

{vi}cv
cylinders Vi, with 4; C V, such that, F(y;) = s for all external generalized cylinders

. Furthermore, for Z*/P(V), one can write down a formula analogous to (3.9):

25/P(V) = exp (=28|V]) Z H w(e; H w(vy) (3.11)
Hed{wsdicv @

Here, the same definition of small and large contours is used as before (see (3.8)).
The modified statistical weight, w(e), of a small generalized cylinder ¢, is given
by
ELE/D( Intk(e))
= 2 3.12
W(S) ’Z,U(E) H EE(E)/b( Int;k(e)) ) ( )

7

with w(e) defined as in (3.1) and Int}(e) being Int;(¢) without plaquettes adjacent
to &,

Lemma 3.1. For any finite V. =V x L, and any s € Lnq1, the following
formula holds

Shwyzee 2o 3 Twe]lee). G
(ledd{ws}}cv 4

Here, and below the sum ZS is over the mized-compatible collections of

{{eih{v;}ICV
small and large generalized cylinders e; and vj, with the projections &;,7; C V,

such that, for any external generalized cylinder v (small or large) from the collection
E(y) =s.

Proof. We proceed by induction in volume V. For V with |V| = 1 the lemma,
is obvious. Suppose that it was verified for all V! C V' and consider the volume V.
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where

= > wsle), (b= Y nsn),

REY REY
K is vertical K is horizontal

Il = Zm(ﬁ) =17+ )], (3.3)
REY J

"To obtain bound (3.2), we use bounds (2.4) and (2.11). Indeed, denote by k =
k(k) the total number of horizontal plaquettes from 5 projected onto x € J,. Then
k > 3 and the contribution of these plaquettes is at most —2(k—1)(3—cy)—28 as at
least one of them comes from Q7. After adding (+24) we still have a contribution to
the exponent, at most —k3 if § > 4¢;. Summing over k and adding the contribution
of the vertical plaquettes of 7 (at most —2(8 — ¢2) per plaquette) leads to (3.2).

Using (3.1), we re-write Z*/P(V) in the form

*/P(V) = exp (—208|V]) Z I wn (3.4)

TCV ~el

{1

Note that, by definition, the generalized interface I' containing no generalized cylin-
ders gives the contribution 1 to the sum in (3.4). [It is plain that such I' is unique
and consists of a flat interface € and no bulk polymers ;).

Given a generalized cylinder + from a generalized interface I' = {Q,{m}},
the vertical projection ¥ is a connected set of plaquettes and bonds of the dual
lattice Z2. Consider the plaquettes of Z? which do not belong to 4: a pair of such
plaquettes is called J-connected if they have a common bond that does not belong
to 7. The whole set of the plaquettes that do not belong to ¥ is partitioned into
¥-connected components; among these components there exists a unique one that
is infinite. This infinite component is called the exterior of v and denoted Ext~.
The remaining connected components (if any) are denoted Int;+y, Intyy, etc; we call
them the interior components of 7. The union Inty = | Int;y is called the interior

J

of .

The next observation is that, for each component Extvy, Int;v, Intyy, ..., the
set of the free plaquettes of interface §2, adjacent to ¥ and projected into this
component, is placed at the same vertical level (depending on the component). We
denote these levels, respectively, by E(v), I (), L(v), etc.

For each generalized cylinder v we define h*(y) = max (E(v),I;(v)) and
h™(v) = min (E(y),I;(7)). The difference h(y) = ht(y) — h=(7) is called a height
of the generalized cylinder.

Given a pair v',v” of generalized cylinders from T', we say that 4" and 7" are
not separated by a third generalized cylinder v from I if 5/ and 5" belong to a
single connected component among Exty, Int;y, Intyy, etc.

We need, for further use, a concept of weak compatibility of generalized cylin-
ders. Two generalized cylinders, v, v’ € D , are called weakly compatible if their
vertical projections 7 and %' do not intersect and E(y)=E(y’). A collection of
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generalized cylinders is called weakly compatible if each pair from the collection is
weakly compatible.
An unconstrained partition function, 2°°(V), is defined as

2=(V)=exp (=28V]) D> J[wlw (3.5)

[yviJcv ¢

where the sum Z [vlcv is over the weakly compatible collections of generalized
cylinders v; € V x I, with fixed E(v;) = E. As in (3.4), the empty collection gives
the contribution 1. Pictorially speaking, the partition function 2°°(V') corresponds
to a model in an infinite vertical ‘strip’ ¥ x L. Indeed, consider a collection {v;}
which is obtained from [v;] by changing E(v:), Ir(vi) onto E(vyi) +t, In(v) +¢
where ¢t = Z Ii(7i;). Pictorially this corresponds to the vertical shifting
¥i;+ Inbryi; 2%

of 4; on the vector (0,0,t). Because of the absence of constraints any such {7;}
can be uniquely completed to the generalized interface in V' x ll,. Moreover, the
correspondence between generalized interfaces in V' X I, and weakly compatible
collections of generalized cylinders in V' is one-to-one. Bound (3.2) guarantees the
convergence of the polymer expansion for log Z%°(V) (see [18]) which leads, in
a straightforward way, to Dobrushin’s result [1] on the rigidity of the interface
in the three-dimensional Ising model. Unfortunately, for partition function (3.4),
the polymer expansion cannot be written directly in terms of weakly compatible
generalized cylinders. The condition I' C D leads to a more complicated, non-local
compatibility rule that is discussed below.

Observe that any two generalized cylinders +/,+” from I' C D, not separated
by a third generalized cylinder from T, satisfy the following strong compatibility
condition:

6) 707" =0,

(ii) At(y"),ht(y") < (m+1)/2, and A= (7)), A= (¥") > —(m + 1)/2,

(iii) either 7' C Int;nv" and E(v') = Ljn(~") for some j”

or o' C Int;y' and E(y") = I;;(+') for some j'
or Inty'N Inty” = ¢ and E(y') = E(v").

Conversely, any collection of generalized cylinders {v;}, with 4; C V, such that, for
any pair 7;, s that is not separated by a third generalized cylinder from {v:}, vir
and 7 are strong compatible in the above sense, determines, in a unique way, a
generalized interface T' € V. Such a collection is called strongly compatible.

In terms of strongly compatible collections of generalized cylinders, formula (3.4)
may be written as

20/(V) = BV = exp (-268V]) 3 " TLwln); (36)

{yi}cv i

the sum >} {ycv is here over the strongly compatible collections of generalized
cylinders +;, with 4; C V, such that, for any external -y; (i.e. for any -; for which ;
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does not belong to Int ;, for any other generalized cylinder y; from the collection),
E(v;) takes the same value, and

() 0, for m odd
E(v;) =
' +1 or — 1, form even (depending on the boundary condition Uaille ).

The non-locality of the strong compatibility condition is expressed by conditions
(ii) and (iii) above.
Substituting (3.6) into (2.5), we obtain the following representation for Z*(V):

(V)= 22(V) exp (<28V]) 3 ] win) (3.7)

{'YI}C‘/ i

{1]

Recall that for log ZP(V) we already have a polymer expansion (3.1). The factor
exp (—2B8|V|) does not affect the analysis of log =*(V). The main problem is now
to analyse the last partition function ZE%}C‘, IL; w(v).

For this purpose we partition the generalized cylinders into two classes: ‘small’
and ‘large’ cylinders, according to the following rule. A generalized cylinder v is
called small if with fixed absolute constant ¢z > 1

diam 7 < ¢czm, (3.8)

otherwise 7 is called large. From now on we denote small generalized cylinders by
e, €, etc, and large ones by v, v/, etc. In terms of small and large generalized
cylinders, the partition function u’/ b(V) is re-written as

2¢/5(V) = exp (—28|V)) Z Hw & Hw vj) (3.9)
Heid{vsticv i

Now we will replace the rule of strong compatibility and the statistical weights
of small generalized cylinders by new ones in such a way that partition function
2¢/P(V) is preserved. The advantage is that the new compatibility rule between
the short generalized cylinders will be local.

Fix a collection of small and large generalized cylinders. A pair of distinct
generalized cylinders (small or large), 4" and v”, from the collection, not separated
by any third generalized cylinder from the same collection, is called mized-compatible
if

(i) their vertical projections, ¥’ and 5", do not intersect: ¥' N 5" = @,

(ii) the heights A* ('), hE(y") obey At (¥'), At (¥") < (m +1)/2 and

(), A= (") 2 =(m + 1)/2,
(iii.1) in the case both 4" and 4" are large cylinders,
either ¥ C Int;ny" and E(y') = Lju(v") for some j”,
or 7' C Inty (') and E(y") = I (v') for some 7',
or Inty' N Inty” =@ and E(v') = E(v"),
(iii.2) in the case +' is large and 4" small,
either 4/ C Int;v' and E(v") = I (y') for some j’
or Inty’ N Inty” = @ and E(v') = E(v"),
(ii.3) in the case both o/ and 4" are small cylinders, E(y') = E(v").



